Реакция крови и поддержание ее постоянства. PH (кислотность) мочи

Раздел III

ВНУТРЕННЯЯ СРЕДА ОРГАНИЗМА. СИСТЕМЫ, ОРГАНЫ И ПРОЦЕССЫ, УЧАСТВУЮЩИЕ В ПОДДЕРЖАНИИ ЕЕ ПОСТОЯНСТВА

ВВЕДЕНИЕ

На заре эволюции жизнь зародилась и возникла в водной среде. С появлением многоклеточных организмов большинство клеток утратило непосредственный контакт с внешней средой. Они существуют, окруженные внутренней средой - межклеточной жидкостью. Благодаря наличию системы крово- и лимфообращения, а также действию органов и систем, обеспечивающих поступление различных веществ из внешней во внут­реннюю среду организма (органы дыхания и пищеварения), и органов, обеспечивающих выведение во внешнюю среду продуктов обмена, у многоклеточных организмов возникла возможность поддерживать постоянство состава внутренней среды организма.

Вследствие этого клетки организма существуют и выполняют свои функции в относи­тельно постоянных (стабильных) условиях. Благодаря деятельности ряда регуляторных механизмов организм способен сохранить постоянство внутренней среды при резких изменениях различных характеристик внешней среды - больших перепадах температур, давлений, влажности, освещения, перебоях в получении питательных веществ. Чем точ­нее и надежнее регулируется постоянство внутренней среды, тем в меньшей степени организм зависит от изменений внешних условий, тем шире ареал его обитания, тем более свободен он в выборе той или иной внешней экологической среды для существо­вания.

«Постоянство внутренней среды-условие свободной жизни»,-так сформулиро­вал это положение крупный французский физиолог и патолог Клод Бернар. Способность сохранять постоянство внутренней среды получила название гомеостаэа. В основе его лежат не статические, а динамические процессы, так как постоянство внутренней среды непрерывно нарушается и столь же непрерывно восстанавливается. Весь комплекс про­цессов, направленных на поддержание постоянства внутренней среды, получил название гомеокинеза.

По классификации, предложенной еще в начале прошлого столетия известным французским анатомом и физиологом Биша, их относят к так называемым вегетативным процессам, или вегетативным функциям организма (от лат. vegetos - растение). Имеет­ся в виду, что характер всех этих процессов: обмен веществ, рост, размножение, обеспече­ние условий для сохранения структуры и осуществления процессов жизнедеятельности организма - представляет собой нечто общее, имеющее место как в организме живот­ных, так и в организме растений. В отличие от этого под анимальными функциями (от лат. animos -- животное) Биша понимал те функции и процессы, которые принципи­ально отличают животное от растения, а именно способность к активному, свободному и независимому передвижению за счет внутренних энергетических ресурсов, способность к различным по сложности формам активных двигательных действий, т.е. к поведенче­ским реакциям, иными словами - способность к активной деятельности в окружающей среде.

Хотя противопоставление анимальных и вегетативных функций не являетсяабсолют-ным, все же классификация Биша оказалась полезной и сохранилась до наших дней. В настоящем III разделе будут рассмотрены вегетативные функции организма.

Главной вегетативной функцией многоклеточного животного организма является поддержание постоянства его внутренней среды. В настоящем разделе будут описаны органы, системы и процессы, обеспечивающие поступление в организм из внешней среды нужных для жизнедеятельности веществ (органы пищеварения и дыхания) и удаление из организма продуктов обмена (почки, кожа, кишечник). Кроме того, будет изложен материал о системах транспорта веществ в организме (кровь, кровообращение, движе­ние лимфы), а также барьерных функциях и, кроме того, тех процессах обмена веществ и. энергии, которые традиционно изучаются в курсе физиологии, т. е. на уровне органов, систем и целостного организма.

Глава 9 ФИЗИОЛОГИЯ СИСТЕМЫ КРОВИ

Кровь, лимфа и тканевая жидкость образуют внутреннюю среду организма, омы­вающую все клетки и ткани тела. Внутренняя среда имеет относительное постоянство состава и физико-химических свойств, что создает приблизительно одинаковые условия существования клеток организма (гомеостаз). Это достигается деятельностью ряда орга­нов, обеспечивающих поступление в кровь необходимых организму веществ и удаление из крови продуктов распада.

Представление о крови как системе создал наш соотечественник Г. Ф. Ланг в 1939 г. В эту систему он включил 4 части: 1) периферическую кровь, циркулирующую по сосу­дам; 2) органы кроветворения (красный костный мозг, лимфатические узлы и селезенку);

3) органы кроверазрушения; 4) регулирующий нейрогуморальный аппарат.

Система крови представляет собой одну из систем жизнеобеспечения организма и выполняет множество функций:

1. Транспортная функция. Циркулируя по сосудам, кровь осуществляет транспорт­ную функцию, которая определяет ряд других.

2. Дыхательная функция. Эта функция заключается в связывании и переносе Ог и СОг.

3. Трофическая (питательная) функция. Кровь обеспечивает все клетки организма питательными веществами: глюкозой, аминокислотами, жирами, витаминами, минераль­ными веществами, водой.

4. Экскреторная функция. Кровь уносит из тканей «шлаки жизни» - конечные про­дукты метаболизма: мочевину, мочевую кислоту и другие вещества, удаляемые из орга­низма органами выделения.

5. Терморегуляторная функция. Кровь охлаждает энергоемкие органы и согревает органы, теряющие тепло.

6. Кровь поддерживает стабильность ряда констант гомеостаза - рН, осмотическое давление, изоионию и др.

7. Кровь обеспечивает водно-солевой обмен между кровью и тканями. В артериаль­ной части капилляров жидкость и соли поступают в ткани, а в венозной части капил­ляров возвращается в кровь.

8. Защитная функция. Кровь выполняет защитную функцию, являясь важнейшим фактором иммунитета, т. е. защиты организма от живых тел и генетически чуждых ве­ществ. Это определяется фагоцитарной активностью лейкоцитов (клеточный иммунитет) и наличием в крови антител, обезвреживающих микробы и их яды (гуморальный иммуни­тет). Эту задачу выполняет также бактерицидная пропердиновая-система.

9. Гуморальная регуляция. Благодаря своей транспортной функции кровь обеспечи­вает химическое взаимодействие между всеми частями организма, т.е. гуморальную регу­ляцию. Кровь переносит гормоны и другие физиологически активные вещества от кле­ток, где они образуются, к другим клеткам.

10. Осуществление креаторных связей. Макромолекулы, переносимые плазмой и форменными элементами крови, осуществляют межклеточную передачу информации, обеспечивающую регуляцию внутриклеточных процессов синтеза белков, сохранение сте­пени дифференцированности клеток, восстановление и поддержание структуры тканей.

СОСТАВ, КОЛИЧЕСТВО И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КРОВИ

СОСТАВ И КОЛИЧЕСТВО КРОВИ

Кровь состоит из жидкой части - плазмы и взвешенных в ней клеток (формен­ных элементов): эритроцитов (красных кровяных телец), лейкоцитов (белых кровяных телец) и тромбоцитов (кровяных пластинок).

Между плазмой и форменными элементами крови существуют определенные объем­ные соотношения. Их определяют с помощью гематокрита - специального стеклянного капилляра, разделенного на 100 равных частей. При центрифугировании крови в гема-токрите более тяжелые форменные элементы отбрасываются центробежными силами от оси вращения, а ближе к ней располагается плазма. Таким путем установлено, что на долю форменных элементов приходится 40-45 % крови, а на долю плазмы - 55-60%.

Общее количество крови в организме взрослого человека в норме составляет 6-8% массы тела, т.е. примерно 4,5-6 л.

Объем- циркулирующей крови относительно постоянен, несмотря на непрерывное всасывание воды из желудка и кишечника. Это объясняется строгим балансом между поступлением и выделением воды из организма. Если в кровь сразу поступает большое количество воды (например, при введении в сосуды кровезамещающей жидкости), часть ее выводится почками немедленно, а большая часть переходит в ткани, откуда постепенно возвращается в кровь и выделяется почками. При недостаточном потреблении жидкости вода из тканей переходит в кровь, а образование мочи уменьшается. Резкое уменьшение массы крови в результате обильного кровотечения, например потеря "/з ее объема, может привести к гибели. В таких случаях необходимо срочное переливание крови или крове-заменяющей жидкости.

ВЯЗКОСТЬ И ОТНОСИТЕЛЬНАЯ ПЛОТНОСТЬ КРОВИ

Если вязкость воды принять за единицу, то вязкость плазмы крови равна 1,7-2,2, а вязкость цельной крови - около 5. Вязкость крови обусловлена наличием белков и осо­бенно эритроцитов, которые при своем движении преодолевают силы внешнего и внутрен­него трения. Вязкость увеличивается при сгущении крови, т.е. потере воды (например, при поносах или обильном потении), а также при возрастании количества эритроцитов в крови. . -

Относительная плотность (удельный вес) цельной крови равен 1,050-1,060, эритро­цитов-1,090, плазмы-1,025-1,034.

ОСМОТИЧЕСКОЕ ДАВЛЕНИЕ КРОВИ

Если два раствора разной концентрации разделить полупроницаемой перепонкой, пропускающей только растворитель (например, воду), то вода переходит в более кон­центрированный раствор. Сила, определяющая движение растворителя через полупро­ницаемую мембрану, называется осмотическим давлением.

Осмотическое давление крови, лимфы и тканевой жидкости определяет обмен воды между кровью и тканями. Изменение осмотического давления жидкости, окружающей клетки, ведет к нарушениям в них водного обмена. Это видно на примере эритроцитов, которые в гипертоническом растворе NaCI теряют воду и сморщиваются. В гипотони­ческом растворе NaCI эритроциты, наоборот, набухают, увеличиваются в объеме и могут разрушиться!

Осмотическое давление крови можно определить криоскопически, т.е. измерением температуры замерзания. Она, как известно, тем ниже, чем выше в растворе суммарная концентрация мелких молекул и ионов. У человека температура замерзания крови ниже нуля на 0,56-0,58 °С. При таком понижении температуры замерзания раствора его осмотическое давление равно 7,6 атм. Около 60 % этого давления приходится на долю NaCl. Величина осмотического давления эритроцитов и всех других клеток организма такая же, как окружающей их жидкости.

Осмотическое давление крови млекопитающих и человека довольно постоянное, не­смотря на небольшие его колебания вследствие перехода из крови в ткани крупномоле-кулярных веществ (аминокислот, жиров, углеводов) и поступления из тканей в кровь низкомолекулярных продуктов клеточного метаболизма.

В регуляции осмотического давления участвуют органы выделения, главным обра­зом почки и потовые железы. Благодаря им вода, поступающая в организм, и продукты обмена, образующиеся в организме, выводятся с мочой и потом, не вызывая существен­ных сдвигов осмотического давления. Осморегулирующая деятельность выделительных органов регулируется сигналами от осморецепторов, т. е. специализированных обра­зований, которые активируются при изменении осмотического давления крови и тканевой жидкости. В отличие от крови осмотическое давление мочи и пота колеблется в довольно широких пределах. Температура замерзания пота на 0,18-0,6 ° ниже нуля, а мочи - на 0,2-2,2 °

РЕАКЦИЯ КРОВИ И ПОДДЕРЖАНИЕ ЕЕ ПОСТОЯНСТВА

Активная реакция крови (рН), обусловленная соотношением в ней водородных (Н" 1 ") и гидроксильных (ОН~) ионов, является одним из жестких параметров гомео-

стаза, так как только при определенном РН возможно оптимальное течение обмена ве­ществ.

Кровь имеет слабо щелочную реакцию. рН артериальной крови равен 7,4; рН веноз­ной крови вследствие большого содержания в ней углекислоты составляет 7,35. Внутри клеток рН несколько ниже (7,0-7,2), что зависит от образования в них при метаболизме кислых продуктов. Крайними пределами изменений рН, совместимыми с жизнью, являют­ся величины от 7,0 до 7,8. Смещение рН за эти пределы вызывает тяжелые нарушения и может привести к смерти. У здоровых людей рН крови колеблется в пределах 7,35-7,40. Длительное смещение рН у человека даже на 0,1-0,2 может оказаться гибельным.

В процессе метаболизма в кровь непрерывно поступают углекислота, молочная кис­лота и другие продукты обмена, изменяющие концентрацию водородных ионов. Однако рН крови сохраняется постоянным, что объясняется буферными свойствами плазмы и эритроцитов, а также деятельностью легких и органов выделения, удаляющих из орга­низма избыток СОг, кислот и щелочей.

