Из чего состоит промежуточный мозг. Промежуточный мозг Анатомия и топография промежуточного мозга, его отделы, внутреннее стро­ение. Положение ядер и проводящих путей в промежуточном мозге

Является конечным отделом мозгового ствола и сверху полностью покрыт большими полушариями. Основными образованиями промежуточного мозга являются (зрительный бугор) и (подбугровая область). Последний соединен с гипофизом — главной железой внутренней секреции. Вместе они составляют единую гипоталамо-гипофизарную систему.

Промежуточный мозг интегрирует сенсорные, двигательные и вегетативные реакции организма. Он подразделяется на таламус, эпиталамус и гипоталамус.

Таламус

Таламус представляет своего рода ворота, через которые в кору поступает и достигает сознания основная информация об окружающем мире и о состоянии тела. Таламус состоит примерно из 40 пар ядер, которые функционально делятся на специфические, неспецифические и ассоциативные.

Специфические ядра служат областью переключения различных афферентных сигналов, направляющихся в соответствующие центры коры головного мозга. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы и внутренних органов. Эти структуры осуществляют регуляцию тактильной, температурной, болевой и вкусовой чувствительности, а также зрительных и слуховых ощущений. Так, латеральные коленчатые тела являются подкорковыми центрами зрения, а медиальные — подкорковыми центрами слуха. Нарушение функций специфических ядер приводит к выпадению конкретных видов чувствительности.

Основной функциональной единицей специфических ядер таламуса являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору больших полушарий от кожных, мышечных и других рецепторов .

Неспецифические ядра являются продолжением ретикулярной формации среднего мозга, представляя собой ретикулярную формацию таламуса. Неспецифические ядра таламуса диффузно посылают нервные импульсы по множеству коллатералей ко всей коре головного мозга и образуют неспецифический путь анализатора. Без этого пути информация анализатора не будет полной.

Повреждения неспецифических ядер таламуса приводят к нарушению сознания. Это свидетельствует о том, что им пульсация, поступающая по неспецифической восходящей системе таламуса, поддерживает уровень возбудимости корковых нейронов, необходимый для сохранения сознания.

Ассоциативные ядра таламуса обеспечивают связь с теменной, лобной и височными долями коры больших полушарий. Повреждение этой связи сопровождается нарушениями зрения, слуха и речи.

Через нейроны таламуса вся информация идет в . выполняет роль «фильтра», отбирая наиболее значимую для организма информацию, которая поступает в кору больших полушарий.

Таламус является высшим центром болевой чувствительности. При некоторых поражениях зрительного бугра появляются мучительные болевые ощущения, повышение чувствительности к раздражителям (гиперестезия); незначительное раздражение (даже прикосновение одежды) вызывает приступ мучительной боли. В других случаях нарушение функций таламуса вызывает состояние анальгезии — снижение болевой чувствительности вплоть до полного ее исчезновения.

Эпиталамус

Эпиталамус , или надбугорье , состоит из поводка и эпифиза (шишковидная железа), которые формируют верхнюю стенку третьего желудочка.

Гипоталамус

Гипоталамус располагается вентральнее зрительного бугра и является главным центром вегетативных, соматических и эндокринных функций. В нем различают 48 пар ядер: преоптические, супраоптическое и паравентрикулярное, средние, наружные, задние. Большинство авторов выделяют в гипоталамусе три основные группы ядер:

  • передняя группа содержит медиальное преоптическое, супрахиазматическое, супраоптическое, паравентрикулярное и переднее гипоталамическое ядра;
  • средняя группа включает дорсо-медиальное, вентро- медиальное, аркуатное и латеральное гипоталамические ядра;
  • в состав задней группы входят супрамамиллярное, премамиллярное, мамиллярныеядра, задние гипоталамическое и перифорниатное ядра.

Важная физиологическая особенность гипоталамуса — высокая проницаемость его сосудов для различных веществ.

Гипоталамус тесно связан с деятельностью гипофиза. Средняя группа ядер образует медиальный гипоталамус и содержит нейроны- датчики, реагирующие на изменения состава и свойств внутренней среды организма. Латеральный гипоталамус формирует пути к верхним и нижним отделам ствола мозга.

Нейроны гипоталамуса получают импульсы с , ретикулярной формации, мозжечка, ядер таламуса, подкорковых ядер и коры; участвуют в оценке информации и формировании программы действий. Они имеют двусторонние связи с таламусом, а через него — с корой больших полушарий. Определенные нейроны гипоталамуса чувствительны к химическим воздействиям, гормонам, гуморальным факторам.

С передних ядер осуществляются эфферентные влияния на исполнительные органы по парасимпатическому отделу, обеспечивающие общие парасимпатические приспособительные реакции (замедление сердечных сокращений, понижение тонуса сосудов и давления крови, увеличение секреции пищеварительных соков, усиление двигательной активности желудка и кишечника и др.). Через задние ядра осуществляются эфферентные влияния, поступающие к периферическим исполнительным органам по симпатическому отделу и обеспечивающие симпатические приспособительные реакции: учащение ритма сердечных сокращений, сужение сосудов и повышение давления крови, торможение моторной функции желудка и кишечника и др.

В передних и преоптических ядрах расположены высшие центры парасимпатического отдела, а в задних и латеральных ядрах — симпатического отдела нервной системы. Через эти центры обеспечивается интеграция соматических и вегетативных функций. В целом гипоталамус обеспечивает интеграцию деятельности эндокринной, вегетативной и соматической систем.

В латеральных ядрах гипоталамуса находится центр голода, ответственный за пищевое поведение. В медиальных ядрах расположен центр насыщения. Разрушение этих центров вызывает гибель животного. При раздражении центра насыщения прием корма прекращается, и возникают поведенческие реакции, характерные для состояния насыщения, а повреждение этого центра способствует повышенному потреблению корма и ожирению животных.

В средних ядрах находятся центры регуляции всех видов обмена веществ, энергорегуляции, теплорегуляции (теплообразования и теплоотдачи), половой функции, беременности, лактации, жажды.

Нейроны, расположенные в области супраоптического и пара- вентрикулярного ядер, участвуют в регуляции обмена воды. Раздражение их вызывает резкое увеличение потребления жидкости.

Гипоталамус является главной структурой, ответственной за температурный гомеостаз. В нем различают два центра: теплоотдачи и теплопродукции. Центр теплоотдачи локализован в передней и преоптической зонах гипоталамуса и включает паравентрикулярные, супраоптические и медиальные преоптические ядра. Раздражение этих структур вызывает увеличение теплоотдачи в результате расширения сосудов кожи и повышения температуры ее поверхности, увеличения потоотделения. Центр теплопродукции расположен в заднем гипоталамусе и состоит из различных ядер. Раздражение этого центра вызывает повышение температуры тела в результате усиления окислительных процессов, сужения сосудов кожи и появления мышечной дрожи.

Гипоталамус оказывает важное регулирующее влияние на половую функцию животных и человека .

Специфические ядра гипоталамуса (супраоптическое и паравентрикулярное) тесно взаимодействуют с гипофизом. Их нейроны секретируют нейрогормоны. В супраоптическом ядре образуется антидиуретический гормон (вазопрессин), в паравентрикулярном — окситоцин. Отсюда эти гормоны транспортируются по аксонам в гипофиз, где и накапливаются.

В нейронах гипоталамуса синтезируются либерины (рилизинг-гормоны) и статины, которые затем по нервным и сосудистым связям поступают в гипофиз. В гипоталамусе осуществляется интегрирование нервной и гуморальной регуляции функций многих органов. Гипоталамус и гипофиз образуют единую гипоталамо-гипофизарную систему с обратными связями. Уменьшение или увеличение количества гормонов в крови с помощью прямой и обратной афферентации изменяет активность нейросекреторных нейронов гипоталамуса, в результате чего изменяется уровень экскреции гипофизарных гормонов.

Промежуточный отдел головного мозга находится непосредственно под мозолистым телом, чуть выше среднего мозга. В его структуру входят таламическая, подталамическая, надталамическая области, а также метаталамус и гипофиз, состоящий из нейрогипофиза и аденогипофиза. Полость промежуточного мозга – это 3-й желудочек, образованный шестью стенками.

Границами промежуточного мозга на основании головного мозга являются сзади - передний край заднего продырявленного вещества и зрительные тракты, спереди - передняя поверхность зрительного перекреста. На дорсальной поверхности задней границей является борозда, отделяющая верхние холмики среднего мозга от заднего края таламусов. Переднебоковая граница разделяет с дорсальной стороны промежуточный головной мозг и конечный. Она образована концевой полоской (stria terminalis), соответствующей границе между таламусом и внутренней капсулой.

Подробно о функциональных особенностях и строении промежуточного мозга вы узнаете, прочтя данный материал.

Какие области относятся к промежуточному мозгу и их функции

Промежуточный мозг развивается из каудальной части переднего мозгового пузыря, prosencephalon. В процессе онтогенеза он претерпевает существенные изменения. В нем истончаются вентральная и дорсальная стенки и значительно утолщаются боковые стенки. Полость этого сегмента нервной трубки значительно расширяется, приобретает форму щели, расположенной в срединной плоскости. Она называется III желудочком.

Следует обратить внимание на то, что дорсальная (верхняя) стенка III желудочка представлена только эпендимальным эпителием. Сверху над эпендимальным эпителием располагается отросток сосудистой оболочки мозга, которая разграничивает промежуточный мозг и структуры конечного мозга (свод и мозолистое тело). Боковые части промежуточного мозга с латеральной стороны непосредственно сращены со структурами конечного мозга. Дорсальная часть боковой стенки промежуточного мозга развивается из крыловидной пластинки и называется таламическим мозгом, thalamencephalon. Вентральная часть боковой стенки промежуточного мозга человека, находящаяся ниже подталамической борозды, развивается из основной пластинки и носит название подталамической области, или гипоталамуса, hypothalamus.

Таким образом, к промежуточному мозгу относится таламическая область, которая расположена в дорсальных участках, и подталамическая (гипоталамическая) область. К таламической области относят таламус, метаталамус и эпиталамус. Полостьюего является III желудочек.

Промежуточный мозг является связующим звеном между конечным мозгом и стволом головного мозга, и все его части группируются вокруг таламуса.

Таблица «Функции промежуточного мозга»:

Функции отделов промежуточного головного мозга

Таламус,thalamus

Обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга

Надталамическая область промежуточного мозга, epitha - lamus

(corpus pineale , epiphysis , habenulae , comis - sura habenularum et trigonum habenulae ) является железой внутренней секреции

Затапамическая область, metathalamus (corpora geniculata mediates et laterales)

Медиальное и латеральное коленчатые тела, являются подкорковыми центрами слуха и подкорковыми центрами зрения соответственно

Подталамическая область, или гипоталамус,hypothalamus

передняя группа ядер

Нейроциты нейросекреторных ядер: (супраоптическое, предоптическое и паравентрикулярные) вырабатывают нейросекрет для задней доли гипофиза - антидиуретический гормон (АДГ) и окситоцин

промежуточная группа ядер

Ядра собственно подталамической области, ядра серого бугра и воронки: вентромедиальное гипоталамическое, дорсомедиальное гипоталамическое, дугообразное, дорсальное гипоталамическое и заднее перивентрикулярное ядро выделяют рилизинг-факторы, под действием которых передняя доля гипофиза продуцирует тройные гормоны (ТТГ, СТГ, ГТГ, АКТГ, ПТГ и др.)

задняя группа ядер

В составе сосочковых тел, которые являются подкорковыми центрами обоняния. Функция этого центра промежуточного мозга - получение информации от парагиппокампальной извилины. Аксоны клеток сосочковых тел направляются к верхним холмикам, составляя сосочково-покрышечный пучок, fasciculus mamillotegmentalis , и к переднему ядру таламуса, формируя сосочково­таламический пучок,fasciculus mamillo - thalamicus

дорсолатеральная группа ядер

Например, заднее гипоталамическое ядро, nucleus hypothalamicus posterior (ядро Люизи), выполняющее роль интегра­ционного центра подталамической области промежуточного мозга

В следующем разделе статьи рассмотрено строение таких отделов промежуточного мозга, как таламус и гипоталамус.

Отделы промежуточного головного мозга: таламус и гипоталамус

Таламус. Таламус, или задний таламус головного мозга, или зрительный бугор, thalamus, состоит главным образом из серого вещества, разделенного прослойками белого вещества на отдельные ядра. Происходящие из них волокна образуют так называемый лучистый венец, corona radiata, связывающий таламус с другими отделами мозга.

По функциональным признакам ядра таламуса промежуточного мозга подразделяют на три группы (по Фултону):

  1. Ядра, не имеющие связи с корой полушарий большого мозга. Они связаны с ядрами гипоталамуса и ядрами стриопаллидарной системы. Располагается данная группа ядер в дорсолатеральной части таламуса.
  2. Ядра, в которых заканчиваются волокна путей общей и специальной чувствительности. Аксоны клеток этих ядер направляются в кору полушарий большого мозга. Эти ядра располагаются в вентральной части таламуса и являются соматочувствительными.
  3. Ассоциативные ядра, которые связывают между собой различные центры промежуточного мозга. К ним относятся также ядра дорсолатеральной части таламуса и ядра подушки.

Принимая во внимание различное функциональное назначение ядер таламуса, можно выделить следующие их основные группы.

  1. Передние ядра таламуса, nuclei anteriores thalami (переднее верхнее, переднее нижнее, переднемедиальное). Они являются подкорковым центром обоняния. Передние ядра таламуса имеют связи с сосочковыми телами соответствующей стороны, которые также являются подкорковыми центрами обоняния. Пучок нервных волокон, происходящих от нейронов ядер сосочковых тел и заканчивающихся в передних ядрах таламуса, называют сосочково-таламическим пучком, fasciculus mamillothalamicus (пучок Вик д’Азира). Следует обратить внимание, что часть аксонов от ядер сосочковых тел направляется в верхние холмики среднего мозга, формируя сосочково-покрышечный пучок, fasciculus mamillotegmentalis. По этому пучку проводятся нервные импульсы, обеспечивающие безусловно-рефлекторное повышение тонуса мускулатуры и безусловно-рефлекторные движения в ответ на сильные обонятельные раздражения. Аксоны клеток передних ядер таламуса направляются в лимбическую область коры полушарий большого мозга (преимущественно в кору медиальной поверхности лобной доли). Небольшая часть аксонов заканчивается на нейронах медиальных ядер таламуса.
  2. Вентролатеральные ядра таламуса , nuclei ventrolaterales thalami (заднее латеральное, верхнее латеральное, переднее нижнее, промежуточное нижнее, медиальное нижнее, заднелатеральное нижнее, заднемедиальное нижнее). Они являются подкорковым центром общей чувствительности. Следовательно, в них заканчиваются волокна, идущие в составе спинномозговой петли, lemniscus spinalis, медиальной петли, lemniscus medialis, и тройничной петли, lemniscus trigeminalis. Висцеросенсорные волокна, идущие в составе тройничной петли, направляются в медиальную часть вентролатеральных ядер таламуса, которые являются подкорковым центром интероцептивной чувствительности. Большая часть аксонов от клеток вентролатеральных ядер (80%) направляется в составе внутренней капсулы в постцентральную извилину, формируя таламокорковый тракт, tractus thalamocorticalis. Меньшая часть аксонов (20%) заканчивается в медиальных ядрах таламуса.
  3. Задние ядра таламуса , nuclei posteriores thalami, (ядра подушки, латеральное ядро (коленчатого тела), медиальное ядро (коленчатого тела). Наряду с ядрами верхних холмиков среднего мозга и ядрами латеральных коленчатых тел они являются подкорковыми центрами зрения. В задних ядрах таламуса заканчивается часть волокон, проходящих в составе зрительного тракта. Аксоны клеток задних ядер таламуса направляются к медиальным ядрам таламуса, в подталамическую и в лимбическую области мозга.
  4. Срединные ядра таламуса, nucleimediani thalami , (передние и задние паравентрикулярные, ромбовидное, соединяющее). Эти ядра являются подкорковыми центрами промежуточного мозга, отвечающими за вестибулярные и слуховые функции. В них частично заканчиваются волокна нейронов слуховых и вестибулярных ядер моста. Кроме того, срединные ядра имеют непосредственные связи с зубчатым и красным ядрами. Аксоны клеток срединных ядер направляются в медиальные ядра таламуса и в кору височной и лобной долей полушарий большого мозга.
  5. Медиальные ядра таламуса , nuclei mediates thalami , (дорсальное медиальное). Основным ядром этой группы считают дорсальное медиальное ядро, nucleus medialis dorsalis. Оно является подкорковым чувствительным центром экстрапирамидной системы, играющим роль интеграционного центра промежуточного мозга. На нейронах этого ядра заканчивается часть аксонов, происходящих от нейроцитов всех основных ядер зрительного бугра. Таким образом, сюда поступают все виды информации от подкорковых центров общей и специальной чувствительности. В свою очередь между дорсальным медиальным ядром таламуса, базальными ганглиями конечного мозга (ядра стриопаллидарной системы) и участками коры полушарий большого мозга, относящимися к лимбической системе, существует двусторонняя связь. Часть аксонов клеток медиальных ядер таламуса приобретает нисходящее направление и заканчивается в ядрах подталамической области (ядро Люизи) и в красном ядре.
  6. Ретикулярные ядра таламуса, nuclei reticulares thalami . Многочисленные мелкие ядра, разбросанные во всех частях зрительного бугра, являются подкорковыми чувствительными центрами ретикулярной формации. Эти ядра имеют двусторонние связи с ядрами ретикулярной формации спинного, продолговатого мозга, моста и среднего мозга.
  7. Паратениальное ядро .
  8. Субталамическое ядро.
  9. Внутрипластинчатые (интраламинарные)ядра , расположенные по ходу мозговых пластинок таламуса (центральное срединное, парацентральное, парафасцикулярное, латеральное центральное, медиальное центральное).

Гипоталамус. Ядра подталамической области также весьма многочисленны (около 40), располагаются главным образом в собственно подталамической области.

Гипоталамус промежуточного мозга координирует нервную и гуморальную регуляцию деятельности всех внутренних органов, поэтому его считают высшим центром вегетативных функций организма. В ядрах гипоталамуса мозга осуществляется регуляция сердечно-сосудистой деятельности, температуры тела, выделения слюны, желудочного и кишечного соков, мочи, пота и др.

В свете современных представлений о строении центральной нервной системы указанные высшие центры вегетативных функций находятся под контролем коры полушарий большого мозга. Подталамическая область образует нижнюю стенку III желудочка.

Отдельные образования гипоталамуса промежуточного мозга

Учитывая, что подталамическая область включает большое количество отдельных образований, целесообразно сгруппировать их по топографическому принципу следующим образом:

Передняя гипоталамическая область, regio hypothalamica anterior, или зрительная часть, pars optica:

  • Зрительный перекрест, chiasma opticum ;
  • Зрительный тракт, tractus opticus .

Зрительный перекрест только по положению относится к гипоталамусу головного мозга, а по развитию - к конечному мозгу.

Промежуточная гипоталамическаяобласть, regiahypothalamica intermedia:

  • Собственно подталамическая область, regio subthalamica propria ;
  • Серый бугор, tuber cinereum;
  • Воронка, infundibulum ;
  • Гипофиз, hypophysis .

Задняя гипоталамическая область, regio hypothalamica posterior, или сосочковая часть, pars mamillaris.

  • Сосцевидные тела, corpora mamillaria .

Дорсолатеральная гипоталамическая область, regio hypothalamica dorsolateralis.

  • Заднее гипоталамическое ядро (ядро Люизи), nucleus hypothalamicus posterior .

Ядра области мозга гипоталамус связаны с гипофизом посредством портальных сосудов (с передней долей гипофиза) и гипоталамо-гипофизарного пучка (с задней долей его).

Благодаря этим связям гипоталамус и гипофиз образуют особую гипоталамо-гипофизарную систему.

Эпиталамус и метаталамус промежуточного мозга

Эпиталамус. Надталамическая область (эпиталамус, epithalamus) включает:

  • Шишковидное тело, corpuspineale (epiphysis) , - железу внутренней секреции;
  • Поводки, habenulae ;
  • Спайку поводков, comissura habenularum ;
  • Треугольник поводков, trigonum habenulae .

Под эпифизом находится задняя спайка мозга, comissura cerebri posterior; в основании эпифиза имеется шишковидное углубление, recessus pinealis, представляющее собой полость, которая является продолжением третьего желудочка.

Шишковидное тело (эпифиз ) , развивается в виде непарного выпячивания крыши будущего III желудочка головного мозга, относится к эпиталамусу промежуточного мозга и располагается в неглубокой борозде между верхними холмиками крыши среднего мозга. Снаружи покрыто соединительнотканной капсулой, содержащей большое количество анастомозирующих друг с другом кровеносных сосудов. Клеточными элементами паренхимы являются специализированные железистые клетки - пинеалоциты и глиальные клетки - глиоциты.

Эндокринная роль шишковидного тела состоит в выделении его клетками вещества, тормозящего деятельность гипофиза до момента наступления половой зрелости, а также участие в тонкой регуляции почти всех видов обмена веществ. В различные периоды зрелого возраста и особенно часто в пожилом возрасте в шишковидном теле могут появляться кисты и отложения мозгового песка.

Метаталамус (Metathalamus ) . Позади таламуса находятся два небольших возвышения - коленчатые тела, corpus geniculatum laterale et mediate.