Буферные свойства крови обусловлены тем, что в ней содержатся: 1) буферная система гемоглобина. 2) карбонатная буферная система. 3) фосфатная буферная сис­тема и 4) буферная система белков плазмы..

Буферная система гемоглобина самая мощная. На ее долю приходится 75 % буфер­ной емкости крови. Эта система состоит из восстановленного гемоглобина (ННв) и его калиевой соли (КНв). Буферные свойства ННв обусловлены тем, что он, будучи более слабой кислотой, чем НгСОз, отдает ей ион К 4 ", а сам, присоединяя ионы Н 4 ", становится очень слабо диссоциирующей кислотой. В тканях система гемоглобина крови выполняет функции щелочи, предотвращая закисление крови вследствие поступления в нее СОг и Нойонов. В легких гемоглобин крови ведет себя как кислота, предотвращая защелачи-ванне крови после выделения из нее углекислоты.

Карбонатная буферная система (НаСОз+МаНСОз) по своей мощности занимает второе место после системы гемоглобина. Она функционирует следующим образом:

NaHCOa диссоциирует на ионы Na^ и НСОз~. При поступлении в кровь более сильной кислоты, чем угольная, происходит реакция обмена ионами Na" 1 " с образованием слабо-диссоциирующей и легкорастворимой НаСОз. Таким образом предотвращается повыше­ние концентрации Н 4 -ионов в крови. Увеличение в крови содержания угольной кислоты приводит к тому, что ее ангидрит - углекислый газ - выделяется легкими. В результате этих процессов поступление кислоты в кровь приводит лишь к небольшому временному повышению содержания нейтральной соли без сдвига рН. В случае поступления в кровь щелочи она реагирует с угольной кислотой, образуя бикарбонат NaHCOs и воду. Возни­кающий при этом дефицит угольной кислоты немедленно компенсируется уменьшением выделения СС>2 легкими.

Хотя в исследованиях in vitro удельный вес бикарбонатного буфера по сравнению с гемоглобином слабее, в действительности.же его роль в организме весьма ощутима. Это обусловлено тем, что связанное с действием этой буферной системы усиленное выве­дение С02 легкими и выделение NaCI мочой - весьма быстрые процессы, почти мгно­венно восстанавливающие рН крови.

Фосфатная буферная система образована дигидрофосфатом (NaHsPCli) и гидро­фосфатом (Na2HPC>4) натрия. Первое соединение слабо диссоциирует и ведет себя как слабая кислота. Второе соединение обладает щелочными свойствами. При введении в кровь более сильной кислоты она реагирует с МаНгР04, образуя нейтральную соль и увеличивая количество малодиссоциирующего дигидрофосфата натрия. В случае вве­дения в кровь сильной щелочи она реагирует с дигидрофосфатом натрия, образуя слабо щелочной гидрофосфат натрия. рН крови изменяется при этом незначительно. В обоих случаях избыток дигидрофосфата или гидрофосфата натрия выделяется с мочой.

Белки плазмы играют роль буферной системы благодаря своим амфотерным свойст­вам. В кислой среде они ведут себя как"щелочи, связывая кислоты. В щелочной среде белки реагируют как кислоты, связывающие щелочи.

В поддержание рН крови, помимо легких, участвуют почки, удаляющие из организма избыток как кислот, так и щелочей. При сдвиге рН крови в кислую сторону почки выделяют с мочой увеличенное количество кислой соли NaHaP04. При сдвиге в щелоч­ную сторону почки увеличивают выделение щелочных солей: NaaHPOt и NaaCOs. В пер­вом случае моча становится резко кислой, во втором-щелочной (рН мочи в норме колеблется от 4,7 до 6,5, а при нарушениях кислотно-щелочного равновесия крови может изменяться в пределах 4,5-8,5).

Выделение небольшого количества молочной кислоты осуществляется также пото­выми железами.

Буферные системы имеются и в тканях, где они сохраняют рН на относительно постоянном уровне. Главными буферами тканей являются клеточные белки и фосфаты. В процессе метаболизма кислых продуктов образуется больше, чем щелочных, поэтому опасность сдвига рН в сторону закисления более велика. В соответствии с этим буферные системы крови и тканей более устойчивы к действию кислот, чем щелочей. Так, для сдвига рН плазмы крови в щелочную сторону требуется прибавить к ней в 40-70 раз больше NaOH, чем к чистой воде. Для сдвига же рН в кислую сторону необходимо добавить к плазме в 300-350 раз больше НС1, чем к воде. Щелочные соли слабых кислот, содержа­щиеся в крови, образуют так называемый щелочной резерв крови. Величину его опреде­ляют по тому количеству миллилитров углекислоты, которое может быть связано 100 мл крови при давлении СОа, равном 40 мм рт.ст., т.е. примерно соответствующем его давле­нию в альвеолярном воздухе.

Постоянное соотношение между кислотными и щелочными эквивалентами позволяет говорить о кислотно-щелочном равновесии крови.

Несмотря на наличие буферных систем и хорошую защищенность организма от воз­можных изменений рН, все же иногда при некоторых условиях наблюдаются небольшие сдвиги активной реакции крови. Сдвиг рН в кислую сторону называется ацидозом, сдвиг в щелочную сторону - алкалозом.

Изменения щелочного резерва крови и небольшие колебания ее рН всегда происхо­дят в капиллярах большого и малого кругов кровообращения. Так. поступление С02 в кровь тканевых капилляров закисляет венозную кровь на 0,01-0,05 по сравнению с артериальной кровью. Противоположный сдвиг рН наблюдается в легочных капиллярах вследствие перехода СОг в альвеолярный воздух.

СОСТАВ ПЛАЗМЫ КРОВИ

Плазма крови содержит 90-92 % воды и 8-10 % сухого вещества, главным обра­зом белков и солей. В плазме находится ряд белков, отличающихся по своим свой­ствам и функциональному значению: альбумины (около 4,5%), глобулины (2-3%) и фибриноген (0,2-0,4%).

Общее количество белка в плазме крови человека составляет 7-8 %. Остальная часть плотного остатка плазмы приходится на долю других органических соединений и минеральных солей.

В плазме находятся также небелковые азотсодержащие соединения (аминокислоты и полипептиды), всасывающиеся в пищеварительном тракте и используемые клетками для синтеза белков. Наряду с ними в крови находятся продукты распада белков и нукле­иновых кислот (мочевина, креатин, креатинин, мочевая кислота), подлежащие выведе­нию из организма.

Половина общего количества небелкового азота в плазме - так называемого оста­точного азота приходится на долю мочевины. При недостаточности функции почек содер­жание остаточного азота в плазме крови увеличивается.

В плазме находятся также безазотистые органические вещества: глюкоза 4,4-6,7 ммоль/л, или (80-120 мг %), нейтральные жиры и липоиды.

Минеральные вещества плазмы крови составляют около 0,9 %. Они представлены преимущественно катионами Na" 1 ", K + , Ca 2 " 1 ", и анионами С1~, HCOf, HPOi~.

Значение минерального состава плазмы и кровезамещающие растворы

Искусственные растворы, имеющие одинаковое с кровью осмотическое давление, называются изоосмотическими, или изотоническими. Для теплокровных животных и человека изотоническим раствором является 0,9 % раствор NaCl. Такой раствор называ­ют физиологическим. Растворы, имеющие большее осмотическое давление, чем кровь, называются гипертоническими, а меньшее - гипотоническими.

Изотонический раствор NaCl может некоторое время поддерживать жизнедеятель­ность отдельных органов, например изолированного (вырезанного из организма) сердца лягушки. Однако этот раствор не является полностью физиологическим. Разработаны рецепты растворов, соответствующие своим составом содержанию отдельных солей в плазме. Они являются в большей мере физиологическими, чем изотонический раствор NaCl. Наибольшее распространение получили растворы Рингера, Рингера-Локка и Тиро-де (табл. 10).

Таблица 10

Состав различных физиологических растворов

Название раствора

в граммах на 1 л дистиллированной воды

Раствор Рингера для хо­лоднокровных животных Раствор Рингера - Локка

для теплокровных жи­вотных

Раствор Тироде

Для поддержания деятельности изолированных органов теплокровных животных физиологические растворы насыщают кислородом и добавляют к ним глюкозу. Однако указанные растворы не содержат коллоидов (которыми являются белки плазмы) и быст­ро выводятся из кровеносного русла, т.е. восполняют объем потерянной крови на очень короткое время. Поэтому в последние годы созданы синтетические коллоидные крове­заменители (реополиглюкин, желатиноль, гемодез, полидез, неокомпенсан и Др.), кото­рые вводят человеку после кровопотери и по другим показаниям для нормализации объема крови и артериального давления. Однако идеального кровезаменителя типа «искусственная кровь» пока не создано.

БЕЛКИ ПЛАЗМЫ КРОВИ

Значение белков плазмы крови многообразно: 1) они обусловливают онкотическое давление, которое определяет обмен воды между кровью и тканями; 2) обладая буфер­ными свойствами, поддерживают рН крови; 3) обеспечивают вязкость плазмы крови, имеющую важное значение в поддержании артериального давления; 4) препятствуют оседанию эритроцитов; 5) участвуют в свертывании крови; 6) являются необходимыми факторами иммунитета; 7) служат переносчиками ряда гормонов, минеральных веществ, липидов, холестерина; 8) представляют собой резерв для построения тканевых белков;

9) осуществляют креаторные связи, т.е. передачу информации, влияющей на генетиче­ский аппарат клеток и обеспечивающей процессы роста, развития, дифференцировки и поддержания структуры организма (примерами таких белков являются так называе­мые «фактор роста нервной ткани», эритропоэтины и т.д.). -,

Молекулярная масса, сравнительные размеры и форма белковых молекул крови приведены на рис. 111. Как видно из рисунка, размеры молекулы альбумина близки к размерам гемоглобина. Молекула глобулина обладает большими размерами и массой, а наибольшую молекулярную массу имеет комплекс белка с липидами - липопротеиды. Изменение свойств и структуры липопротеидов играет важную роль в развитии «ржав­чины жизни» - атеросклероза. Молекула фибриногена имеет удлиненную форму, что об­легчает образование длинных нитей фибрина при свертывании крови.

В плазме крови содержится несколько десятк&в различных белков, которые состав­ляют 3 основные группы: альбумины, глобулины и фибриноген. Для разделения белков плазмы применяют метод электрофореза, основанный на неодинаковой скорости движе­ния разных белков в электрическом поле. С помощью этого метода глобулины разделены на несколько фракций: cii-, аг-, р-, у-глобулины. Электрофореграмма белков плазмы приведена на рис. 112.

В последние годы применяют более тонкий метод разделения белков плазмы крови - иммуноэлектрофорез, при котором в электрическом поле передвигаются не нативные белки, а комплексы белковых молекул, связанных со специфическими антителами. Это позволило выделить гораздо большее количество белковых фракций.

Онкотическое давление плазмы крови

Осмотическое давление, создаваемое белками, (т.е. их способностью притягивать воду), называется онкотическим давлением.

Абсолютное количество белков плазмы крови равно 7-8 % и почти в 10 раз прево­сходит количество кристаллоидов, но создаваемое ими онкотическое давление составляет лишь "/2оо осмотического давления плазмы (равного 7,6 атм), т.е. 0,03-0,04 атм (25-30 мм рт. ст.). Это обусловлено тем, что молекулы белков очень велики и число их в плазме во много раз меньше числа молекул кристаллоидов.

В наибольшем количестве содержатся в плазме альбумины. Величина их молекулы меньше чем молекулы глобулинов и фибриногена, а содержание заметно больше, поэтому онкотическое давление плазмы более чем на 80 % определяется альбуминами.

Несмотря на свою малую величину, онкотическое давление играет решающую роль в обмене воды между кровью и тканями. Оно влияет на процессы образования тканевой жидкости, лимфы, мочи, всасывания воды в кишечнике. Крупные молекулы белков плаз­мы, как правило, не проходят через эндотелий капилляров. Оставаясь в кровотоке, они удерживают в крови некоторое количество воды (в соответствии с величиной их онкотиче-ского давления).

При длительной перфузии изолированных органов растворами Рингера или Рингера-Локка наступает отек тканей. Если заменить физиологический раствор кристаллоидов кровяной сывороткой, то начавшийся отек исчезает. Именно поэтому в состав кровезаме-щающих растворов необходимо вводить коллоидные вещества. При этом онкотическое давление и вязкость подобных растворов подбирают так, чтобы они были равны этим параметрам крови.

СВЕРТЫВАНИЕ КРОВИ

Жидкое состояние крови и замкнутость (целостность) кровеносного русла являются необходимыми условиями жизнедеятельности. Эти условия создает система свертывания крови (система гемокоагуляции), сохраняющая циркулирующую кровь в жидком состоя­нии и восстанавливающая целостность путей ее циркуляции посредством образования кровяных тромбов (пробок, сгустков) в поврежденных сосудах.

Активная реакция крови — чрезвычайно важная гомеостатическая константа организма, обеспечивающая течение окислительно-восстановительных процессов, деятельность ферментов, направление и интенсивность всех видов обмена.

Кислотность или щелочность раствора зависит от содержания в нем свободных ионов водорода [Н+]. Количественно активная реакция крови характеризуется водородным показателем — рН (power hydrogen — «сила водорода»).

Водородный показатель — отрицательный десятичный логарифм концентрации водородных ионов, т. е. pH = -lg.

Символ рН и шкалу рН (от 0 до 14) ввел в 1908 г. Сервисен. Если рН равно 7,0 (нейтральная реакция среды), то содержание ионов Н + равно 10 7 моль/л. Кислая реакция раствора имеет рН от 0 до 7; щелочная — от 7 до 14.

Кислота рассматривается как донор ионов водорода, основание — как их акцептор, т. е. вещество, которое может связывать ионы водорода.

Постоянство кислотно-основного состояния (КОС) поддерживается как физико-химическими (буферные системы), так и физиологическими механизмами компенсации (легкие, почки, печень, другие органы).

Буферными системами называют растворы, обладающие свойствами достаточно стойко сохранять постоянство концентрации водородных ионов как при добавлении кислот или щелочей, так и при разведении.

Буферная система — это смесь слабой кислоты с солью этой кислоты, образованной сильным основанием.

Примером может служить сопряженная кислотно-основная пара карбонатной буферной системы: Н 2 СО 3 и NaHC0 3 .

В крови существует несколько буферных систем:

1) бикарбонатная (смесь Н 2 СО 3 и НСО 3 -);

2) система гемоглобин — оксигемоглобин (оксигемоглобин имеет свойства слабой кислоты, а дезоксигемоглобин — слабого основания);

3) белковая (обусловленная способностью белков ионизироваться);

4) фосфатная система (дифосфат — монофосфат).

Самой мощной является бикарбонатная буферная система — она включает 53% всей буферной емкости крови, остальные системы составляют соответственно 35%, 7% и 5%. Особое значение гемоглобинового буфера заключается в том, что кислотность гемоглобина зависит от его оксигенации, то есть газообмен кислорода потенцирует буферный эффект системы.

Исключительно высокую буферную емкость плазмы крови можно проиллюстрировать следующим примером. Если 1 мл децинормальной соляной кислоты добавить к 1 л нейтрального физиологического раствора, который не является буфером, то его рН упадет с 7,0 до 2,0. Если такое же количество соляной кислоты добавить к 1 л плазмы, то рН снизится всего с 7,4 до 7,2.

Роль почек в поддержании постоянства кислотно-основного состояния заключается в связывании или выведении ионов водорода и возвращении в кровь ионов натрия и бикарбоната. Механизмы регуляции КОС почками тесно связаны с водно-солевым обменом. Метаболическая почечная компенсация развивается гораздо медленнее дыхательной компенсации — в течение 6-12 ч.

Постоянство кислотно-основного состояния поддерживается также деятельностью печени . Большинство органических кислот в печени окисляется, а промежуточные и конечные продукты либо не имеют кислого характера, либо представляют собой летучие кислоты (углекислота), быстро удаляющиеся легкими. Молочная кислота в печени преобразуется в гликоген (животный крахмал). Большое значение имеет способность печени удалять неорганические кислоты вместе с желчью.

Выделение кислого желудочного сока и щелочных соков (панкреатического и кишечного) также имеет значение в регуляции КОС.

Огромная роль в поддержании постоянства КОС принадлежит дыханию. Через легкие в виде углекислоты выделяется 95% образующихся в организме кислых валентностей. За сутки человек выделяет около 15 ООО ммоль углекислоты, следовательно, из крови исчезает примерно такое же количество ионов водорода (Н 2 СО 3 = C02 + Н 2 0). Для сравнения: почки ежедневно экскретируют 40-60 ммоль Н+ в виде нелетучих кислот.

Количество выделяемой двуокиси углерода определяется ее концентрацией в воздухе альвеол и объемом вентиляции. Недостаточная вентиляция приводит к повышению парциального давления С02 в альвеолярном воздухе (альвеолярная гиперкапния ) и соответственно увеличению напряжения углекислого газа в артериальной крови (артериальная гиперкапния ). При гипервентиляции происходят обратные изменения — развивается альвеолярная и артериальная гипокапния.

Таким образом, напряжение углекислого газа в крови (РаСO 2), с одной стороны, характеризует эффективность газообмена и деятельность аппарата внешнего дыхания, с другой — является важнейшим показателем кислотно-основного состояния, его дыхательным компонентом.

Респираторные сдвиги КОС самым непосредственным образом участвуют в регуляции дыхания. Легочный механизм компенсации является чрезвычайно быстрым (коррекция изменений рН осуществляется через 1-3 мин) и очень чувствительным.

При повышении РаСO 2 с 40 до 60 мм рт. ст. минутный объем дыхания возрастает от 7 до 65 л/мин. Но при слишком большом повышении РаСO 2 или длительном существовании гиперкапнии наступает угнетение дыхательного центра с понижением его чувствительности к СO 2 .

При ряде патологических состояний регуляторные механизмы КОС (буферные системы крови, дыхательная и выделительная системы) не могут поддерживать рН на постоянном уровне. Развиваются нарушения КОС, и в зависимости от того, в какую сторону происходит сдвиг рН, выделяют ацидоз и алкалоз.

В зависимости от причины, вызвавшей смещение рН, выделяют дыхательные (респираторные) и метаболические (обменные) нарушения КОС: дыхательный ацидоз, дыхательный алкалоз, метаболический ацидоз , метаболический алкалоз .

Системы регуляции КОС стремятся ликвидировать возникшие изменения, при этом респираторные нарушения нивелируются механизмами метаболической компенсации, а метаболические нарушения компенсируются изменениями вентиляции легких.

6.1. Показатели кислотно-основного состояния

Кислотно-основное состояние крови оценивается комплексом показателей.

Величина рН — основной показатель КОС. У здоровых людей рН артериальной крови равен 7,40 (7,35-7,45), т.е. кровь имеет слабощелочную реакцию. Снижение величины рН означает сдвиг в кислую сторону — ацидоз (рН < 7,35), увеличение рН — сдвиг в щелочную сторону — алкалоз (рН > 7,45).

Размах колебаний рН кажется небольшим вследствие применения логарифмической шкалы. Однако разница в единицу рН означает десятикратное изменение концентрации водородных ионов. Сдвиги рН более чем на 0,4 (рН менее 7,0 и более 7,8) считаются несовместимыми с жизнью.

Колебания рН в пределах 7,35-7,45 относятся к зоне полной компенсации. Изменения рН вне пределов этой зоны трактуются следующим образом:

Субкомпенсированный ацидоз (рН 7,25-7,35);

Декомпенсированнй ацидоз (рН < 7,25);

Субкомпенсированный алкалоз (рН 7,45-7,55);

Декомпенсированный алкалоз (рН > 7,55).

РаСO 2 (РСO2) — напряжение углекислого газа в артериальной крови. В норме РаСO 2 составляет 40 мм рт. ст. с колебаниями от 35 до 45 мм рт. ст. Повышение или снижение РаСO2 является признаком респираторных нарушений.

Альвеолярная гипервентиляция сопровождается снижением РаСO 2 (артериальной гипокапнией) и респираторным алкалозом, альвеолярная гиповентиляция — повышением РаСO 2 (артериальной гиперкапнией) и респираторным ацидозом.

Буферные основания (Buffer Base, ВВ) общее количество всех анионов крови. Поскольку общее количество буферных оснований (в отличие от стандартных и истинных бикарбонатов) не зависит от напряжения СO 2 , по величине ВВ судят о метаболических нарушениях КОС. В норме содержание буферных оснований составляет 48,0 ± 2,0 ммоль/л.

Избыток или дефицит буферных оснований (Base Excess, BE) — отклонение концентрации буферных оснований от нормального уровня. В норме показатель BE равен нулю, допустимые пределы колебаний ±2,3 ммоль/л. При повышении содержания буферных оснований величина BE становится положительной (избыток оснований), при снижении — отрицательной (дефицит оснований). Величина BE является наиболее информативным показателем метаболических нарушений КОС благодаря знаку (+ или -) перед числовым выражением. Дефицит оснований, выходящий за пределы колебаний нормы, свидетельствует о наличии метаболического ацидоза, избыток — о наличии метаболического алкалоза.

Стандартные бикарбонаты (SB) — концентрация бикарбонатов в крови при стандартных условиях (рН = 7,40; РаСO 2 = 40 мм рт. ст.; t = 37 °С; SO 2 = 100%).

Истинные (актуальные) бикарбонаты (АВ) — концентрация бикарбонатов в крови при соответствующих конкретных условиях, имеющихся в кровеносном русле. Стандартные и истинные бикарбонаты характеризуют бикарбонатную буферную систему крови. В норме значения SB и АВ совпадают и составляют 24,0 ± 2,0 ммоль/л. Количество стандартных и истинных бикарбонатов уменьшается при метаболическом ацидозе и увеличивается при метаболическом алкалозе.

6.2. Нарушения кислотно-основного состояния

Метаболический (обменный) ацидоз развивается при накоплении в крови нелетучих кислот. Он наблюдается при гипоксии тканей, нарушениях микроциркуляции, кетоацидозе при сахарном диабете, почечной и печеночной недостаточности, шоке й других патологических состояниях. Наблюдается уменьшение величины рН, снижение содержания буферных оснований, стандартных и истинных бикарбонатов. Величина BE имеет знак (-), что свидетельствует о дефиците буферных оснований.

К метаболическому (обменному) алкалозу могут приводить тяжелые нарушения обмена электролитов, потеря кислого желудочного содержимого (например, при неукротимой рвоте), чрезмерное потребление с пищей щелочных веществ. Увеличивается значение рН (сдвиг в сторону алкалоза) — повышается концентрация ВВ, SB, АВ. Величина BE имеет знак (+) — избыток буферных оснований.

Причиной дыхательных нарушений кислотно-основного состояния является неадекватная вентиляция.

Респираторный (дыхательный) алкалоз возникает в результате произвольной и непроизвольной гипервентиляции. У здоровых людей он может наблюдаться в условиях высокогорья, при беге на длинные дистанции, при эмоциональном возбуждении. Одышка легочного или сердечного больного, когда нет условий для задержки СO 2 в альвеолах, искусственная вентиляция легких могут сопровождаться респираторным алкалозом. Он протекает с повышением рН, снижением РаСO 2 , компенсаторным уменьшением концентрации бикарбонатов, буферных оснований, нарастанием дефицита буферных оснований.

При выраженной гипокапнии (РаСO 2 < 20-25 мм рт. ст.) и респираторном алкалозе могут наступить потеря сознания и судороги. Особенно неблагоприятны гипокапния и респираторный алкалоз в условиях недостатка кислорода (гипоксии). Устойчивость организма к гипоксии при этом резко падает. С этими нарушениями обычно связывают летные происшествия.

Респираторный (дыхательный) ацидоз развивается на фоне гиповентиляции, которая может быть следствием угнетения дыхательного центра. При тяжелой дыхательной недостаточности, связанной с патологией легких, возникает респираторный ацидоз. Величина рН при этом смещена в сторону ацидоза, напряжение СО 2 в крови повышено.

При значительном (более 70 мм рт. ст.) и достаточно быстром повышении РаСO 2 (например, при астматическом статусе) может развиться гиперкапническая кома. Сначала появляются головная боль, крупный тремор рук, потливость, затем психическое возбуждение (эйфория) или сонливость, спутанность сознания, артериальная и венозная гипертензия. Далее появляются судороги, потеря сознания.

Гиперкапния и респираторный ацидоз могут быть следствием пребывания человека в атмосфере с повышенным содержанием углекислого газа.

При хронически развивающемся дыхательном ацидозе наряду с повышением РаС0 2 и снижением рН наблюдается компенсаторное увеличение бикарбонатов и буферных оснований. Величина BE, как правило, имеет знак (+) — избыток буферных оснований.

При хронических заболеваниях легких может возникнуть и метаболический ацидоз. Его развитие связывают с активным воспалительным процессом в легких, гипоксемией, недостаточностью кровообращения. Метаболический и респираторный ацидоз нередко сочетаются, в результате чего возникает смешанный ацидоз.