Медиальное коленчатое тело, меньшее по размерам, но более выраженное, лежит спереди ручки нижнего холмика под подушкой, pulvinar, таламуса, отделенное от него ясной бороздкой. В нем заканчиваются волокна слуховой петли, lemniscus lateralis, и медиальное коленчатое тело проецирует их на слуховую область коры большого мозга. Вследствие чего оно является вместе с нижними холмиками крыши среднего мозга подкорковым центром слуха.

Латеральное коленчатое тело, большее, в виде плоского бугорка помещается на нижней латеральной стороне подушки. В нем оканчивается большей своей частью латеральная часть зрительного тракта (другая часть тракта оканчивается в подушке таламуса). Отсюда зрительные раздражения передаются в зрительную область коры. Поэтому вместе с подушкой и верхними холмиками крыши среднего мозга латеральное коленчатое тело является подкорковым центром зрения.

Строение гипофиза головного мозга человека и за что он отвечает

Гипофиз (hypophysis ) мозга располагается на вентральной поверхности мозга в основании черепа, в ямке турецкого седла. По своему строению и эмбриогенезу гипофиз не однороден. В гипофизе головного мозга различают две главные части: нейрогипофиз и аденогипофиз, имеющие различное эмбриональное происхождение и строение.

Нейрогипофиз представляет собой производное дна воронки промежуточного мозга. Он находится в тесной морфологической и функциональной связи с гипоталамусом, в нем заканчиваются волокна гипоталамо-гипофизарного тракта, идущего от супраоптического и паравентрикулярного ядер гипоталамуса.

Аденогипофиз (передняя доля) развивается из эпителиального выпячивания (кармана Ратке) крыши кишечной трубки. Передняя доля гипофиза имеет тесную сосудистую связь с гипоталамусом. Здесь артерии ветвятся на капилляры, образуя плотное сплетение в форме мантии на поверхности срединного возвышения. Капиллярные ветви этого сплетения образуют вены, достигающие передней доли гипофиза мозга человека, здесь вены вновь распадаются на капилляры, пронизывающие всю долю. Вся эта сложная система кровеносных сосудов носит название портальной. По ней в аденогипофиз из гипоталамуса поступают пептидные гормоны (либерины и статины), регулирующие синтез и секрецию гормонов аденогипофиза. Нейрогипофиз имеет собственную, не зависящую от портальной системы, систему кровоснабжения.

За что отвечает гипофиз головного мозга человека? В аденогипофизе секретируется два типа гормонов - эффекторные, т.е. реализующие свои свойства непосредственно в организме, и тройные - оказывающие регулирующее влияние на периферические железы внутренней секреции. Всего в аденогипофизе синтезируется шесть гормонов - гормон роста, пролактин, тиреотропин, адренокортикотропный гормон (АКТГ), фолликулостимулирующий гормон, лютеинизирующий гормон. Фолликулостимулирующий и лютеинизирующий гормоны объединяются в группу гонадотропных гормонов.

За последние годы было установлено, что практически все биологически активные вещества, секретируемые нейронами гипоталамо-гипофизарной системы, имеют пептидную природу.

В нервной системе существуют особые нервные клетки - нейросекреторные. Они имеют типичную структурную и функциональную (т.е. обладают способностью проводить нервный импульс) нейрональную организацию, а их специфической особенностью является нейросекреторная функция, связанная с секрецией биологически активных веществ. Функциональное значение этого механизма состоит в обеспечении регуляторной химической коммуникации между центральной нервной и эндокринной системами, осуществляемой с помощью нейросекретируемых продуктов.

В процессе эволюции клетки, входящие в состав примитивной нервной системы, специализировались в двух направлениях: обеспечение быстропротекающих процессов, т.е. межнейронное взаимодействие, и обеспечение медленно текущих процессов, связанных с продукцией нейрогормонов, действующих на клетки-мишени на расстоянии. В процессе эволюции из клеток, совмещающих сенсорную, проводниковую и секреторную Функции, сформировались специализированные нейроны, в том числе и нейросекреторные. Следовательно, нейросекреторные клетки произошли не от нейрона как такового, а от их общего предшественника - пронейроцита беспозвоночных животных. Эволюция нейросекреторных клеток привела к формированию у них, как и у классических нейронов, способности к процессам синаптического возбуждения и торможения, генерации потенциала действия.

Такого типа клетки имеются у всех позвоночных, причем они в основном составляют нейросекреторные центры. Между соседними нейросекреторными клетками обнаружены электротонические щелевые контакты, которые, вероятно, обеспечивают синхронизацию работы одинаковых групп клеток в пределах центра.

Аксоны нейросекреторных клеток характеризуются многочисленными расширениями, которые возникают в связи с временным накоплением нейросекрета. Крупные и гигантские расширения называются «телами Геринга». В пределах мозга аксоны нейросекреторных клеток, как правило, лишены миелиновой оболочки. Аксоны нейросекреторных клеток обеспечивают контакты в пределах нейросекреторных областей и связаны с различными отделами головного и спинного мозга.

Одна из основных функций нейросекреторных клеток - это синтез белков и полипептидов и их дальнейшая секреция. В связи с этим в клетках подобного типа чрезвычайно развит белоксинтезирующий аппарат - это гранулярный эндоплазматический ретикулум и аппарат Гольджи. Сильно развит в нейросекреторных клетках и лизосомальный аппарат, особенно в периоды их интенсивной деятельности. Но самым существенным признаком активной деятельности нейросекреторной клетки является количество элементарных нейросекреторных гранул, видимых в электронном микроскопе.

В гипоталамусе следует различать три основные группы нейросекреторных клеток:

  • Пептидергические;
  • Либерин- и статинергические;
  • Моноаминергические.

Однако это разделение весьма условно, так как одни и те же клетки могут синтезировать два типа нейрогормонов. Паравентрикулярное и супраоптическое ядра связаны с нейрогипофизом путем прорастания в него аксонов нервных клеток, образующих эти ядра и формирующих гипоталамо-нейрогипофизарную систему. В супраоптическом и паравентрикулярном ядрах синтезируются два пептидных гормона, секретирующихся из нейрогипофиза. Это вазопрессин и окситоцин.

Гипоталамус является высшим подкорковым центром интеграции нервныхц эндокринных влияний, вегетативных и эмоциональных компонентов поведенческих реакций и тем самым обеспечивает регуляцию постоянства внутренней среды.

Размеры 3-го желудочка головного мозга: ширина и высота

Полостью промежуточного мозга является 3-й желудочек, venlriculus tertius. Он представляет собой сагиттальную щель, расположенную в срединной плоскости. Ширина 3-го желудочка мозга 4-5 мм, длина в верхнем отделе около 25 мм, максимальная высота также 25 мм. Сзади в III желудочек открывается водопровод мозга. Через межжелудочковые отверстия, foramina interventricularia (Monroi), которые находятся в передней части боковых стенок третьего желудочка, имеется сообщение с боковыми желудочками.

Таблица «Строение стенок 3-го желудочка мозга»:

Латеральная стенка

Образована поверхностями таламусов и собственно подталамической областью, которые разделяет подталамическая борозда, sulcus hypothalamicus

Серый бугор, дорсальная поверхность зрительного перекреста и вещество мозга между сосочковыми телами; на дне третьего желудочка имеются углубления - recessus opticus и recessus infundibuiae

Задняя стенка

Задняя спайка мозга, основание эпифиза,recessus pineaiis

Дорсальная(верхняя)стенка

lamina choroidea epitelialis , фиксированная к мозговым полоскам, покрытая сосудистой оболочкой III желудочка,tela choroidea ventriculi /II

Передняя стенка

12.1. ОБЩИЕ СВЕДЕНИЯ О СТРОЕНИИ

ПРОМЕЖУТОЧНОГО МОЗГА

Промежуточный мозг (diencephalon) находится между большими полушариями мозга. Основную массу его составляют таламусы (thalami, зрительные бугры). Кроме того, к нему относятся структуры, расположенные позади таламусов, над и под ними, составляющие соответственно метаталамус (metathalamus, забугорье), эпиталамус (epithalamus, надбугорье) и гипоталамус (hypothalamus, подбугорье).

В состав эпиталамуса (надбугорья) входит шишковидное тело (эпифиз). С гипоталамусом (подбугорьем) связан гипофиз. К промежуточному мозгу относятся также зрительные нервы, зрительный перекрест (хиазма) и зрительные тракты - структуры, входящие в состав зрительного анализатора. Полостью промежуточного мозга является III желудочек мозга - остаток полости первичного переднего мозгового пузыря, из которого в процессе онтогенеза формируется этот отдел мозга.

III желудочек мозга представлен узкой полостью, расположенной в центре головного мозга между таламусами, в сагиттальной плоскости. Через межже- лудочковое отверстие (foramen interventriculare, монроево отверстие) он со- общается с боковыми желудочками, а через водопровод мозга - с четвертым мозговым желудочком. Верхнюю стенку III желудочка составляют свод (fornix) и мозолистое тело (corpus callosum), а в задней ее части - образования забугорья. Передняя его стенка сформирована ножками свода, отграничивающими спереди межжелудочковые отверстия, а также передней мозговой спайкой и конечной пластинкой. Боковые стенки III желудочка составляют медиальные поверхности таламусов, в 75% они соединены между собой межталамическим сращением (adhesio interthalamica, или massa intermedia). Нижние части боковых поверхностей и дно III желудочка состоят из образований, относящихся к гипоталамическому отделу промежуточного мозга.

12.2. ТАЛАМУСЫ

Таламусы (thalami), или зрительные бугры, расположены по бокам III желудочка и составляют до 80% массы промежуточного мозга. Они имеют яйцевидную форму, приблизительный объем 3,3 куб. см и состоят из клеточных

скоплений (ядер) и прослоек белого вещества. В каждом таламусе различают четыре поверхности: внутреннюю, наружную, верхнюю и нижнюю.

Внутренняя поверхность таламуса образует боковую стенку III желудочка. От расположенного ниже подбугорья она отделена неглубокой гипоталамической бороздой (sulcus hypothalamicus), идущей от межжелудочкового отверстия к входу в водопровод мозга. Внутреннюю и верхнюю поверхности разграничивает мозговая полоска (stria medullaris thalami). Верхняя поверхность таламуса, как и внутренняя, свободна. Она прикрыта сводом и мозолистым телом, с которыми не имеет сращений. В передней части верхней поверхности таламуса расположен его передний бугорок, который иногда называют возвышением переднего ядра. Задний конец таламуса утолщен - это так называемая подушка таламуса (pulvinar). Наружный край верхней поверхности таламуса подходит к хвостатому ядру, от которого ее отделяет пограничная полоска (stria terminalis).

По верхней поверхности таламуса в косом направлении проходит сосудистая борозда, которую занимает сосудистое сплетение бокового желудочка. Эта борозда делит верхнюю поверхность таламуса на наружную и внутреннюю части. Наружная часть верхней поверхности таламуса покрыта так называемой прикрепленной пластинкой, составляющей дно центрального отдела бокового желудочка мозга.

Наружная поверхность таламуса прилежит к внутренней капсуле, отделяющей ее от чечевичного ядра и головки хвостатого ядра. За подушкой таламуса расположены коленчатые тела, относящиеся к метаталамусу. Остальная часть нижней стороны таламуса сращена с образованиями гипоталамической области.

Таламусы находятся на пути восходящих трактов, идущих от спинного мозга и ствола мозга к коре больших полушарий. Они имеют многочисленные связи с подкорковыми узлами, проходящими главным образом через петлю чечевичного ядра (ansa lenticularis).

В состав таламуса входят клеточные скопления (ядра), отграниченные друг от друга прослойками белого вещества. К каждому ядру подходят собственные афферентные и эфферентные связи. Соседние ядра формируют группы. Выделяют: 1) передние ядра (nucll. anteriores) - имеют реципрокные связи с сосцевидным телом и сводом, известные как сосцевидно-таламический пучок (пучок Вик д"Азира) с поясной извилиной, относящиеся к лимбической системе; 2) задние ядра, или ядра подушки бугра (nucll. posteriores) - связаны с ассоциативными полями теменной и затылочной областей; играют важную роль в интеграции различных видов поступающей сюда сенсорной информации; 3) дорсальное боковое ядро (nucl. dorsolateralis) - получает афферентные импульсы от бледного шара и проецирует их в каудальные отделы поясной извилины; 4) вентролатеральные ядра (nucll. ventrolaterales) - самые крупные специфические ядра, являются коллектором большинства соматосенсорных путей: медиальная петля, спиноталамические пути, тройнично-таламические и вкусовые пути, по которым проходят импульсы глубокой и поверхностной чувствительности и др.; отсюда нервные импульсы направляются в корковую проекционную соматосенсорную зону коры (поля 1, 2, 3а и 3б, по Бродману); 5) медиальные ядра (nucll. mediales) - ассоциативные, получают афферентные импульсы от вентральных и интраламинарных таламических ядер, гипоталамуса, ядер среднего мозга и бледного шара; эфферентные пути отсюда направляются в ассоциативные области префронтальной коры, расположенные впереди

моторной зоны; 6) внутрипластинчатые ядра (интраламинарные ядра, nucll. intralaminares) - составляют основную часть неспецифической проекционной системы таламуса; афферентные импульсы они получают частично по восходящим волокнам ретикулярной формации ствола нерва, частично по волокнам, начинающимся от ядер таламуса. Исходящие от этих ядер проводящие пути направляются в хвостатое ядро, скорлупу, бледный шар, относящиеся к экстрапирамидной системе, и, вероятно, в другие ядерные комплексы таламуса, которые затем направляют их во вторичные ассоциативные зоны коры мозга. Важной частью интраламинарного комплекса является центральное ядро таламуса, представляющее таламический отдел восходящей ретикулярной акти- вирующей системы.

Таламусы являются своеобразным коллектором чувствительных путей, местом, в котором концентрируются все пути, проводящие чувствительные импульсы, идущие от противоположной половины тела. Кроме того, в переднее его ядро по сосцевидно-таламическому пучку поступают обонятельные импульсы; вкусовые волокна (аксоны вторых нейронов, расположенных в одиночном ядре) заканчиваются в одном из ядер вентролатеральной группы.

Таламические ядра, получающие импульсы от строго определенных участков тела и передающие эти импульсы в соответствующие ограниченные зоны коры (первичные проекционные зоны), называются проекционными, специфическими или переключающими ядрами. К ним относятся вентролатеральные ядра. Переключающие ядра для зрительных и слуховых импульсов заложены соответственно в латеральных и медиальных коленчатых телах, прилежащих к задней поверхности зрительных бугров и составляющих основную массу забу- горья.

Наличие в проекционных ядрах таламуса, прежде всего в вентролатеральных ядрах, определенного соматотопического представительства делает возможным при ограниченном по объему патологическом очаге в таламусе развитие расстройства чувствительности и сопряженных с этим двигательных нарушений в какой-либо ограниченной части противоположной половины тела.

Ассоциативные ядра, получая чувствительные импульсы от переключающих ядер, подвергают их частичному обобщению - синтезу; в результате из этих таламических ядер к коре большого мозга направляются импульсы, уже усложненные вследствие синтеза поступающей сюда информации. Следовательно, таламусы являются не только промежуточным центром переключения, но могут быть и местом частичной переработки чувствительных импульсов.

Кроме переключающих и ассоциативных ядер, в таламусах находятся, как уже упоминалось, интраламинарные (парафасцикулярное, срединное и медиальное, центральные, парацентральное ядра) и ретикулярные ядра, не имеющие специфической функции. Они рассматриваются как часть ретикулярной формации и объединяются под названием неспецифической диффузной таламической системы. Будучи связанной с корой больших полушарий и структурами лимбико-ретикулярного комплекса. Эта система принимает участие в регуляции тонуса и в «настройке» коры и играет определенную роль в сложном механизме формирования эмоций и соответствующих им выразительных непроизвольных движений, мимики, плача и смеха.

Таким образом, к таламусам по афферентным путям сходится информация практически от всех рецепторных зон. Эта информация подвергается существенной переработке. Отсюда к коре больших полушарий направляется лишь

часть ее, другая же и, вероятно, большая часть принимает участие в формировании безусловных и, возможно, некоторых условных рефлексов, дуги которых замыкаются на уровне таламусов и образований стриопаллидарной системы. Таламусы являются важнейшим звеном афферентной части рефлекторных дуг, обусловливающих инстинктивные и автоматизированные двигательные акты, в частности привычные локомоторные движения (ходьба, бег, плавание, езда на велосипеде, катание на коньках и т.п.).

Волокна, идущие от таламуса к коре больших полушарий мозга, принимают участие в формировании заднего бедра внутренней капсулы и лучистого венца и образуют так называемые лучистости таламуса - переднюю, среднюю (верхнюю) и заднюю. Передняя лучистость связывает переднее и отчасти внутреннее и наружное ядра с корой лобной доли. Средняя лучистость таламуса - самая широкая - связывает вентролатеральные и медиальные ядра с задними отделами лобной доли, с теменной и височной долями мозга. Задняя лучистость состоит главным образом из зрительных волокон (radiatio optica, или пучок Грациоле), идущих от подкорковых зрительных центров в затылочную долю, к корковому концу зрительного анализатора, расположенному в области шпорной борозды (fissura calcarina). В составе лучистого венца проходят и волокна, несущие импульсы от коры больших полушарий к таламусу (корково-таламические связи).

Сложность организации и многообразие функций таламуса определяет полиморфизм возможных клинических проявлений его поражения. Поражение вен- тролатеральной части таламуса обычно ведет к повышению порога чувстви- тельности на стороне, противоположной патологическому очагу, при этом меняется аффективная окраска болевых и температурных ощущений. Больной воспринимает их как трудно локализуемые, разлитые, имеющие неприятный, жгучий оттенок. Характерна в соответствующей части противоположной половины тела гипалгезия в сочетании с гиперпатией, при этом особенно выражено расстройство глубокой чувствительности, что может вести к неловкости движений, сенситивной атаксии.

При поражении заднелатеральной части таламуса может проявиться так называемый таламический синдром Дежерина-Русси [описали в 1906 г. французские невропатологи J. Dejerine (1849-1917) и G. Roussy (1874-1948)], включающий в себя жгучие, мучительные, подчас невыносимые таламические боли в противоположной половине тела в сочетании с нарушением поверхностной и особенно глубокой чувствительности, псевдоастериогнозом и сенситивной гемиатаксией, явлениями гиперпатии и дизестезии. Таламический синдром Де- жерина-Русси чаще возникает при развитии в нем инфарктного очага в связи с развитием ишемии в латеральных артериях таламуса (aa. thalamici laterales) - ветвях задней мозговой артерии. Иногда при этом на стороне, противоположной патологическому очагу, возникает преходящий гемипарез и развивается гомонимная гемианопсия. Следствием расстройства глубокой чувствительности может быть сенситивная гемиатаксия, псевдоастриогноз. В случае поражения медиальной части таламуса, зубчато-таламического пути, по которому к таламусу проходят импульсы от мозжечка, и руброталамических связей на противоположной патологическому очагу стороне появляется атаксия в соче- тании с атетоидным или хореоатетоидным гиперкинезом, обычно особенно выраженным в кисти и пальцах («таламическая» рука). В таких случаях харак- терна тенденция к фиксации руки в определенной позе: плечо прижато к туло- вищу, предплечье и кисть согнуты и пронированы, основные фаланги пальцев

согнуты, остальные разогнуты. Пальцы руки при этом совершают медленные вычурные движения атетоидного характера.

В артериальном кровоснабжении таламуса участвуют задняя мозговая артерия, задняя соединительная артерия, передняя и задние ворсинчатые артерии.

12.3. МЕТАТАЛАМУС

Метаталамус (metathalamus, забугорье) составляют медиальные и латеральные коленчатые тела, расположенные под задней частью подушки таламуса, выше и латеральнее верхних холмиков четверохолмия.

Медиальное коленчатое тело (corpus geniculatum medialis) содержит клеточное ядро, в котором заканчивается латеральная (слуховая) петля. Нервными волокнами, составляющими нижнюю ручку четверохолмия (brachium colliculi inferioris), оно связано с нижними холмиками четверохолмия и вместе с ними образует подкорковый слуховой центр. Аксоны клеток, заложенные в подкорковом слуховом центре, главным образом в медиальном коленчатом теле, направляются к корковому концу слухового анализатора, расположенному в верхней височной извилине, точнее в коре находящихся на ней мелких извилин Гешля (поля 41, 42, 43, по Бродману), при этом слуховые импульсы передаются к проекционному слуховому полю коры в тонотопическом порядке. Поражение медиального коленчатого тела ведет к снижению слуха, более выраженному на противоположной стороне. Поражение обоих медиальных коленчатых тел может обусловить глухоту на оба уха.

При поражении медиальной части метаталамуса может проявиться клиническая картина синдрома Франкль-Хохварта, для которого характерны двустороннее снижение слуха, нарастающее и ведущее к глухоте, и атаксия, сочетающиеся с парезом взора вверх, концентрическим сужением полей зрения и признаками внутричерепной гипертензии. Описал этот синдром при опухоли эпифиза австрийский невропатолог L. Frankl-Chochwart (1862-1914).

Латеральное коленчатое тело (corpus geniculatum laterale), как и верхние бугры четверохолмия, с которыми оно связано верхними ручками четверохолмия (brachii colliculi superiores), состоит из чередующихся слоев серого и белого вещества. Латеральные коленчатые тела составляют подкорковый зрительный центр. Главным образом в них заканчиваются зрительные тракты. Аксоны клеток латеральных коленчатых тел проходят компактно в составе заднего отдела заднего бедра внутренней капсулы, а затем формируют зрительную лучистость (radiatio optica), по которой зрительные импульсы достигают в строгом ретинотопическом порядке коркового конца зрительного анализатора - в основном область шпорной борозды на медиальной поверхности затылочной доли (поле 17, по Бродману).