Первичные сдвиги КОС не всегда можно отличить от компенсаторных вторичных. Обычно первичные нарушения показателей КОС выражены больше, чем компенсаторные, и именно первые определяют направление сдвига рН. Правильная оценка первичных и компенсаторных сдвигов КОС — обязательное условие адекватной коррекции этих нарушений. Чтобы избежать ошибок в трактовке КОС, необходимо наряду с оценкой всех его компонентов учитывать РаO 2 и клиническую картину заболевания.

Определение рН крови осуществляется электрометрическим способом с использованием стеклянного электрода, чувствительного к ионам водорода.

Для определения напряжения углекислого газа в крови используется эквилибрационная методика Аструпа или электрод Северингхауса. Значения, характеризующие метаболические компоненты КОС, рассчитывают с помощью номограммы.

Исследуется артериальная кровь или артериализированная капиллярная кровь из кончика прогретого пальца. Требуемый объем крови не превышает 0,1-0,2 мл.

В настоящее время выпускаются приборы, определяющие рН, напряжение СO 2 и O 2 крови; расчеты производятся микрокомпьютером, входящим в состав прибора.

ФИЗИОЛОГИЯ СИСТЕМЫ КРОВИ

В систему крови входят: кровь, циркулирующая по сосудам; органы, в которых происходит образование клеток крови и их разрушение (костный мозг, селезенка, печень, лимфатические узлы), и регулирующий нейрогуморальный аппарат.

Для нормальной деятельности всех органов необходимо постоянное снабжение их кровью. Прекращение кровообращения даже на короткий срок (в мозге всего на несколько минут) вызывает необратимые изменения. Это обусловлено тем, что кровь выполняет в организме важные функции, необходимые для жизни. Основные функции крови следующие.

Трофическая (питательная) функция. Кровь переносит питательные вещества (аминокислоты, моносахариды и др.) от пищеварительного тракта к клеткам организма. Эти вещества нужны клеткам в качестве строительного и энергетического материала, а также для обеспечения их специфической деятельности. Например, через вымя коровы должно пройти 500-550 л крови, чтобы его секретирующие клетки образовали 1 л молока.

Экскреторная (выделительная) функция . С помощью крови происходит удаление из клеток организма конечных продуктов обмена веществ, ненужных и даже вредных (аммиак, мочевина, мочевая кислота, креатинин, различные соли и т. д.). Эти вещества с кровью приносятся к органам выделения и далее выделяются из организма.

Респираторная (дыхательная функция). Кровь переносит кислород от легких к тканям, а образующийся в них углекислый газ транспортирует к легким, откуда он удаляется при выдохе. Объем переноса кислорода и углекислого газа кровью зависит от интенсивности обмена веществ в организме.

Защитная функция. В крови имеется очень большое количество лейкоцитов, обладающих способностью поглощать и переваривать микробы и другие инородные тела, поступающие в организм. Эта способность лейкоцитов была открыта русским ученым Мечниковым (1883 г.) и получила название фагоцитоза, а сами клетки были названы фагоцитами. Как только в организм попадает инородное тело, лейкоциты устремляются к нему, захватывают и переваривают его благодаря наличию мощной системы ферментов. Нередко они погибают в этой борьбе и тогда, скапливаясь в одном месте, образуют гной. Фагоцитарная активность лейкоцитов получила название клеточного иммунитета. В жидкой части крови в ответ на поступление в организм инородных веществ появляются особые химические соединения - антитела. Если они обезвреживают ядовитые вещества, выделяемые микробами, то их называют антитоксинами, если вызывают склеивание микробов и других инородных тел, их называют агглютининами. Под влиянием антител может происходить растворение микробов. Такие антитела носят название лизинов. Существуют антитела, вызывающие осаждение чужеродных белков - преципитины. Наличие антител в организме обеспечивает его гуморальный иммунитет. Такую же роль играет бактерицидная пропердиновая система.

Терморегулирующая функция. В силу своего непрерывного движения и большой теплоемкости кровь способствует распределению тепла по организму и поддержанию определенной температуры тела. Во время работы органа в нем происходит резкое усиление процессов обмена веществ и выделение тепловой энергии. Так, в функционирующей слюнной железе количество тепла увеличивается в 2-З раза по сравнению с состоянием покоя. Еще больше возрастает образование тепла в мышцах во время их деятельности. Но тепло не задерживается в работающих органах. Оно поглощается кровью и разносится по всему телу. Изменение температуры крови вызывает возбуждение центров регуляция тепла, расположенных в продолговатом мозге и гипоталамусе, что приводит к соответствующему изменению образования и отдачи тепла, в результате чего температура тела поддерживается на постоянном уровне.

Коррелятивная функция. Кровь, постоянно двигаясь в замкнутой системе кровеносных сосудов, обеспечивает связь между различными органами, и организм функционирует как единая целостная система. Эта связь осуществляется при помощи различных веществ, поступающих в кровь (гормоны и пр.). Таким образом, кровь участвует в гуморальной регуляции функций организма.

Кровь и ее производные - тканевая жидкость и лимфа - образуют внутреннюю среду организма. Функции крови направлены на то, чтобы поддерживать относительное постоянство состава этой среды. Таким образом, кровь участвует в поддержании гомеостаза.

Кровь, имеющаяся в организме, циркулирует по кровеносным сосудам не вся. В обычных условиях значительная часть ее находится в так называемых депо:

в печени до 20%

в селезенке примерно 16%

в коже до 10% от всего количества крови.

Отношение между циркулирующей и депонированной кровью меняется в зависимости от состояния организма. При физической работе, нервном возбуждении, при кровопотерях часть депонированной крови рефлекторным путем выходит в кровеносные сосуды.

Количество крови различно у животных разного вида, пола, породы, хозяйственного использования. Например, количество крови у спортивных лошадей достигает 14-15 % от массы тела, а у тяжеловозов - 7-8 %. Чем интенсивнее процессы обмена веществ в организме, чем выше потребность в кислороде, тем больше крови у животного.

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КРОВИ

Кровь по своему содержанию неоднородна. При отстаивании в пробирке несвернувшейся крови (с добавлением лимоннокислого натрия) она разделяется на два слоя:

верхний (60-55 % общего объема) - желтоватая жидкость - плазма,

нижний (40-45 % объема) - осадок - форменные элементы крови

(толстый слой красного цвета - эритроциты,

над ним тонкий беловатый осадок - лейкоциты и кровяные пластинки)

Следовательно, кровь состоит из жидкой части (плазмы) и взвешенных в ней форменных элементов.

Вязкость и относительная плотность крови. Вязкость крови обусловлена наличием в ней эритроцитов и белков. В нормальных условиях вязкость крови в З-5 раз больше вязкости воды. Она увеличивается при больших потерях воды организмом (поносы, обильное потение), а также при возрастании количества эритроцитов. При уменьшении числа эритроцитов вязкость крови снижается.

Относительная плотность крови колеблется в очень узких границах (1,035-1,056) (табл. 1). Плотность эритроцитов выше - 1,08-1,09. Благодаря этому происходит оседание эритроцитов, когда свертывание крови предотвращается. Относительная плотность лейкоцитов и кровяных пластинок ниже, чем эритроцитов, поэтому при центрифугировании они образуют слой над эритроцитами. Относительная плотность цельной крови в основном зависит от количества эритроцитов, поэтому у самцов она несколько выше, чем у самок.

Осмотическое и онкотическое давление крови. В жидкой части крови растворены минеральные вещества - соли. У млекопитающих их концентрация составляет около 0,9 %. Они находятся в диссоциированном состоянии в виде катионов и анионов. От содержания этих веществ зависит в основном осмотическое давление крови. Осмотическое давление - это сила, вызывающая движение растворителя через полупроницаемую мембрану из менее концентрированного раствора в более концентрированный. Клетки тканей и клетки самой крови окружены полупроницаемыми оболочками, через которые легко проходит вода и почти не проходят растворенные вещества. Поэтому изменение осмотического давления в крови и тканях может привести к набуханию клеток или потере ими воды. Даже незначительные изменения соленого состава плазмы крови губительны для многих тканей, и прежде всего для клеток самой крови. Осмотическое давление крови держится на относительно постоянном уровне за счет функционирования регулирующих механизмов. В стенках кровеносных сосудов, в тканях, в отделе промежуточного мозга - гипоталамусе имеются специальные рецепторы, реагирующие на изменение осмотического давления, - осморецепторы. Раздражение осморецепторов вызывает рефлекторное изменение деятельности выделительных органов, и они удаляют избыток воды или солей, поступивших в кровь. Большое значение в этом отношении имеет кожа, соединительная ткань которой впитывает избыток воды из крови или отдает ее в кровь при повышении осмотического давления последней.

Величину осмотического давления обычно определяют косвенными методами. Наиболее удобен и распространен криоскопический способ, когда находят депрессию, или понижение точки замерзания крови. Известно, что температура замерзания раствора тем ниже, чем больше концентрация растворенных в нем частиц, то есть чем больше его осмотическое давление. Температура замерзания крови млекопитающих на О,56-О,58 °С ниже температуры замерзания воды, что соответствует осмотическому давлению 7,6 атм, или 768,2 кПа.

Определенное осмотическое давление создают и белки плазмы. Оно составляет 1/220 общего осмотического давления плазмы крови и колеблется от 3,325 до 3,99 кПа, или О,О3-О,О4 атм, или 25-ЗО мм рт. ст. Осмотическое давление белков плазмы крови называют онкотическим давлением. Оно значительно меньше давления, создаваемого растворенными в плазме солями, так как белки имеют огромную молекулярную массу, и, несмотря на большее их содержание в плазме крови по массе, чем солей, количество их грамм - молекул оказывается относительно небольшим, к тому же они значительно менее подвижны, чем ионы. А для величины осмотического давления имеет значение не масса растворенных частиц, а них число и подвижность.

Онкотическое давление препятствует чрезмерному переходу воды из крови в ткани и способствует реабсорбции ее из тканевых пространств, поэтом

у при уменьшении количества белков в плазме крови развиваются отеки тканей.

Реакция крови и буферные системы. Кровь животных имеет слабощелочную реакцию. Ее рН колеблется в пределах 7,35-7,55 и сохраняется на относительно постоянном уровне, несмотря на постоянное поступление в кровь кислых и щелочных продуктов обмена. Постоянство реакции крови имеет большое значение для нормальной жизнедеятельности, так как сдвиг рН на О,З-О,4 смертельно опасен для организма. Активная реакция крови (рН) является одной из жестких констант гомеостаза.

Поддержание кислотно-щелочного равновесия достигается наличием в крови буферных систем и деятельностью выделительных органов, удаляющих избытки кислот и щелочей.

В крови имеются следующие буферные системы: гемоглобиновая, карбонатная, фосфатная, белков плазмы крови.

Гемоглобиновая буферная система. Это самая мощная система. Примерно 75 % буферов крови составляет гемоглобин. В восстановленном состоянии он является очень слабой кислотой, в окисленном - его кислотные свойства усиливаются.

Карбонатная буферная система. Представлена смесы слабой кислоты - угольной и ее солей - бикарбонатов натрия и калия. При обычно существующей в крови концентрации водородных ионов количество растворенной угольной кислоты примерно в 20 раз меньше, чем бикарбонатов. При поступлении в плазму крови более сильной кислоты, чем угольная, анионы сильной кислоты взаимодействуют с катионами натрия бикарбоната, образуя натриевую соль, а ионы водорода, соединяясь с анионами НСО образуют малодиссоциированную угольную кислоту. При поступлении в плазму крови молочной кислоты возникает реакция:

CH 3 CHOHCOOH + NaHCO 3 = CH 3 CHOHCOONa + H 2 CO 3

Так как угольная кислота слабая, при ее диссоциации образуется очень мало водородных ионов. Кроме того, под действием содержащегося в эритроцитах фермента карбоангидразы, или угольной ангидразы, угольная кислота распадается на углекислый газ и воду. Углекислый газ выделяется с выдыхаемым воздухом, и изменения реакции крови не происходит. В случае поступления в кровь оснований они вступают в реакцию с угольной кислотой, образуя бикарбонаты и воду; реакция вновь остается постоянной. На долю карбонатной системы приходится относительно небольшая часть буферных веществ крови, ее роль в организме значительна, так как с деятельностью этой системы связано выведение углекислого газа легкими, что обеспечивает почти мгновенное восстановление нормальной реакции крови.

Фосфатная буферная система. Эта система образована смесы однозамещенного и двузамещенного фосфорнокислого натрия, или дигидрофосфата и гидрофосфата натрия. Первое соединение слабо диссоциирует и ведет себя как слабая кислота, второе - имеет свойства слабой щелочи. Вследствие не большой концентрации фосфатов в крови роль этой системы менее значительна.