На вопросах, связанных со строением, функцией, методами обследования зрительного анализатора, а также со значением патологии, выявляемой при его обследовании, для топической диагностики следует остановиться подробнее, так как многие структуры, входящие в состав зрительной системы, имеют прямое отношение к промежуточному мозгу и в процессе онтогенеза формируются из первичного переднего мозгового пузыря.

12.4. ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР

12.4.1. Анатомо-физиологические основы зрения

Световые лучи, несущие информацию об окружающем пространстве, проходят через преломляющие среды глаза (роговицу, хрусталик, стекловидное тело) и воздействуют на рецепторы зрительного анализатора, располагающиеся в сетчатой оболочке глаза; при этом изображение видимого пространства проецируется на сетчатку в перевернутом виде.

Зрительные рецепторы (рецепторы световой энергии) представляют собой нейроэпителиальные образования, известные под названием палочек и колбочек, которые обеспечивают возникающие под влиянием света фотохимические реакции, преобразующие энергию света в нервные импульсы. В сетчатой оболочке глаза человека колбочек около 7 млн, палочек - приблизительно 150 млн. Колбочки обладают наиболее высокой разрешающей способностью и обеспечивают в основном дневное и цветное зрение. Они сконцентрированы главным образом в участке сетчатой оболочки, известном как пятно (macula), или желтое пятно. Пятно занимает приблизительно 1% площади сетчатки.

Палочки и колбочки расцениваются как специализированный нейроэпителий, имеющий сходство с клетками эпендимы, выстилающей желудочки мозга. Этот светочувствительный нейроэпителий находится в одном из наружных слоев сетчатки, в области желтого пятна, в расположенной в его центре ямке сконцентрировано особенно большое количество колбочек, что делает его местом наиболее ясного зрения. Импульсы, возникающие в наружном слое сетчатки, достигают расположенных во внутренних слоях сетчатки промежуточных, главным образом биполярных нейронов, а затем и ганглиозных нервных клеток. Аксоны ганглиозных клеток радиально сходятся к одному участку сетчатки, находящемуся медиальнее пятна, и формируют диск зрительного нерва, по сути, его начальный отрезок.

Зрительный нерв, n. opticus (II черепной нерв) состоит из аксонов ганглиозных клеток сетчатой оболочки, выходит из глазного яблока вблизи от его заднего полюса, проходит через ретробульбарную клетчатку. Ретробульбарная (глазничная) часть зрительного нерва, находящаяся в пределах глазницы, имеет длину около 30 мм. Зрительный нерв здесь покрыт всеми тремя мозговыми оболочками: твердой, паутинной и мягкой. Далее он покидает глазницу через расположенное в ее глубине зрительное отверстие и проникает в среднюю черепную ямку (рис. 12.1).

Внутричерепная часть зрительного нерва более короткая (от 4 до 17 мм) и покрыта лишь мягкой мозговой оболочкой. Зрительные нервы, подходя к диафрагме турецкого седла, сближаются и образуют неполный зрительный перекрест (chiasma opticum).

В хиазме перекрест совершают только те волокна зрительных нервов, которые передают импульсы от внутренних половин сетчатой оболочки глаз. Аксоны же ганглиозных клеток, находящихся в латеральных половинах сетчатки, не подвергаются перекресту и, проходя через хиазму, лишь огибают снаружи участвующие в формировании перекреста волокна, составляя его латеральные отделы. Нервные волокна, несущие зрительную информацию от желтого пятна, составляют около 1 / 3 волокон зрительного нерва; проходя в составе хиазмы, они также совершают частичный перекрест, разделяясь на перекрещенные и

Рис. 12.1. Зрительный анализатор и рефлекторная дуга зрачкового рефлекса. 1 - сетчатка глаза; 2 - зрительный нерв; 3 - хиазма; 4 - зрительный тракт; 5 - клетки наружного коленчатого тела; 6 - зрительная лучистость (пучок Грациоле); 7 - корковая проекционная зрительная зона - шпорная борозда; 8 - переднее двухолмие; 9 - ядра глазодвигательного (III) нерва; 10 - вегетативная часть глазодвигательного (III) нерва; 11 - ресничный узел.

прямые волокна макулярного пучка. Кровоснабжение зрительных нервов и хиазмы обеспечивают ветви глазной артерии (а. ophtalmica).

Пройдя через хиазму, аксоны ганглиозных клеток образуют два зрительных тракта, каждый из которых состоит из нервных волокон, несущих импульсы от одноименных половин сетчаток обоих глаз. Зрительные тракты проходят по основанию мозга и достигают наружных коленчатых тел, являющихся подкорковыми зрительными центрами. В них заканчиваются аксоны ганглиозных клеток сетчатки, и импульсы переключаются на следующие нейроны. Аксоны нейронов каждого латерального коленчатого тела проходят через зачечевидную часть (pars retrolenticularis) внутренней капсулы и формируют зрительную лучистость (radiatio optica), или пучок Грациоле, который участвует в формировании белого вещества височной и в меньшей степени теменной долей мозга, затем его затылочной доли и заканчивается в корковом конце зрительного анализатора, т.е. в первичной зрительной коре, расположенной главным образом на медиальной поверхности затылочной доли в области шпорной борозды (поле 17, по Бродману).

Следует подчеркнуть, что на всем протяжении зрительных путей от диска зрительного нерва до проекционной зоны в коре большого мозга зрительные волокна расположены в строгом ретинотопическом порядке.

Зрительный нерв принципиально отличается от черепных нервов стволового уровня. Это, по сути, даже не нерв, а выдвинутый вперед на периферию мозговой тяж. Составляющие его волокна не имеют характерной для периферического нерва шванновской оболочки, дистальнее места выхода зрительного нерва их глазного яблока ее заменяет миелиновая оболочка, формирующаяся из оболочки прилежащих к нервным волокнам олигодендроцитов. Такое строение зрительных нервов объяснимо, если учесть, что в процессе онтогене-

за зрительные нервы образуются из стеблей (ножек) так называемых глазных пузырей, представляющих собой выпячивания передней стенки первичного переднего мозгового пузыря, которые трансформируются в дальнейшем в сетчатую оболочку глаз.

12.4.2. Исследование зрительного анализатора

В неврологической практике наиболее значимы сведения об остроте зрения (visus), о состоянии полей зрения и о результатах офтальмоскопии, в процессе которой возможен осмотр глазного дна и визуализация при этом диска зрительного нерва. При необходимости возможно и фотографирование глазного дна.

Острота зрения. Исследование остроты зрения обычно проводится по спе- циальным таблицам Д.А. Сивцева, состоящим из 12 строк букв (для неграмотных - незамкнутые кольца, для детей - контурные рисунки). Нормально видящий глаз на расстоянии 5 м от хорошо освещенной таблицы четко дифференцирует буквы, составляющие ее 10-ю строку. В таком случае зрение признается нормальным и условно принимается за 1,0 (visus = 1,0). Если пациент различает на расстоянии 5 м лишь 5-ю строку, то visus = 0,5; если он читает только 1-ю строку таблицы, то visus = 0,1 и т.д. Если пациент на расстоянии 5 м не дифференцирует входящие в состав 1-й строки изображения, то можно приближать его к таблице до тех пор, пока он не станет различать составляющие ее буквы или рисунки. В связи с тем, что штрихи, которыми нарисованы буквы первой строки, имеют толщину, приблизительно равную толщине пальца, врач нередко при проверке зрения у слабовидящих показывает им пальцы своей руки. Если больной различает пальцы врача и может сосчитать их на расстоянии 1 м, то visus исследуемого глаза считается равным 0,02, при возможности считать пальцы лишь на расстоянии 0,5 м visus = 0,01. Если visus еще ниже, то больной различает пальцы обследующего лишь при еще большем приближении пальцев, тогда обычно говорят, что он «считает пальцы у лица». Если же больной не различает пальцы и на очень близком расстоянии, но указывает на источник света, говорят о наличии у него правильной или неправильной проекции света. В таких случаях visus обычно обозначается дробью 1 / б , что означает: visus бесконечно мал.

" бесконечность"

При оценке остроты зрения, если почему-либо visus определяется не с расстояния 5 м, можно пользоваться формулой Снеленна: V = d/D, где V - visus, d - расстояние от исследуемого глаза до таблицы, а D - расстояние, с которого штрихи, составляющие буквы, различимы под углом в 1", - этот показатель указан в начале каждой строки таблицы Сивцева.

Visus всегда должен определяться для каждого глаза в отдельности, другой глаз при этом прикрывается. Если при обследовании выявлено снижение остроты зрения, то необходимо выяснить, не является ли оно следствием чисто офтальмологической патологии, в частности аномалии рефракции. В процессе проверки остроты зрения в случае наличия у больного аномалии рефракции (миопия, гиперметропия, астигматизм) необходима ее коррекция с помощью очковых стекол. В связи с этим пациент, который обычно пользуется очками, при проверке остроты зрения должен надеть их.

Снижение зрения обозначается термином «амблиопия», слепота - «амавроз».

Поле зрения. Каждый глаз видит лишь часть окружающего пространс- тва - поле зрения, границы которого находятся под определенным углом от оптической оси глаза. А.И. Богословский (1962) дал этому пространству сле- дующее определение: «Все поле, которое одновременно видит глаз, фиксируя неподвижным взором и при неподвижном положении головы определенную точку в пространстве, и составляет его поле зрения». Видимую глазом часть пространства, или поле зрения, можно очертить на осях координат и дополнительных диагональных осях, переводя при этом угловые градусы в линейные единицы измерения. В норме наружная граница поля зрения составляет 90?, верхняя и внутренняя - 50-60?, нижняя - до 70?. В связи с этим изображенное на графике поле зрения имеет форму неправильного эллипса, вытянутого кнаружи (рис. 12.2).

Поле зрения, как и visus, проверяется для каждого глаза отдельно. Второй глаз во время обследования прикрывается. Для исследования поля зрения пользуются периметром, первый вариант которого был предложен в 1855 г. немецким офтальмологом A. Grefe (1826-1870). Существуют различные его варианты, но в большинстве случаев каждый из них имеет вращающуюся вокруг центра градуированную дугу с двумя метками, одна из которых неподвижна и находится в центре дуги, другая перемещается по дуге. Первая метка служит

Рис. 12.2. Нормальное поле зрения.

Пунктиром изображено поле зрения на белый цвет, цветными линиями - на соответствующие цвета.

для фиксации на ней обследуемого глаза, вторая, подвижная, - для определения границ его поля зрения.

При неврологической патологии могут быть различные формы сужения полей зрения, в частности по концентрическому типу и по типу гемианопсии (выпадение половины поля зрения), или квадрантной гемианопсии (выпадение верхней или нижней части половины поля зрения). Кроме того, в процессе периметрии или кампиметрии 1 могут выявляться скотомы - невидимые больным участки поля зрения. Надо иметь в виду обязательное наличие в поле зрения здорового глаза небольшой физиологической скотомы (слепого пятна) в 10-15? латеральнее от центра поля, представляющей собой проекцию участка глазного дна, занятого диском зрительного нерва и потому лишенного фоторецепторов.

Ориентировочное представление о состоянии полей зрения можно получить и предложив пациенту фиксировать исследуемый глаз на расположенной перед ним определенной точке, после чего вводить в поле зрения или выводить из него какой-либо предмет, выявляя при этом момент, когда этот предмет становится видимым или исчезающим. Границы поля зрения в таких случаях, конечно же, определяются приблизительно.

Выпадение одноименных (правых или левых) половин полей зрения (гомонимная гемианопсия) можно выявить, попросив больного, смотрящего перед собой, разделить пополам развернутое перед ним в горизонтальной плоскости полотенце (проба с полотенцем). Больной в случае наличия у него гемианопсии делит пополам лишь видимую им часть полотенца и в связи с этим оно разделяется на неравные отрезки (при полной гомонимной геминанопсии их соотношение равно 1:3). Проба с полотенцем может быть проверена, в частности, и у больного, находящегося в горизонтальном положении.

Диск зрительного нерва. Состояние глазного дна, в частности диска зритель- ного нерва, выявляется при его осмотре с помощью офтальмоскопа. Офтальмоскопы могут быть разной конструкции. Простейшим является зеркальный офтальмоскоп, состоящий из зеркала-отражателя, отражающего луч света на сетчатку. В центре этого зеркала имеется небольшое отверстие, через которое врач рассматривает сетчатую оболочку глаза. Для увеличения ее изображения пользуются лупой в 13 или 20 дптр. Лупа представляет собой двояковыпуклую линзу, поэтому врач видит через нее перевернутое (обратное) изображение осматриваемого участка сетчатки.

Более совершенными являются прямые безрефлексные электрические офтальмоскопы. Большие безрефлексные офтальмоскопы дают возможность не только осмотреть, но и сфотографировать глазное дно.

В норме диск зрительного нерва круглый, розовый, имеет четкие границы. От центра диска зрительного нерва в радиальном направлении расходятся артерии (ветви центральной артерии сетчатки), к центру диска сходятся вены сетчатки. Диаметры артерий и вен в норме соотносятся между собой как 2:3.

Волокна, идущие от желтого пятна и обеспечивающие центральное зрение, вступают в зрительный нерв с височной стороны и, лишь пройдя некоторое расстояние, смещаются в центральную часть нерва. Атрофия макулярных, т.е. идущих от желтого пятна, волокон вызывает характерное побледнение височ-

1 Метод выявления скотом; заключается в регистрации восприятия фиксированным глазом объектов, перемещающихся по черной поверхности, расположенной во фронтальной плоскости на расстоянии 1 м от исследуемого глаза.

ной половины диска зрительного нерва, которое может сочетаться с ухудшением центрального зрения, тогда как периферическое зрение при этом остается сохранным (возможный вариант нарушения зрения, в частности, при обострении рассеянного склероза). При повреждении периферических волокон зрительного нерва в экстраорбитальной зоне характерно концентрическое сужение зрительного поля.

При поражении аксонов ганглиозных клеток на любом участке их следования до хиазмы (зрительный нерв) со временем наступает дегенерация диска зрительного нерва, называющаяся в таких случаях первичной атрофией диска зрительного нерва. Диск зрительного нерва сохраняет свои размеры и форму, но цвет его бледнеет и может стать серебристо-белым, сосуды его при этом запустевают.

При поражении проксимальных отделов зрительных нервов и особенно хиазмы признаки первичной атрофии дисков развиваются позднее, при этом атрофический процесс постепенно распространяется в проксимальном направлении - нисходящая первичная атрофия. Поражение хиазмы и зрительного тракта может вести к сужению полей зрения, при этом поражение хиазмы в большинстве случаев сопровождается частичной или полной гетеронимной гемианопсией. При полном поражении хиазмы или двустороннем тотальном поражении зрительных трактов со временем должны развиться слепота и первичная атрофия дисков зрительных нервов.

Если же у больного повышается внутричерепное давление, то нарушается венозный и лимфатический отток из диска зрительного нерва, что ведет к развитию в нем признаков застоя (застойного диска зрительного нерва). Диск при этом отекает, увеличивается в размере, границы его становятся размытыми, отечная ткань диска может выстоять в стекловидное тело. Артерии диска зрительного нерва сужаются, вены же оказываются расширенными и переполненными кровью, извитыми. При резко выраженных явлениях застоя возможны кровоизлияния в ткань диска зрительного нерва. Развитию застойных дисков зрительных нервов при внутричерепной гипертензии предшествует выявляемое при кампиметрии увеличение слепого пятна (Федоров С.Н., 1959).

Застойные диски зрительных нервов, если не устраняется причина внутричерепной гипертензии, со временем могут переходить в состояние вторичной атрофии, при этом размеры их постепенно уменьшаются, приближаясь к нормальным, границы становятся более четкими, цвет - бледным. В таких случаях говорят о развитии атрофии дисков зрительных нервов после застоя или о вторичной атрофии дисков зрительных нервов. Развитие вторичной атрофии дисков зрительных нервов у больного с выраженной внутричерепной гипертензией иногда сопровождается уменьшением гипертензионной головной боли, что можно объяснить параллельным развитием дегенеративных изменений в рецепторном аппарате мозговых оболочек и других тканей, находящихся в полости черепа.

Офтальмоскопическая картина застоя на глазном дне и неврита зрительного нерва имеет много общих черт, но при застое острота зрения длительно (в течение нескольких месяцев) может оставаться нормальной или близкой к норме и снижается лишь при развитии вторичной атрофии зрительных нервов, а при неврите зрительного нерва острота зрения падает остро или подостро и весьма значительно, вплоть до слепоты.

12.4.3. Изменения функций зрительной системы при поражении различных ее отделов

Поражение зрительного нерва ведет к нарушению функций глаза на стороне патологического очага, при этом отмечается снижение остроты зрения, сужение поля зрения, чаще по концентрическому типу, иногда выявляются патологические скотомы, со временем возникают признаки первичной нисходящей атрофии диска зрительного нерва, нарастание которых сопровождается прогрессирующим снижением остроты зрения, при этом возможно развитие слепоты. Надо иметь в виду, что чем проксимальнее расположена зона поражения зрительного нерва, тем позднее наступает атрофия его диска.

В случае поражения зрительного нерва, ведущего к слепоте глаза, оказывается несостоятельной афферентная часть дуги зрачкового рефлекса на свет, в связи с этим прямая реакция зрачка на свет оказывается нарушенной, тогда как содружественная реакция зрачка на свет сохранна. Ввиду отсутствия прямой реакции зрачка на свет (его сужения под влиянием нарастающей освещенности) возможна анизокория, так как не реагирующий на свет зрачок слепого глаза не сужается при нарастании освещенности.

Острое одностороннее снижение зрения у молодых пациентов, если это не обусловлено поражением сетчатой оболочки глаза, скорее всего, является следствием демиелинизации зрительного нерва (ретробульбарный неврит). У больных пожилого возраста снижение зрения может быть обусловлено нарушениями кровообращения в сетчатке или зрительном нерве. При височном артериите возможна ишемическая ретинопатия, при этом обычно определяет- ся высокая СОЭ; диагностике могут способствовать результаты биопсии стенки наружной височной артерии.

При подострых расстройствах зрения, с одной стороны, надо иметь в виду и возможность наличия онкологической патологии, в частности опухоли зрительного нерва или близко к нему расположенных тканей. В таком случае целесообразно исследовать состояние глазницы, канала зрительного нерва, области хиазмы с помощью краниографии, КТ и МРТ.

Причиной острого или подострого двустороннего снижения зрения может быть токсическая невропатия зрительных нервов, в частности отравление метанолом.

Поражение перекреста зрительных нервов (хиазмы) ведет к двустороннему нарушению полей зрения, может обусловить также снижение остроты зрения. Со временем в связи с нисходящей атрофией зрительных нервов в таких случаях развивается первичная нисходящая атрофия дисков зрительных нервов, при этом течение и характер расстройств зрительных функций зависят от первичной локализации и темпа поражения хиазмы. Если поражена централь- ная часть хиазмы, что нередко бывает при сдавливании ее опухолью, обычно аденомой гипофиза, то сначала повреждаются перекрещивающиеся в хиазме волокна, идущие от внутренних половин сетчаток обоих глаз. Слепнут внутренние половины сетчаток, что ведет к выпадению височных половин полей зрения - развивается битемпоральная гемианопсия, при которой больной, глядя вперед, видит ту часть пространства, которая перед ним, и не видит, что делается по сторонам. Патологическое воздействие на наружные части хиазмы ведет к выпадению внутренних половин полей зрения - к биназальной гемианопсии (рис. 12.3).

Рис. 12.3. Изменения полей зрения при поражении различных отделов зрительного анализатора (по Гомансу).

а - при поражении зрительного нерва слепота на той же стороне; б - поражение центральной части хиазмы - двусторонняя гемианопсия с височной стороны (битемпоральная гемианопсия); в - поражение наружных отделов хиазмы с одной стороны - назальная гемианопсия на стороне патологического очага; г - поражение зрительного тракта - изменение обоих полей зрения по типу гомонимной гемианопсии на стороне, противоположной очагу поражения; д, е - частичное поражение зрительной лучистости - верхнеили нижнеквадрантная гемианопсия на противоположной стороне; ж - поражение коркового конца зрительного анализатора (шпорной борозды затылочной доли) - на противоположной стороне гомонимная гемианопсия с сохранением центрального зрения.

Дефекты полей зрения, обусловленные сдавлением хиазмы, могут быть следствием роста краниофарингиомы, аденомы гипофиза или менингиомы бугорка турецкого седла, а также сдавления хиазмы артериальной аневризмой. С целью уточнения диагноза при характерных для поражения хиазмы изменениях полей зрения показаны краниография, КТ или МРТ-сканирование, а при подозрении на развитие аневризмы - ангиографическое исследование.

Тотальное поражение хиазмы ведет к двусторонней слепоте, при этом выпадают прямая и содружественная реакции зрачков на свет. На глазном дне с обеих сторон в связи с нисходящим атрофическим процессом со временем развиваются признаки первичной атрофии дисков зрительных нервов.