Белки плазмы крови. Как и всякие белки, они обладают амфотерными свойствами: с кислотами вступают в реакцию как основания, с основаниями как кислоты, благодаря чему участвуют в поддержании рН на относительно постоянном уровне.

Мощность буферных систем неодинакова у разных видов животных. Особенно велика она у животных, биологически приспособленных к напряженной мышечной работе, например у лошадей, оленей.

Вследствие того что в ходе обмена веществ образуется больше кислотных продуктов, чем щелочных, опасность сдвига реакции в кислую сторону более вероятна, чем в щелочную. В связи с этим буферные системы крови обеспечивают горазд большую устойчивость по отношению к поступлению кислот, чем щелочей Так, для сдвига реакции плазмы крови в щелочную сторону к ней нужно прибавить раствора едкого натра в 40-70 раз больше, чем к воде. Чтобы вызвать сдвиг реакции крови в кислую сторону, к плазме приходится прибавлять соляной кислоты в 327 раз больше, чем к воде. Следовательно, запас щелочных веществ крови значительно больше, чем кислых, то есть щелочной резерв кров во много раз превышает кислотный.

Так как в крови имеется определенное и довольно постоянное отношение между кислотными и щелочными компонентами, принято называть его кислотно-щелочным равновесием.

Величину щелочного резерв крови можно определить по количеству содержащихся в ней бикарбонатов, которое обычно выражают кубических сантиметрах углекислого газа, образовавшегося из бикарбонатов путем прибавления кислоты в условиях равновесия с газовой смесы, где парциальное давление угле кислого газа равно 40 мм рт. ст., что соответствует давлению этого газа альвеолярном воздухе (метод Ван Слайка).

Щелочной резерв у лошадей составляет 55-57 см у крупного рогатого скота - в среднем 60, овец - 56 см углекислого газа 100 мл плазмы крови.

Несмотря на наличие буферных систем и хорошую защищенность организма от сдвига реакции крови изменение кислотно-щелочного равновесия все же возможно. Например при напряженной мышечной работе щелочной резерв крови резко уменьшается - до 20 об % (объемных процентов) Неправильное Одностороннее кормление КРС кислым силосом или концентратами приводит к сильному снижению щелочного резерва (до 10 об %).

Если поступающие в кровь кислоты вызывают лишь уменьшение щелочного резерва но не сдвигают реакцию крови в кислую сторону, то наступает так называемый компенсированный ацидоз. Если не только исчерпывает щелочной резерв, но и сдвигается реакция крови в кислую сторону, возникает состояние некомпенсированного ацидоза.

Различают также компенсированный и некомпенсированный алкалозы. В первом случае происходит увеличение щелочного резерва крови и уменьшение кислотного без сдвига реакции крови. Во втором случае наблюдают и сдвиг реакции крови в щелочную сторону. Это может быть вызвано скармливанием или введением в организм большого количества щелочных продуктов, а также выведением кислот или повышенной задержкой щелочных веществ. Состояние компенсированного алкалоза возникает при гипервентиляции легких и усиленном выведении углекислого газа из организма.

Как ацидоз, так и алкалоз может быть метаболическим (негазовым) и респираторным (дыхательным, газовым). Метаболический ацидоз характеризуется снижением концентрации карбонатов в крови. Респираторный ацидоз, развивается в результате накопления углекислоты в организме. Метаболический алкалоз обусловлен увеличением количества бикарбонатов в крови, например при введении внутрь или парентерально веществ богатых гидроксилами. Газовый алкалоз связан с гипервентиляцией лёгких, при этом углекислый газ усиленно удаляется из организма.

Состав плазмы крови.

Плазма крови - это сложная биологическая система, тесно связанная с тканевой жидкостью организма.

В плазме крови содержится 90-92 % 8- % сухих веществ. в состав сухих веществ входят белки, глюкоза, липиды (нейтральные жиры, лецитин, холестерин и т. д.), молочная и пировиноградная кислота, небелковые азотистые вещества (аминокислоты, мочевина, мочевая кислота, креатин, креатинин), различные минеральные соли (преобладает хлористый натрий) ферменты, гормоны, витамины пигменты.

В плазме растворены также кислород, углекислый газ и азот.

Белки плазмы и их функционал значение . Основную часть сухого вещества плазмы составляют белки. общее их количество равно 6-8 %. имеется несколько десятков различных белков, которые делят на две основные группы: альбумины и глобулины. Соотношение между количеством альбуминов и глобулинов в плазме крови животных разных видов различно (табл. 2).

Соотношение альбуминов и глобулинов в плазме крови называют белковым коэффициентом . У свиней, овец, коз, собак, кроликов, человека он больше единицы, а у лошадей, крупного рогатого скота количество глобулинов как правило превышает количество альбуминов то есть он меньше единицы. Полагают, что от величины этого коэффициента зависит скорость оседания эритроцитов - она повышается при увеличение количества глобулинов

Для разделения белков плазмы применяют метод электрофореза. Имея различный электрический за ряд, разные белки движутся в электрическом поле с неодинаковой скоростью. С помощью этого метода удалось разделить глобулины на не сколько фракций: α 1 α 2 β γ глобулины. В глобулиновую фракцию входит фибриноген, имеющий большое значение в свертывании крови.

Альбумины и фибриноген образуются в печени, глобулины, кроме печени, еще и в костном мозге, Селезенке, лимфатических узлах.

Белки плазмы крови выполняют многообразные функции. Они поддерживают нормальный объем крови и постоянное количество воды в тканях. Как крупномолекулярные коллоидные частицы, белки не могут проходить через стенки капилляров в тканевую жидкость. Оставаясь в крови, они притягивают некоторое количество воды из тканей в кровь и создают так называемое онкотическое давление. Особенно большое значение в его создании принадлежит альбуминам, имеющим меньшую молекулярную массу и отличающимся большей подвижностью, чем глобулины. На их долю приходится примерно 80 % онкотического давления.

Большую роль играют белки и в транспорте питательных веществ. Альбумины связывают и переносят жирные кислоты, пигменты желчи; α - и β - глобулины переносят холестерин, стероидные гормоны, фосфолипиды; γ - глобулины участвуют в транспорте металлических катионов.

Белки плазмы крови, и прежде всего фибриноген, участвуют в свертывании крови. Обладая амфотерными свойствами, они поддерживают кислотно-щелочное равновесие. Белки создают вязкость крови, имеющую важное значение в поддержании артериального давления. Они стабилизируют кровь, препятствуя чрезмерному оседанию эритроцитов.

Протеины играют большую роль в иммунитете. В γ - глобулиновую фракцию белков входят различные антитела, которые защищают организм от вторжения бактерий и вирусов. При иммунизации животных количество γ - глобулинов увеличивается.

В 1954 г. в плазме крови был открыт белковый комплекс, содержащий липиды и полисахариды, - пропердин. Он способен вступать в реакции с вирусными белками и делать их неактивными, а также вызывать гибель бактерий. Пропердин является важным фактором врожденной невосприимчивости к ряду заболеваний.

Белки плазмы крови, и в первую очередь альбумины, служат источником образования белков различных органов. С помощью методики меченых атомов доказано, что введенные парентерально (минуя пищеварительный тракт) белки плазмы быстро включаются в белки, специфические для различных органов.

Белки плазмы крови осуществляют креаторные связи, то есть передачу информации, влияющей на генетический аппарат клетки и обеспечивающей процессы роста, развития, дифференцировки и поддержании структуры организма.

Небелковые азотсодержащие соединения . В эту группу входят аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак, которые также относятся к органическим веществам плазмы крови. Они получи ли название остаточного азота. Общее количество его составляет 11- 15 ммоль/л (30-40 мг%). При на рушении функции почек содержание остаточного азота в плазме крови резко возрастает.

Безазотистые органические вещества плазмы крови. К ним относят глюкозу и нейтральные жиры. Количество глюкозы в плазме крови колеблется в зависимости от вида животных. наименьшее ее количество содержится в плазме крови жвачных - 2,2-3,3 ммоль/л (40-60 мг%), животных с однокамерным желудком - 5,54 ммоль/л (100 мг%), в крови кур-7,2 ммоль/л (130-290 мг%).

Неорганические вещества плазмы – соли. У млекопитающих они составляют около 0,9 г% и находятся в диссоциированном состоянии в виде катионов и анионов. От их содержания зависит осмотическое давление.

ФОРМЕННЫЕ ЭЛЕМЕНТЫ КРОВИ

Форменные элементы крови делятся на три группы - эритроциты, лейкоциты и кровяные пластинки

Общий объем форменных элементов в 100 объемах крови называют показателем гематокрита.

Эритроциты. Красные кровяные летки составляют главную массу клеток крови. Свое название они получили от греческого слова «эритрос» - красный. Они определяют красный цвет крови. Эритроциты рыб, амфибий, рептилий и птиц - крупные, овальной формы клетки, содержащие ядро. Эритроциты млекопитающих значительно мельче, лишены ядра и имеют форму двояковогнутых дисков (только у верблюдов и лам они овальные).

Двояковогнутая форма увеличивает поверхность эритроцитов и способствует быстрой и равномерной диффузии кислорода через их оболочку. Эритроцит состоит из тонкой сетчатой стромы, ячейки которой заполнены пигментом гемоглобином, и более плотной оболочки. Последняя образована слоем липидов, заключённым между двумя мономолекулярными слоями белков. Оболочка обладает избирательной проницаемостью. Через нее легко проходят вода, анионы, глюкоза, мочевина, однако не пропускает белки и почти непроницаема для большинства катионов.

Эритроциты очень эластичны, легко сжимаются и поэтому могут проходить через узкие капилляры, диаметр которых меньше их диаметра.

Размеры эритроцитов позвоночных колеблются в широких пределах, наименьший диаметр они имеют у млекопитающих, а среди них у дикой и домашней козы; эритроциты наибольшего диаметра найдены у амфибий, в частности у протея.

Количество эритроцитов в крови определяют под микроскопом с помощью счетных камер или электронных приборов - целлоскопов. В крови у животных разных видов содержится неодинаковое число эритроцитов. Увеличение количества эритроцитов в крови вследствие усиленного их образования называют истинным эритроцитозом, если же число эритроцитов в крови увеличивается вследствие поступления их из депо крови, говорят о перераспределительном эритроцитозе.

Совокупность эритроцитов всей крови животного называют эритроном. Это огромная величина. Так, общее количество красных кровяных клеток у лошадей массой 500 кг достигает 436,5 трилл., все вместе они образуют огромную поверхность, что имеет большое значение для эффективного выполнения их функций.

Функции эритроцитов

Они весьма многообразны: перенос кислорода от легких к тканям; перенос углекислого газа от тканей к легким; транспортировка питательных веществ - адсорбированных на их поверхности аминокислот - от органов пищеварения к клеткам организма; поддержание рН крови на относительно постоянном уровне благодаря наличию гемоглобина; активное участие в процессах иммунитета: эритроциты адсорбируют на своей поверхности различные яды, которые затем разрушаются клетками мононуклеарной фагоцитарной системы (МФС); осуществление процесса свертывания крови. В них найдены почти все факторы, которые содержатся в тромбоцитах. Кроме того, их форма удобна для прикрепления нитей фибрина, а их поверхность катализирует гемостаз.

Г е м о л и з. Разрушение оболочки эритроцитов и выход из них гемоглобина называется гемолизом. Он может быть химический, когда их оболочка разрушается химическими веществами (кислотами, щелочами, сапонином, мылом, эфиром, хлороформом и т. д.); физический, который подразделяют на механический (при сильном встряхивании), температурный (под действием высокой и низкой температуры), лучевой (под действием рентгеновских или ультрафиолетовых лучей). Осмотический гемолиз - разрушение эритроцитов в воде или гипотонических растворах, осмотическое давление которых меньше, чем в плазме крови. Вследствие того, что давление внутри эритроцитов больше, чем в окружающей среде, вода переходит в эритроциты, их объем увеличивается и оболочки лопаются, а гемоглобин выходит наружу. Если окружающий раствор имеет достаточно низкую концентрацию соли, наступает полный гемолиз и вместо нормальной непрозрачной крови образуется относительно прозрачная «лаковая» кровь. Если раствор, в котором находятся эритроциты, менее гипотоничен, наступает частичный гемолиз. Биологический гемолиз может возникнуть при переливании крови, если кровь несовместима, при укусах некоторых змей и т.д.

В организме постоянно в небольших количеств происходит гемолиз при отмирании старых эритроцитов. При этом эритроциты разрушаются в печени, селезенке, красном костном мозге, освободившийся гемоглобин поглощается клетками этих органов, а в плазме циркулирующей крови он отсутствует.

Г е м о г л о б и н. Свою основную функцию - перенос газов кровью - эритроциты выполняют благодаря наличию в них гемоглобина, который представляет сложный белок - хромопротеид, состоящий из белковой части (глобина) и небелковой пигментной группы (гема), соединенных между собой гистидиновым мостиком. В молекуле гемоглобина четыре гема. Гем построен из четырех пирроловых колец и содержит двухвалентное железо. Он является активной, или так называемой простетической, группой гемоглобина и обладает способностью присоединять и отдавать молекулы кислорода. У всех видов животных гем имеет одинаковое строение, в то время как глобин отличается по аминокислотному составу.

Гемоглобин, присоединивший кислород, превращается в оксигемоглобин (НЬО) ярко-алого цвета, что и определяет цвет артериальной крови. Оксигемоглобин образуется в капиллярах легких, где напряжение кислорода высокое. В капиллярах тканей, где кислорода мало, он распадается на гемоглобин и кислород. Гемоглобин, отдавший кислород, называют восстановленным или редуцированным гемоглобином (НЬ). Он придает венозной крови вишневый цвет. И в оксигемоглобине, и в восстановленном гемоглобине атомы железа находятся в двухвалентном состоянии.

pH (кислотность) мочи

pH мочи (реакция мочи, кислотность мочи) – водородный показатель, демонстрирующий количество ионов водорода в моче человека. pH мочи позволяет установить физические свойства мочи, оценить баланс кислот и щелочей. Показатели pH мочи крайне важны для оценки общего состояния организма, диагностики заболеваний.

Определение кислотности является обязательным диагностическим тестом при проведении общего анализа мочи. Реакция или кислотность мочи – физическая величина, определяющая количество ионов водорода. Измеряться может как качественно (кислая, нейтральная, щелочная), так и количественно – при помощи рН.

Применительно к моче показатели рН выглядят следующим образом:

  • 5,5 – 6,4 – кислая;
  • 6,5 – 7,5 – нейтральная;
  • более 7,5 – щелочная.

Оценивать реакцию мочи следует сразу после доставки в лабораторию. При стоянии компоненты мочи подвергаются бактериальному разложению. В первую очередь это мочевина, которая распадается до аммиака, а он, растворяясь в воде, образует щелочь. Определение рН мочи проводят при помощи специальных тест-полосок.

У абсолютно здоровых людей (а еще остались такие?) моча кислая. Однако сдвиг ее рН в нейтральную или щелочную сторону не является патологией. Дело в том, что на кислотность мочи влияет огромное количество факторов: диета, физическая активность, различные заболевания, причем не только почечные. Если в вашем анализе сегодня среда кислая, завтра – нейтральная, послезавтра – опять кислая, то ничего страшного в этом нет. Проблемы начинаются, если моча хронически «не кислая».

При каких патологических состояниях может наблюдаться сдвиг рН мочи в щелочную сторону?

  • Гипервентиляция легких (одышка).
  • Потеря кислот при рвоте.
  • Острые либо хронические инфекции мочевыводящих путей.
  • Хронические интоксикации, в том числе раковые.

Чем опасен хронический сдвиг реакции мочи до нейтральной или щелочной?

1. Образование камней в мочевыводящей системе.

В кислой моче могут возникать только уратные камни, образующиеся из мочевой кислоты. Как правило, таковые появляются при подагре и составляют примерно 5% общего числа камней. Для остальных уролитов (мочевых камней) требуется либо нейтральная, либо щелочная среда. Наибольшую опасность представляют фосфаты и карбонаты кальция.

2. Повышение риска мочевых инфекций.

В кислой моче бактериям живется плохо, а вот если моча нейтральная или щелочная, то бактерии там размножаются очень даже замечательно.

Как повлиять на кислотность мочи?

В начале расскажу, чего делать не нужно .

1. Употреблять много соды.

С 30-х годов прошлого века врачам известен синдром Бернетта. Иначе он называется синдром «молоко-сода». Употребление больших количеств кальция (молоко, молочные продукты, антациды – препараты, снижающие кислотность в желудке: Альмагель, Фосфалюгель, Ренни и др.) приводит к легкому алкалозу (сдвиг рН крови в щелочную сторону), и, как следствие, к защелачиванию мочи. В легких случаях это лишь повышает риск камнеобразования в почках. Но находятся граждане, которые начинают запивать молоко или антациды содой, усугубляя алкалоз. В итоге кальций в крови взлетает так, что начинает создавать угрозу жизни, вызывая аритмии, мышечную слабость, нарушение работы почек, необратимую потерю зрения и т.д.

Резюмирую: вся лишняя сода выделяется из организма с мочой, делая ее нейтральной или щелочной.

2. Принимать много аскорбиновой кислоты.

Логика данного действия понятна, но есть проблема. Витамин «С» в мочу не фильтруется, все его всосавшееся количество идет в метаболические процессы с образованием щелочных продуктов, а они, как раз, в мочу фильтруются. Таким образом, большое количество аскорбиновой кислоты приводит к сдвигу рН мочи в щелочную сторону.

Теперь о том, как сделать мочу кислой . Уточню, данные рекомендации касаются только людей с хронически низким рН мочи. С профилактическими целями описанные способы не применяются.

1. Диета.

Пищевые продуты можно разделить на следующие группы:

  • источники кислот – мясо и рыба, спаржа, зерновые, сыр, яйца, алкоголь и натуральный кофе;
  • поглотители оснований – продукты, на переработку которых тратятся щелочи: сахар, причем любой (белый и коричневый), а также продукты его содержащие (мороженое, мармелад, варенье, шоколад, конфеты, кондитерские изделия), продукция из белой муки (белый хлеб, макароны), твердые жиры;
  • поставщики щелочей – картофель и другие корнеплоды, листовой салат, помидоры, кабачки, огурцы, травяной чай, свежая зелень, фрукты;
  • нейтральные продукты – растительное масло, бобовые, орехи.

Чтобы закислить мочу, нужно сдвинуть баланс пищи в кислую сторону.

2. Ортофосфорная кислота.

Речь идет о добавке Е338, которая в качестве консерванта присутствует в напитках Coca-Cola, Pepsi-Cola и других, содержащих «-cola» в названии. Данная добавка не метаболизируется и фильтруется в мочу в неизменном виде, делая ее кислой.

Ортофосфорная кислота имеет и побочные эффекты. Она повреждает эмаль зубов, связывает кальций в крови, вымывая его из костей, да и сама «Кока-кола» содержит слишком много сахара и кофеина, что небезопасно при некоторых заболеваниях.

Вместо заключения.

Восстанавливая рН мочи нужно не перестараться. Избыток кислот в организме (ацидоз) может отрицательно сказаться на метаболизме витаминов, работе иммунной системы и др. Кроме того, слишком низкий рН мочи (ниже 5,5) опасен выпадением кристаллов мочевой кислоты, которые могут стать камнями. Помните – все хорошо в меру.

pH в моче – часто встречающаяся ошибка у пациентов в произношении термина. «pH» не является веществом или компонентом мочи. pH – это мера активности ионов водорода, единица измерения. Соответственно, правильно говорить pH (или кислотность) мочи .

Обмен веществ (метаболизм) – это набор химических реакций, возникающих в организме человека для поддержания жизни. Благодаря обмену веществ организм получает возможность развиваться, сохранять свои структуры и отвечать на воздействия окружающей среды. Для нормального обмена веществ человека требуется, чтобы кислотно-щелочное равновесие (КЩР ) поддерживалось в определенных рамках. В регуляции кислотно-щелочного равновесия немаловажную роль играют почки.

Важнейшей функцией почек является выведение из организма «ненужных» веществ, задержание веществ, необходимых для обеспечения обмена глюкозы, воды, аминокислот и электролитов, поддержание кислотно-основного равновесия (КЩР) в организме. Почечные канальцы абсорбируют углеводороды из первичной мочи и секретируют ионы водорода через превращение дигидроген-фосфата в моногидроген-фосфат или образование ионов аммония.

Моча, выводящаяся почками, содержит вещества, обладающие кислотно-основными свойствами. Если вещества проявляют кислотные свойства, моча является кислой (при уровне pH менее 7), если вещества проявляют основные (щелочные) свойства, моча является щелочной (pH выше 7). Если вещества в моче сбалансированы, моча обладает нейтральной кислотностью (pH = 7).

pH мочи демонстрирует, в частности, насколько эффективно организм усваивает минералы, регулирующие уровень кислотности: кальций, натрий, калий и магний. Данные минералы называются «кислотными демпферами». При повышенной кислотности, организм должен нейтрализовать кислоту, накапливающуюся в тканях, для чего начинается заимствование минералов из различных органов и костей. При систематически повышенном уровне кислотности, кости становятся ломкими. Обычно это является следствием излишнего употребления мясной пищи и недостатком употребления овощей: организм забирает кальций из собственных костей, и, с его помощью, регулирует уровень рН.

pH мочи является важной характеристикой, которая в совокупности с другими показателями позволяет провести достоверную диагностику текущего состояния организма пациента.

При смещении pH мочи в ту или иную сторону, происходит выпадение в осадок солей:

  • при pH мочи ниже 5,5 формируются уратные камни – кислая среда способствует растворению фосфатов;
  • при pH мочи от 5,5 до 6,0 формируются оксалатные конкременты ;
  • при pH мочи выше 7,0 формируются фосфатные камни – щелочная среда способствует растворению уратов.

Данные показатели следует учитывать при терапии мочекаменной болезни.

Камни мочевой кислоты практически никогда не встречаются при pH мочи более 5.5, а фосфатные камни никогда не образуются , если моча не щелочная.

Колебание уровней pH мочи зависит от ряда факторов:

  • воспалительных заболеваний мочевыводящих путей;
  • кислотности желудка;
  • метаболизма (обмена веществ);
  • патологических процессов, происходящих в организме человека, сопровождающихся алкалозом (защелачиванием крови), ацидозом (закислением крови);
  • приема пищи;
  • функциональной активности канальцев почек;
  • количества выпитой жидкости.

Систематическое отклонение от нормы pH в кислую сторону в медицине называется ацидозом , в щелочную – алкалозом . Так как сахарный диабет, самое распространенное на планете эндокринное заболевание (зачастую протекающее практически бессимптомно на протяжении длительного времени) всегда сопровождается ацидозом, сахарному диабету в данной статье будет уделено особое внимание.

pH мочи оказывает влияние на активность и размножение бактерий, как следствие, на эффективность антибактериального лечения: в кислой среде патогенность кишечной палочки повышается, так как скорость ее размножения увеличивается.

Лекарственные средства нитрофураны и препараты тетрациклины более эффективны при кислой pH мочи, антибиотики пенициллин, аминогликозиды (канамицин, гентамицин) и эритромицин из группы «макролиды », наиболее действенны при щелочной реакции мочи.

При бактериальных инфекциях мочевыводящей системы организма человека, уровень pH может изменяться в обе стороны, в зависимости от характера конечных продуктов бактериального метаболизма.

Моча

Моча (урина ) – биологическая жидкость, продукт жизнедеятельности человека, с которой из организма выводятся продукты обмена веществ. Моча образуется при фильтровании плазмы крови в капиллярных клубочках почек, нефронах. Моча на 97 % состоит из воды, оставшаяся часть приходится на азотистые продукты распада белковых веществ (гиппуровую и мочевую кислоты, ксантин , мочевину , креатинин ,индикан , уробилин ) и соли (преимущественно сульфаты, хлориды и фосфат).

Следствием гипергликемии обычно является повышение уровня глюкозы в моче.

Опасность сахарного диабета (особенно 2 типа) состоит в том, что заболевание протекает длительное время практически бессимптомно: пациент может не подозревать о его существовании вплоть до того момента, когда в организме уже не произошли необратимые изменения, которые можно было предотвратить своевременной диагностикой и терапией.

Моча является универсальными индикатором , свидетельствующим о том или ином сбое в функционировании органов. Причиной кислой мочи может быть как несбалансированное питание, так и сахарный диабет, при котором наблюдается повышенная кислотность мочи (значение pH сдвигается к отметке 5).

pH

pH , водородный показатель (от латинского словосочетания pondus Hydrogenii – «вес водорода» или potentia Hydrogenii , английского power Hydrogen – «сила водорода») – это мера активности ионов водорода в растворе, количественно выражающая его кислотность. Понятие pH введено в 1909 году датским биохимиком, профессором Сёреном Педером Лаурицем Сёренсеном (Søren Peter Lauritz Sørensen). Наиболее распространенная в русском языке ошибка правильного произношения pH («пэ аш») – рН («эр эН»).

pH равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, выраженной в молях на один литр (моль/литр).

pH = – lg (H +).