В случае поражения зрительного тракта на противоположной стороне обычно возникает неконгруэнтная (неидентичная) гомонимная гемианопсия на стороне, противоположной патологическому очагу. Со временем на глазном дне появляются признаки частичной первичной (нисходящей) атрофии дисков зрительных нервов, преимущественно на стороне очага поражения. Возможность атрофии дисков зрительных нервов сопряжена с тем, что зрительные тракты составляют аксоны, участвующие в формировании дисков зрительных нервов и являющиеся отростками ганглионарных клеток, расположенных в сетчатой оболочке глаз. Причиной поражения зрительного тракта может быть базальный патологический процесс (базальный менингит, аневризма, краниофарингиома и др.).

Поражение подкорковых зрительных центров, прежде всего латерального коленчатого тела, также вызывает гомонимное неконгруэнтное гемианопсическое, или секторальное выпадение полей зрения на стороне, противоположной патологическому очагу, при этом обычно изменяются реакции зрачков на свет. Такие расстройства возможны, в частности, при нарушении кровообращения в бассейне передней ворсинчатой артерии (a. chorioidea anterior, ветвь внутренней сонной артерии) или в бассейне задней ворсинчатой артерии (a. chorioidea posterior, ветвь задней мозговой артерии), обеспечивающих кровоснабжение латерального коленчатого тела.

Нарушение функции зрительного анализатора за латеральным коленчатым телом - зачечевичной части внутренней капсулы, зрительной лучистости (пучка Грациоле) или проекционной зрительной зоны (кора медиальной поверхности затылочной доли в области шпорной борозды, поле 17, по Бродману) также ведет к полной или неполной гомонимной гемианопсии на стороне, противоположной патологическому очагу, при этом гемианопсия, как правило, конгруэнтная. В отличие от гомонимной гемианопсии при поражении зри- тельного тракта в случае поражения внутренней капсулы, зрительной лучистости или коркового конца зрительного анализатора гомонимная гемианопсия не ведет к атрофическим изменениям на глазном дне и изменению зрачковых реакций, так как в таких случаях нарушение зрения обусловлено наличием очага поражения, расположенного позади подкорковых зрительных центров, и зоны замыкания рефлекторных дуг зрачковых реакций на свет.

Волокна зрительной лучистости расположены в строгом порядке. Нижняя часть ее, проходящая через височную долю мозга, состоит из волокон, несущих импульсы от нижних отделов одноименных половин сетчаток. Они заканчиваются в коре нижней губы шпорной борозды. При их поражении выпадают верхние части противоположных патологическому очагу половин полей зрения или возникает одна из разновидностей квадрантной гемианопсии, в данном случае - верхняя квадрантная гемианопсия на стороне, противоположной па-

тологическому очагу. При поражении верхних отделов зрительной лучистости (пучков, проходящих частично через теменную долю и идущих к верхней губе шпорной борозды на стороне, противоположной патологическому процессу) возникает нижняя квадрантная гемианопсия.

При поражении коркового конца зрительного анализатора больной обычно не осознает дефекта полей зрения (возникает неосознаваемая гомонимная гемианопсия), тогда как нарушение функций любого другого отдела зрительного анализатора ведет к дефекту полей зрения, которые осознаются больным (осознаваемая гемианопсия). Кроме того, при корковой неосознаваемой гемианопсии сохраняется зрение в зоне проекции на нее макулярного пучка.

При раздражении, обусловленном патологическим процессом коркового конца зрительного анализатора, в противоположных половинах полей зрения могут возникать галлюцинации в виде мелькания точек, кругов, искр, известные под названием «простые фотомы» или «фотопсии». Фотопсии нередко бывают предвестником приступа офтальмической формы мигрени, могут составлять зрительную ауру эпилептического припадка.

12.5. ЭПИТАЛАМУС

Эпиталамус (epithalamus, надбугорье) можно рассматривать как непосредственное продолжение крыши среднего мозга. К эпиталамусу принято относить заднюю эпиталамическую спайку (commissura epithalamica posterior), два поводка (habenulae) и их спайку (commissura habenularum), а также шишковидное тело (corpus pineale, эпифиз).

Эпиталамическая спайка располагается над верхней частью водопровода мозга и представляет собой комиссуральный пучок нервных волокон, который берет начало от ядер Даркшевича и Кахаля. Впереди от этой спайки расположено непарное шишковидное тело, имеющее вариабельные размеры (при этом длина его не превышает 10 мм) и форму конуса, обращенного вершиной назад. Основание шишковидного тела образовано нижней и верхней мозго- выми пластинками, которые окаймляют выворот шишковидного тела (recessus pinealis) - выступающую верхнезаднюю часть третьего желудочка мозга. Нижняя мозговая пластинка продолжается назад и переходит в эпиталамическую спайку и пластинку четверохолмия. Передняя часть верхней мозговой пластинки переходит в спайку поводков, от конца которой отходят направляющиеся вперед поводки, называемые иногда ножками шишковидного тела. Каждый из поводков тянется к зрительному бугру и на границе верхней и внутренней его поверхности заканчивается треугольным расширением, находящимся над расположенным уже в веществе таламуса небольшим ядром уздечки. От ядра уздечки вдоль задненаружной поверхности таламуса тянется белая полоска - stria medullaris, состоящая из волокон, соединяющих шишковидное тело со структурами обонятельного анализатора. В связи с этим существует мнение о том, что эпиталамус имеет отношение к обонянию.

В последнее время установлено, что отделы эпиталамуса, главным образом шишковидное тело, продуцируют физиологически активные вещества - серотонин, мелатонин, адреногломерулотропин и антигипоталамический фактор.

Шишковидное тело представляет собой железу внутренней секреции. Оно имеет дольчатое строение, паренхима его состоит из пинеоцитов, эпителиаль-

ных и глиальных клеток. Шишковидное тело содержит большое количество кровеносных сосудов, кровоснабжение его обеспечивается ветвями задних мозговых артерий. Подтверждает эндокринную функцию эпифиза и его высокая способность к поглощению радиоактивных изотопов 32 P и 131 I. Он поглощает радиоактивного фосфора больше, чем любой другой орган, а по количеству поглощаемого радиоактивного йода уступает только щитовидной железе. До периода полового созревания клетки шишковидного тела выделяют вещества, тормозящие действие гонадотропного гормона гипофиза, и в связи с этим задерживают развитие половой сферы. Это подтверждают клинические наблюдения преждевременного полового созревания при заболеваниях (главным образом при опухолях) шишковидного тела. Существует мнение, что шишковидное тело находится в состоянии антагонистической корреляции со щитовидной железой и надпочечниками и влияет на обменные процессы, в частности на витаминный баланс и функцию вегетативной нервной системы.

Некоторое практическое значение имеет наблюдаемое после полового созревания отложение в шишковидном теле солей кальция. В связи с этим на краниограммах взрослых людей видна тень обызвествленного шишковидного тела, которое при объемных патологических процессах (опухоль, абсцесс и т.п.) в полости супратенториального пространства может смещаться в сторону, противоположную патологическому процессу.

12.6. ГИПОТАЛАМУС И ГИПОФИЗ

Гипоталамус (hypothalamus) составляет нижнюю, филогенетически наиболее древнюю часть промежуточного мозга. Условная граница между таламусами и гипоталамусом проходит на уровне гипоталамических борозд, находящихся на боковых стенках третьего желудочка мозга.

Гипоталамус (рис. 12.4) условно делится на две части: переднюю и заднюю. К задней части гипоталамической зоны относят расположенные позади серого бугра сосцевидные тела (corpora mammillaria) с прилежащими к ним участками мозговой ткани. К передней части относится зрительный перекрест (chiasma opticum) и зрительные тракты (tracti optici), серый бугор (tuber cinereum), воронка (infundibulum) и гипофиз (hypophysis). Гипофиз, соединенный с серым бугром через воронку и гипофизарную ножку, располагается в центре основания черепа в костном ложе - гипофизарной ямке турецкого седла основной кости. Диаметр гипофиза составляет не более 15 мм, масса его от 0,5 до 1 г.

Гипоталамическая область состоит из многочисленных клеточных скоплений - ядер и пучков нервных волокон. Основные ядра гипоталамуса можно разделить на 4 группы.

1. В переднюю группу входят медиальные и латеральные предоптическое, супраоптическое, паравентрикулярные и переднее гипоталамическое ядра.

2. Промежуточную группу составляют дугообразное ядро, серобугорные ядра, вентромедиальное и дорсомедиальное гипоталамические ядра, дорсальное гипоталамическое ядро, заднее паравентрикулярное ядро, ядро воронки.

3. Задняя группа ядер включает заднее гипоталамическое ядро, а также медиальные и латеральные ядра сосцевидного тела.

4. К дорсальной группе относятся ядра чечевицеобразной петли.

Ядра гипоталамуса имеют ассоциативные связи между собой и с другими отделами мозга, в частности с лобными долями, лимбическими структура-

Рис. 12.4. Сагиттальный срез гипоталамуса.

1 - паравентрикулярное ядро; 2 - сосцевидно-таламический пучок; 3 - дорсомедиальное гипоталамическое ядро; 4 - вентромедиальное гипоталамическое ядро, 5 - мост мозга; 6 - супраоптический гипофизарный путь; 7 - нейрогипофиз; 8 - аденогипофиз; 9 - гипофиз; 10 - зрительный перекрест; 11 - супраоптическое ядро; 12 - преоптическое ядро.

ми больших полушарий, различными отделами обонятельного анализатора, таламусами, образованиями экстрапирамидной системы, ретикулярной формацией ствола мозга, ядрами черепных нервов. Большинство этих связей - двусторонние. Ядра гипоталамической области связывают с гипофизом проходящий через воронку серого бугра и ее продолжение - гипофизарную ножку - гипоталамо-гипофизарный пучок нервных волокон и густая сеть сосудов.

Гипофиз (hypophisis) представляет собой неоднородное образование. Он развивается из двух разных зачатков. Передняя, большая, его доля (аденогипофиз) формируется из эпителия первичной ротовой полости или так называемого кармана Ратке; она имеет железистое строение. Задняя доля состоит из нервной ткани (нейрогипофиз) и представляет собой непосредственное продолжение воронки серого бугра. Кроме передней и задней долей, в гипофизе различают среднюю, или промежуточную, долю, представляющую собой узкую эпителиальную прослойку, содержащую пузырьки (фолликулы), наполненные серозной или коллоидной жидкостью.

По функции структуры гипоталамуса делят на неспецифические и специ- фические. Специфические ядра обладают способностью выделять химические

соединения, обладающие эндокринной функцией, регулирующие, в частности, метаболические процессы в организме и поддержание гомеостаза. К специфическим относят обладающие способностью к нейрокринии супраоптическое и паравентрикулярное ядра, связанные с нейрогипофизом с помощью супраоптико-гипофизарного пути. Они продуцируют гормоны вазопрессин и окситоцин, которые по упомянутому пути переносятся через ножку гипофиза в нейрогипофиз.