Неорганические вещества – кислоты, соли и щелочи, в растворах разделяются на составляющие их ионы. Положительно заряженные ионы H + формируют кислую среду, отрицательно заряженные ионы OH − – щелочную. В значительно разбавленных растворах кислотные и щелочные свойства зависят от концентраций ионов H + и OH − , активность которых связана между собой. В чистой воде с температурой 25 °C концентрации ионов водорода () и гидроксид-ионов () одинаковы и составляют 10−7 моль/литр, что напрямую следует из определения ионного произведения воды, которое равно · и составляет 10-14 моль²/л² (при температуре = 25 °C). Таким образом, общепринятое минимальное значение pH = 0, максимальное = 14 (хотя, в исключительных случаях, в технических отраслях, pH может быть как со знаком минус, так и превышать 14).

Соответственно, растворы и жидкости (а также среды, в которых они присутствуют) в отношении их кислотности считаются:

  • кислыми при уровнях от 0 до 7,0;
  • нейтральными при уровне = 7,0;
  • щелочными при уровнях от 7,0 до 14,0.

В организме человека значение кислотности не может быть меньше pH 0,86.

Кислотность

Кислотность (от латинского aciditās) – характеристика активности ионов водорода в растворах и жидкостях:

  • Если кислотность какой-либо среды или жидкости находится ниже отметки 7,0, это означает увеличение кислотности, уменьшение щелочности;
  • Если кислотность какой-либо среды или жидкости находится выше отметки 7,0, это означает уменьшение кислотности, увеличение щелочности;
  • Если кислотность какой-либо среды или жидкости находится на отметке = 7,0, это означает, что реакция нейтральная.

В медицине pH биологических жидкостей (в частности: мочи, крови, желудочного сока) являетсядиагностически важным параметром, характеризующим состояние здоровья пациента.

  • почечный тубулярный ацидоз – по МКБ-10 – N25.8, рахитоподобное заболевание (первичная тубулопатия), характеризующаяся постоянным метаболическим ацидозом, низким уровнем бикарбонатов и увеличенной концентрацией хлора в сыворотке крови. Реакция мочи – кислая;
  • инфекции мочевых путей – инфекции нижних (уретрит, цистит) и верхних мочевых путей (пиелонефрит, абсцесс и карбункул почки, апостематозный пиелонефрит). Реакция мочи как кислая, так и щелочная (резко щелочная);
  • Синдром де Тони – Дебре – Фанкони – по МКБ-10 – E72.0, рахитоподобное заболевание, проявляющееся поражением проксимальных почечных канальцев с нарушением канальцевой реабсорбции глюкозы, бикарбоната, фосфата и аминокислот. Реакция мочи – щелочная;
  • метаболический ацидоз – по МКБ-10 – E87.2, P74.0 – нарушение кислотно-основного состояния, проявляющееся низкими значениями pH крови и низкой концентрацией бикарбоната в плазме крови вследствие потерь бикарбоната или накопления других кислот (кроме угольной). Реакция мочи – кислая (при проксимальном канальцевом ацидозе – щелочная);
  • метаболический алкалоз – по МКБ-10 – E87.3 – нарушение кислотно-основного состояния организма, характеризующееся абсолютным или относительным избытком оснований, увеличением pH крови, других тканей организма, за счет накопления щелочных веществ. Метаболический алкалоз встречается при некоторых патологических состояниях, сопровождающихся нарушениями обмена электролитов, в частности, при гемолизе; в послеоперационном периоде; у детей, страдающих рахитом и/или наследственными нарушениями регуляции электролитного обмена. Реакция мочи – щелочная;
  • дыхательный ацидоз, респираторный ацидоз – состояние, при котором pH крови сдвигается в кислую сторону, вследствие повышения в ней концентрации углекислого газа (из-за недостаточной функции легких или расстройств дыхания). Реакция мочи – кислая;
  • дыхательный алкалоз, респираторный алкалоз – состояние, при котором pH крови сдвигается в щелочную сторону, вследствие снижения в ней концентрации углекислого газа (из-за быстрого или глубокого дыхания, гипервентиляции). Респираторный алкалоз может быть вызван стрессом, тревогой, болью, циррозом печени, повышением температуры тела, передозировкой ацетилсалициловой кислоты (аспирина). Реакция мочи – щелочная;
  • лекарственный мониторинг;
  • профилактика почечного калькулеза (почечнокаменной болезни, нефролитиаза).

Клиническая интерпретация результатов определения уровней pH мочи имеет значение только тогда, когда прослеживается корреляция с иной информацией о здоровье пациента; или когда точный диагноз уже установлен, а результаты исследования мочи позволяют сделать выводы о течении заболевания.

Уровень кислотности урины имеет клиническое значение исключительно в сочетании с другими симптомами и лабораторными показателями.

Существует четыре основных метода определения pH мочи в домашних условия, исследование проводится in vitro :

  1. лакмусовой бумагой;
  2. Магаршака методом;
  3. индикатором бромтимоловым синим;
  4. визуальными индикаторными тест-полосками.

Также для определения кислотности можно воспользоваться услугами клинических лабораторий, где исследование будет проведено в рамках общего (клинического) анализа.

Лабораторный (общий, клинический, ОАМ) анализ мочи – комплекс лабораторных исследований мочи, проводимых в диагностических целях. Преимуществом лабораторного анализа мочи перед другими методами диагностики является не только оценка биохимических и физико-химических свойств урины, но и проведение микроскопии осадка (при помощи микроскопа). Недостатком метода является относительная дороговизна, невозможность получения результата оперативно, необходимость сдачи образца в специальном контейнере .

Определение лакмусовой бумагой

Лакмус, лакмусовая бумага, лакмусовый индикатор – кислотно-щелочной индикатор, реагентом которого является красящее вещество природного происхождения на основе азолитмина и эритролитмина. Реакция мочи определяется при помощи синей и красной лакмусовой бумаги.

При проведении анализа, в исследуемый образец погружаются обе бумажки, по окраске констатируется реакция мочи:

  • Если синяя бумага покраснела, а красная не изменила цвет – значит реакция кислая;
  • Если красная бумага посинела, а синяя не изменила цвет – значит реакция щелочная;
  • Если обе бумаги не изменили цвет – значит реакция нейтральная;
  • Если обе лакмусовые бумаги изменили цвет – значит реакция амфотерная .

Определить конкретное значение pH мочи лакмусом невозможно , более точным является определение кислотности мочи с помощью жидких индикаторов (наиболее достоверные результаты можно получить используя лишь pH тест-полоски).

Магаршака метод в определении кислотности мочи

Метод (способ) Магаршака определения кислотности мочи, заключается в ее колориметрии после добавления индикатора, являющегося смесью нейтрального красного и метиленового синего.

Для использования метода Магаршака следует приготовить индикатор: к двум объемам 0,1% спиртового раствора нейтрального красного присоединить один объем 0,1% спиртового раствора метиленового синего.

Порядок определения кислотности: в емкость, содержащую 1 – 2 мл мочи добавляется 1 капля индикатора, после чего образец перемешивается.

Расшифровка результатов, полученных способом Магаршака осуществляется согласно нижеприведенной таблицы.

Приблизительное значение pH

Интенсивно-фиолетовый

Фиолетовый

Светло-фиолетовый

Серо-фиолетовый

Темно-серый

Серо-зеленый

Светло-зеленый

Определения реакции мочи бромтимоловым синим

Для определения реакции мочи индикатором бромтимоловым синим, следует приготовить реактив: 0,1 г растертого индикатора растворить в 20 мл теплого этилового спирта, после охлаждения до комнатной температуры довести чистой водой до объема 100 мл.

Порядок определения кислотности: в емкость, содержащую 2 – 3 мл мочи добавляется 1 капля бромтимолового синего. Граница переходных тонов индикатора будет находиться в диапазоне pH от 6,0 до 7,6.

Полученный цвет исследуемого образца

Реакция мочи

Слабокислая

Травянистый

Слабощелочная

Зеленый, синий

Щелочная

Преимуществом определения реакции мочи индикатором бромтимоловым синим является дешевизна, быстрота и простота проведения исследования; недостатком – невозможность отличить мочу с нормальной кислотностью от патологически кислой, исследование дает лишь приблизительное представление о кислой или щелочной реакции.

Тест-полоски pH мочи

Для определения кислотности мочи можно купить pH тест полоски – наиболее простой и доступный инструмент, предназначенный для самостоятельного анализа мочи на кислотность в домашних условиях. Кроме того, pH тест полоски применяются в медицинских центрах, клинико-диагностических лабораториях, больницах (клиниках), лечебно-профилактических учреждениях. Для проведения исследования и расшифровки результата pH анализа - владение специальными медицинскими знаниями не требуется . Наиболее часто встречающейся в аптеках формой выпуска тест-полосок является упаковка в виде тубуса (пенала) № 50 (50 тест-полосок, что, припериодическом самоконтроле пациента примерно соответствует месячной потребности. Присистематическом самоконтроле , минимум трижды в день, данной упаковки хватает, ориентировочно, на две недели).

Большинство визуальных pH тест-полосок рассчитано на определение реакции мочи в диапазоне pH от 5 до 9. В качестве реагента индикаторной зоны применяется смесь двух красителей – бромтимолового синего и метилового красного. При протекании реакции, кислотно-щелочной индикатор тест-полоски окрашивается от оранжевого через желтый и зеленый до синего, в зависимости от реакции мочи. Значение pH определяется либо визуально (в соответствии с цветовой шкалой, входящей в комплект поставки, либо фотометрическим методом с применением лабораторного мочевого анализатора (фотометрически).

Порядок определения кислотности мочи тест-полосками:

  1. Извлечь тест-полоску из пенала (тубуса);
  2. Погрузить полоску в исследуемый образец;
  3. Вынуть тест-полоску, удалить излишки мочи аккуратным постукиванием о емкость;
  4. Спустя 45 секунд сравнить окрасившийся индикатор с цветовой шкалой.

Купить Биоскан pH (Биоскан pH №50/№100) – российские стрипы для анализа pH в моче от Биоскан.

pH полоски с двумя индикаторами:

  • Альбуфан тест-полоски (Альбуфан №50, AlbuPhan) – европейские тест-полоски от компании Эрба, предназначенные для оценки реакции мочи и масштабов протеинурии (белки в моче).

pH полоски с тремя и более индикаторами:

  • Пентафан / Пентафан Лаура (PentaPhan / Laura) тест-полоски для анализа мочи на реакцию, кетоны (ацетон), общий белок (альбумины и глобулины), сахар (глюкозу) и скрытую кровь (эритроциты и гемоглобин) от Эрба Лахема, Чехия;
  • Биоскан Пента (Биоскан Пента №50/№100) стрипы с пятью индикаторами от российской компании Биоскан, позволяющие провести исследования мочи на реакцию, глюкозу (сахар), общий белок (альбумины, глобулины), скрытую кровь (эритроциты и гемоглобин) и кетоны;
  • Уриполиан – полоски от Биосенсор АН с десятью индикаторами, позволяющие провести анализ мочи по следующим характеристикам – реакция, кетоны (ацетон), глюкоза (сахар), скрытая кровь (эритроциты, гемоглобин), билирубин, уробилиноген, плотность (удельный вес), лейкоциты, аскорбиновая кислота, общий белок (альбумины и глобулины).

Самостоятельная диагностика тест-полосками не является заменой регулярной оценки состояния здоровья квалифицированным медицинским специалистом, врачом.

Показанием к назначению лабораторного pH анализа мочи часто является мочекаменная болезнь. Анализ pH мочи предоставляет возможность определить вероятность и характер образования камней:

  • при кислотности ниже 5,5 чаще формируются мочекислые (уратные) камни;
  • при кислотности 5,5 – 6,0 – оксалатные камни;
  • при кислотности 7,0 – 7,8 – фосфатные камни.

pH 9 свидетельствует о неправильном сохранении образца мочи.

Лабораторный pH анализ мочи назначается медицинскими специалистами для контроля состояния организма при соблюдении специфической диеты, предусматривающей употребление продуктов питания с низким и высоким содержанием калия, фосфатов, натрия.

pH анализ мочи показан при заболевании почек, эндокринной патологии, терапии диуретиками .

При проведении лабораторного исследования урины исследуется свежая, не старше двух часов моча (чаще - суточная моча), собираемая в специальный контейнер . Уровень pH определяется методом индикаторов: бромтимоловый синий и метиловый красный. Точность измерения методом индикаторов позволяет получить результат с точностью до 0,5 единицы . Применение электронного лабораторного иономера (pH-метра ) позволяет получить результат с точностью до 0,001 единицы.

Перед проведением pH анализа мочи не следует употреблять пищу, способную изменять физические свойства мочи – свеклу и морковь. Недопустим прием мочегонных средств, влияющих на химический состав мочи.

Цена лабораторного анализа мочи составляет от 350 рублей до 2500 рублей в зависимости от набора исследований, выбранной лаборатории, места ее расположения. На июнь 2016 года в России урину принимают к анализу 725 лабораторий в Москве, Санкт-Петербурге, других городах страны. Указанная выше цена анализов не включает в себя дисконтные программы лабораторий.

» является компиляцией материалов, полученных из авторитетных источников, список которых размещен в разделе «

Кровь является важнейшей внутренней средой человеческого организма, формирует ее жидкая соединительная ткань. Из уроков биологии многие помнят, что в составе крови присутствует плазма и такие элементы, как клетки лейкоцитов, тромбоцитов и эритроцитов. Она постоянно циркулирует по сосудам, не останавливаясь ни на минуту и тем самым снабжая кислородом все органы и ткани. Она имеет способность очень быстро обновляться за счет разрушения старых клеток и мгновенно образовывать новые. О том, что такое pH и показатели кислотности крови, их норме и влиянии на состояние организма, а также о том, как измерить pH крови и регулировать его с помощью коррекции рациона, вы узнаете из нашей статьи.

Функции крови

  • Питательная. Кровь снабжает все части тела кислородом, гормонами, ферментами, что обеспечивает полноценную работу всего организма целиком.
  • Дыхательная. Благодаря циркуляции крови кислород поступает от легких к тканям, а углекислый газ от клеток наоборот - к легким.
  • Регуляторная. Именно с помощью крови регулируется поступление полезных веществ в организм, поддерживается необходимый уровень температуры и контролируется количество гормонов.
  • Гомеостатическая. Данная функция определяет внутреннее напряжение и баланс тела.

Немного истории

Итак, зачем необходимо изучать pH крови человека или, как это еще называют, кислотность крови? Ответ прост: это невероятно нужная величина, являющаяся стабильной. Она формирует требующийся ход окислительно-восстановительных процессов организма человека, активность его ферментов, кроме того, интенсивность всяческих процессов обмена веществ. На кислотно-щелочной уровень любого вида жидкости (и крови в том числе) оказывает влияние содержащееся там число активных частиц водорода. Можно провести эксперимент и определить pH каждой жидкости, но в нашей статье речь идет о pH крови человека.

Впервые термин «показатель водорода» появился вначале 20 столетия и сформулировал его так же, как и шкалу pH, физик из Дании - Серен Петер Лауриц Сервисен. Введенная им система определения кислотности жидкостей имела деления от 0 до 14 единиц. Нейтральной реакции соответствует значение 7.0. Если pH какой-либо жидкости имеет число меньше указанного, значит, произошло отклонение в сторону «кислотности», а если больше - в сторону «щелочности». Стабильность кислотно-щелочного баланса в организме человека поддерживают так называемые буферные системы - жидкости, которые обеспечивают стабильность ионов водорода, поддерживая их в необходимом количестве. А помогают им в этом физиологические механизмы компенсации - результат работы печени, почек и легких. Все вместе они следят, чтобы значение pH крови оставалось в пределах нормы, только так организм будет функционировать слаженно, без сбоев. Самое большое влияние на этот процесс имеют легкие, ведь именно они производят огромное количество кислых продуктов (выводятся они в виде углекислоты), а также поддерживают дееспособность всех систем и органов. Почки связывают и образуют частицы водорода, а после этого возвращают в кровь ионы натрия и бикарбонат, а печень перерабатывает и устраняет конкретные кислоты, которые нашему организму больше не нужны. Нельзя забывать и о деятельности органов пищеварения, они же тоже вносят свой вклад в поддержание уровня кислотно-щелочного постоянства. А вклад этот невероятно огромен: вышеназванные органы вырабатывают пищеварительные соки (например, желудочный), которые вступают в щелочную или кислотную реакцию.

Как определить pH крови?

Измерение кислотности крови проводят электрометрическим методом, для этой цели применяется специфический электрод, выполненный из стекла, который определяет количество ионов водорода. На результат влияет углекислый газ, содержащийся в кровяных тельцах. Определение pH крови можно провести в лаборатории. Вам потребуется всего лишь сдать материал на анализ, причем понадобится только артериальная или же капиллярная кровь (из пальца). Причем дает наиболее достоверные результаты, потому что кислотно-щелочные величины у нее наиболее постоянны.

Как узнать pH собственной крови в домашних условиях?

Конечно, самым приемлемым способом все же будет обращение в ближайшую поликлинику для проведения анализа. Тем более что после врач сможет дать адекватную расшифровку результатов и соответствующие рекомендации. Но на сегодняшний день выпускается множество приспособлений, которые дадут точный ответ на вопрос о том, как определить pH крови в домашних условиях. Тончайшая иголка мгновенно прокалывает кожу и набирает небольшое количество материала, а микрокомпьютер, который находится в аппарате, сразу же производит все необходимые расчеты и выводит результат на экран. Все происходит быстро и безболезненно. Приобрести такой прибор можно в специализированном магазине медицинской техники. Крупные аптечные сети также могут привезти данный аппарат на заказ.

Показатели кислотности крови человека: нормальные, а также отклонения

Нормальный pH крови насчитывает 7.35 - 7.45 единицы, это показатели свидетельствующие о том, что у вас имеется слабощелочная реакция. Если этот показатель снижен, и ph ниже 7.35, то врач ставит диагноз «ацидоз». А в том случае, если показатели выше нормы, то речь идет об изменении нормы в щелочную сторону, это называется алкалоз (когда показатель выше чем 7.45). Человек должен серьезно относиться к уровню pH в своем организме, поскольку отклонения более чем на 0,4 единицы (меньше 7.0 и больше 7.8) считаются уже несовместимыми с жизнью.

Ацидоз

В том случае, если лабораторные исследования выявили у пациента ацидоз, это может быть показателем наличия сахарного диабета, кислородного голодания или состояния шока либо связано с начальной стадией еще более серьезных заболеваний. Легкий ацидоз протекает бессимптомно, и выявить его можно лишь в лаборатории, измерив pH вашей крови. Тяжелая форма данного недуга сопровождается частым дыханием, тошнотой и рвотой. При ацидозе, когда уровень кислотности организма падает ниже отметки 7.35 (pH крови норма - 7.35-7.45), необходимо сначала устранить причину такого отклонения, а вместе с этим больному требуется обильное питье и прием соды внутрь в качестве раствора. Кроме того, необходимо в таком случае показаться специалистам - терапевту или врачу скорой помощи.

Алкалоз

Причиной метаболического алкалоза может являться непрекращающаяся рвота (часто бывает при отравлении), которая сопровождается значительной потерей кислоты и желудочного сока, или же употребление в пищу большого количества продуктов, которые вызывают перенасыщение организма щелочью (продукты растительного происхождения, молочная продукция). Есть такая разновидность повышенного кислотно-щелочного баланса, как «дыхательный алкалоз». Он способен появиться даже у полностью здорового и крепкого человека при слишком больших нервных нагрузках, перенапряжении, а также у пациентов, склонных к полноте, или при одышке у людей, склонных к сердечно-сосудистым заболеваниям. Лечение алкалоза (как и в случае с ацидозом) начинается с устранения причины данного явления. Также если необходимо восстановить уровень pH крови человека, то этого можно достичь благодаря вдыханию смесей, которые содержат углекислый газ. Потребуются для восстановления еще и растворы калия, аммония, кальция и инсулина. Но самолечением заниматься ни в коем случае нельзя, все манипуляции проводятся под присмотром специалистов, нередко больному требуется госпитализация. Все необходимые процедуры назначает врач-терапевт.

Какие продукты повышают кислотность крови

Чтобы держать под контролем pH крови (норма 7.35-7.45), нужно правильно питаться и знать, какие продукты повышают кислотность, а какие - щелочность в организме. К продуктам, повышающим уровень кислотности, относятся:

  • мясо и мясопродукты;
  • рыба;
  • яйца;
  • сахар;
  • пиво;
  • кисломолочные продукты и хлебобулочные изделия;
  • макароны;
  • сладкие газированные напитки;
  • алкоголь;
  • сигареты;
  • поваренная соль;
  • сахарозаменители;
  • антибиотики;
  • практически все разновидности злаков;
  • большая часть бобовых;
  • классический уксус;
  • морепродукты.

Что происходит, если кислотность крови повышена

Если рацион человека постоянно включает в себя вышеперечисленные продукты, то в итоге это приведет к снижению иммунитета, гастриту и панкреатиту. Такой человек часто подхватывает простуду и инфекции, поскольку организм ослаблен. Чрезмерное количество кислоты в мужском организме ведет к импотенции и бесплодию, так как сперматозоидам для активности необходима щелочная среда, а кислотная их губит. Повышенная кислотность в организме женщины тоже отрицательно сказывается на репродуктивной функции, потому что при повышении кислотности влагалища сперматозоиды, попадая в него, погибают, не успев добраться до матки. Вот поэтому так важно сохранять постоянный уровень pH крови человека в пределах установленных норм.

Продукты, делающие реакцию крови щелочной

Уровень щелочности в человеческом организме повышают следующие продукты питания:

  • арбузы;
  • дыня;
  • все цитрусовые;
  • сельдерей;
  • манго;
  • папайя;
  • шпинат;
  • петрушка;
  • сладкий виноград, в котором отсутствуют косточки;
  • спаржа;
  • груши;
  • изюм;
  • яблоки;
  • абрикосы;
  • абсолютно все овощные соки;
  • бананы;
  • авокадо;
  • имбирь;
  • чеснок;
  • персики;
  • нектарины;
  • большинство трав, в том числе и лекарственных.

Если человек употребляет слишком много животного жира, кофе, алкоголя и сладкого, то в организме происходит «переокисление», а значит, преобладание кислотной среды над щелочной. Курение и постоянные стрессы тоже негативно влияют на pH крови. Причем кислые продукты обмена веществ не удаляются до конца, а в виде солей оседают в межклеточной жидкости и суставах, становясь причинами многих болезней. Для восполнения кислотно-щелочного баланса требуются оздоровительные и очищающие процедуры и полезное сбалансированное питание.

Продукты, которые уравновешивают pH

  • листья салата;
  • злаки;
  • абсолютно любые овощи;
  • сухофрукты;
  • картофель;
  • орехи;
  • минеральная вода;
  • простая питьевая вода.

Чтобы нормализовать количество щелочи в организме и привести показатель pH плазмы крови в норму, большинство врачей советуют пить щелочную воду: обогащенная ионами, она полностью усваивается организмом и устанавливает равновесие кислоты и щелочи в нем. Кроме всего прочего, такая вода усиливает иммунитет, способствует устранению шлаков, притормаживает процессы старения и благотворно влияет на желудок. Терапевты советуют выпивать 1 стакан щелочной воды с утра, а в течение дня еще употреблять 2-3 стакана. После такого количества улучшается состояние крови. Вот только запивать лекарственные препараты подобной водой нежелательно, поскольку она уменьшает эффективность некоторых лекарств. Если вы употребляете медикаменты, то между ними и приемом щелочной воды должен пройти хотя бы один час. Эту ионизированную воду можно пить в чистом виде, а можно применять ее для приготовления пищи, варить на ней супы и бульоны, использовать для заваривания чая, кофе и компотов. Уровень pH в такой воде соответствует норме.

Как нормализовать pH крови с помощью щелочной воды

Помогает такая вода не только поправить здоровье, но и дольше сохранить молодость и цветущий внешний вид. Ежедневное употребление этой жидкости помогает организму справиться с кислыми отходами и быстрее их растворить, после чего они удаляются из организма. А поскольку накопление солей и кислот негативно влияет на общее состояние и самочувствие, то избавление от этих запасов придает человеку сил, энергии и заряд хорошего настроения. Постепенно она выводит ненужные вещества из организма и тем самым оставляет в нем только то, что действительно необходимо всем органам для правильного функционирования. Как щелочное мыло применяют для удаления ненужных микробов, так и щелочная вода используется для выведения всего лишнего из организма. Из нашей статьи вы узнали все о кислотно-щелочном балансе крови в частности и всего организма в целом. Мы рассказали вам о функциях крови, о том, как узнать pH крови в лаборатории и дома, о нормах содержания кислоты и щелочи в крови, а также об отклонениях, которые с этим связаны. Также теперь у вас под рукой есть список продуктов, повышающих щелочность или кислотность крови. Таким образом, вы можете спланировать свой рацион таким образом, чтобы питаться не только сбалансированно, но и в то же время поддержать необходимый уровень pH крови.

Похожие публикации