Вазопрессин, или антидиуретический гормон (АДГ), продуцируемый главным образом клетками супраоптического ядра, очень чувствителен к изменению солевого состава крови и регулирует водный метаболизм, стимулируя резорбцию воды в дистальном отделе нефронов. Таким образом, АДГ регулирует концентрацию мочи. При дефиците этого гормона в связи с поражением упомянутых ядер увеличивается количество выделяемой мочи с низкой относительной плотностью - развивается несахарный диабет, при котором наряду с полиурией (до 5 л мочи и более) возникает сильная жажда, ведущая к потреблению большого количества жидкости (полидипсия).

Окситоцин продуцируется паравентрикулярными ядрами, он обеспечивает сокращения беременной матки и влияет на секреторную функцию молочных желез.

Кроме того, в специфических ядрах гипоталамуса образуются «освобождающие» факторы (рилизинг-факторы) и «ингибирующие» факторы, поступающие

из гипоталамуса в переднюю долю гипофиза по бугорно-гипофизарному пути (tractus tuberoinfundibularis) и портальной сосудистой сети гипофизарной ножки. Попадая в гипофиз, указанные факторы регулируют секрецию гормонов, выделяемых железистыми клетками передней доли гипофиза.

Клетки аденогипофиза, продуцирующие гормоны под влиянием поступающих в него рилизинг-факторов, являются крупными и хорошо окрашивающимися (хромофильными), при этом большая часть из них окрашивается кислыми красками, в частности эозином. Их называют эозинофильными, или оксифильными, а также альфа-клетками. Они составляют 30-35% всех клеток аденогипофиза и продуцируют соматотропный гормон (СТГ), или гормон роста (ГР), а также пролактин (ПРЛ). Клетки аденогипофиза (5-10%), окрашивающиеся щелочными (основными, базисными) красками, в том числе гематоксилином, называются базофильными клетками, или бета-клетками. Они выделяют адренокортикотропный гормон (АКТГ) и тиреотропный гормон (ТТГ).

Около 60% клеток аденогипофиза плохо воспринимают краски (хромофобные клетки, или гамма-клетки) и не обладают гормоносекреторной функцией.

Источниками кровоснабжения гипоталамуса и гипофиза являются ветви артерий, составляющих артериальный круг большого мозга (circulus arteriosis cerebri, виллизиев круг), в частности гипоталамические ветви средней мозговой и задней соединительной артерий, при этом кровоснабжение гипоталамуса и гипофиза оказывается исключительно обильным. В 1 мм 3 ткани серого вещества гипоталамуса насчитывается в 2-3 раза больше капилляров, чем в таком же объеме ядер черепных нервов. Кровоснабжение гипофиза представлено так называемой воротной (портальной) сосудистой системой. Отходящие от артериального круга артерии разделяются на артериолы, затем образуют густую первичную артериальную сеть. Обилие сосудов гипоталамуса и гипофиза обеспечивает происходящую здесь своеобразную интеграцию функций нервной, эндокринной и гуморальной систем. Сосуды гипоталамической области и гипофиза обладают высокой проницаемостью для различных химических и гормональных

ингредиентов крови, а также белковых соединений, в том числе нуклеопротеидов, нейротропных вирусов. Это определяет повышенную чувствительность гипоталамической области к воздействию разнообразных вредных факторов, попадающих в сосудистое русло, что необходимо хотя бы для обеспечения скорейшего их выведения из организма с целью поддержания гомеостаза.

Гипофизарные гормоны выделяются в кровяное русло и гематогенным путем, достигая соответствующих мишеней. Существует мнение, что частично они попадают в ликворные пути, прежде всего в III желудочек мозга.

Эндокринные функции гипоталамуса и гипофиза регулируются нервной системой. Продуцируемые в них гормоны можно отнести к лигандам - биологически активным веществам, носителям регулирующей информации. Мишенью для них служат специализированные рецепторы органов и тканей. Поэтому гормоны можно рассматривать как своеобразные медиаторы, которые могут передавать информацию на большие расстояния гематогенным путем. В таких случаях этот путь рассматривают как гуморальное колено сложных рефлекторных дуг, обеспечивающих деятельность отдельных органов и тканей на периферии. Кстати, информация о деятельности этих органов и тканей направляется в структуры центральной нервной системы, в частности гипоталамуса, по нервным афферентным путям, а также гематогенным путем, по которому с периферии в центр передается информация о степени активности различных периферических же- лез внутренней секреции (процесс обратной афферентации).

Такая трактовка роли гормонов исключает представления об автономности эндокринной системы и подчеркивает взаимосвязь и взаимозависимость эндокринных желез и нервной ткани.

Гипоталамические структуры осуществляют регуляцию функций симпатического и парасимпатического отделов вегетативной нервной системы и поддержание в организме вегетативного баланса, при этом в гипоталамусе могут быть выделены эрготропные и трофические зоны (Hess W., 1881-1973).

Эрготропная система активирует физическую и психическую деятельность, обеспечивая включение преимущественно симпатических аппаратов вегетативной нервной системы. Трофотропная система способствует накоплению энергии, пополнению затраченных энергетических ресурсов, обеспечивает процессы парасимпатической направленности: тканевый анаболизм, уменьшение частоты сердечных сокращений, стимуляцию функции пищеварительных желез, снижение мышечного тонуса и пр.

Трофотропные зоны находятся главным образом в передних отделах гипо- таламуса, прежде всего в его преоптической зоне, эрготропные - в задних отделах, точнее, в задних ядрах и латеральной зоне, которые В. Гесс назвал динамогенными.

Дифференциация функций различных отделов гипоталамуса имеет функционально-биологическое значение и определяет их участие в осуществлении целостных поведенческих актов.

12.7. СИНДРОМЫ ПОРАЖЕНИЯ ГИПОТАЛАМОГИПОФИЗАРНОЙ СИСТЕМЫ

Многообразие функций гипоталамо-гипофизарного отдела промежуточного мозга ведет к тому, что при его поражении возникают разнообразные

патологические синдромы, включающие в себя различные по характеру неврологические расстройства, в том числе признаки эндокринной патологии, проявления вегетативной дисфункции, эмоциональный дисбаланс.

Гипоталамическая область обеспечивает взаимодействие между регуляторными механизмами, осуществляющими интеграцию психической, прежде всего эмоциональной, вегетативной и гормональной сфер. От состояния гипоталамуса и отдельных его структур зависят многие процессы, играющие важную роль в поддержании в организме гомеостаза. Так, расположенная в переднем его отделе преоптическая область обеспечивает терморегуляцию за счет изменения теплового метаболизма. В случае поражения этой области больной может оказаться не в состоянии отдавать тепло в условиях высокой температуры окружающей среды, что ведет к перегреванию организма и к гипертермии, или так называемой центральной лихорадке. Поражение задней части гипоталамуса может привести к пойкилотермии, при которой температура тела меняется в зависимости от температуры окружающей среды.

Латеральная область серого бугра признается «центром аппетита», а с зоной расположения вентромедиального ядра обычно связывают чувство насыщения. При раздражении «центра аппетита» возникает прожорливость, которая может быть подавлена стимуляцией зоны насыщения. Поражение латерального ядра обычно ведет к кахексии. Повреждение серого бугра может обусловить развитие адипозогенитального синдрома, или синдрома Бабинского-Фрелиха

(рис. 12.5).

В эксперименте на животных показано, что гонадотропный центр локализуется в ядре воронки и вентромедиальном ядре и выделяет гонадотропный гормон, тогда как тормозной центр половой функции локализуется кпереди от вентромедиального ядра. В процессе деятельности указанных клеточных структур вырабатываются рилизинг-факторы, влияющие на продукцию гипофизом

гонадотропных гормонов.

В определенной зависимости от функ- ционального состояния гипоталамуса находятся физико-химические свойства всех тканей и органов, их трофика и в какой-то степени готовность к выполнению специфических для них функций. Это касается и нервной ткани, в том числе больших полушарий. Некоторые ядра гипоталамической области функционируют в тесном взаимодействии с ретикулярной формацией, и разграничить их влияние на физиологические процессы подчас трудно.

В определенной зависимости от состояния и функциональной активности гипоталамуса находятся деятельность сердечно-сосудистой и дыхательной систем, регуляция температуры тела, особенности различных видов обмена (водно-солевого, углеводного, жирового, белкового), регуляция работы эндокринных желез, функций пищеваритель-

Рис. 12.5. Адипозогенитальный синдром.

ного тракта, функциональное состояние мочеполовых органов, в частности осуществление сложных половых рефлексов.

Вегетативная дистония может быть следствием несбалансированности деятельности трофотропного и эрготропного отделов гипоталамуса. Такая не- сбалансированность возможна у практически здоровых людей в периоды эндокринной перестройки (в пубертатном периоде, во время беременности, климакса). Ввиду высокой проницаемости сосудов, снабжающих кровью гипоталамо-гипофизарную область, при инфекционных заболеваниях, эндогенных и экзогенных интоксикациях может наступать проявляющийся временно или стойкий вегетативный дисбаланс, характерный для так называемого неврозоподобного синдрома. Возможны также возникающие на фоне вегетативного дисбаланса вегетативно-висцеральные расстройства, проявляющиеся, в частности, язвенной болезнью, бронхиальной астмой, гипертонической болезнью, а также другими формами соматической патологии.

Особенно характерно для поражения гипоталамического отдела мозга развитие различных по характеру форм эндокринной патологии. Среди нейроэндокринно-обменных синдромов существенное место занимают различные формы гипоталамического (церебрального) ожирения (рис. 12.6), при этом ожирение обычно бывает резко выраженным и от- ложение жира чаще возникает на лице, туловище и в проксимальных отделах конечностей. Ввиду неравномерности отложения жира тело больного нередко приобретает причудливые формы. При так называемой адипозогенитальной дистрофии (синдром Бабинского-Фрели- ха), которая может быть следствием растущей опухоли гипоталамо-гипофизарной области - краниофарингиомы, уже в раннем детском возрасте наступает ожирение, а в пубертатном периоде обращают на себя внимание недоразвитие половых органов и вторичных половых признаков.

Одним из основных гипоталамо-эндокринных симптомов является обусловленный недостаточностью продукции антидиуретичес- кого гормона несахарный диабет, характеризующийся повышенной жаждой и выделением больших количеств мочи с низкой относительной плотностью. Избыточное выделение адиурекрина характеризуется олигурией, сопровождающейся отеками, и иногда сменяющейся полиурией в сочетании с диареей (болезнь Пархона).

Избыточная продукция передней долей гипофиза соматотропного гормона сопровождается развитием синдрома акромегалии.

Недостаточность продукции соматотропного гормона (СТГ), проявляющаяся с детского возраста, ведет к физическому недоразвитию организма, что проявляется синдромом гипо-

Рис. 12.6. Церебральное ожире ние.

физарного нанизма, при этом прежде всего обращает на себя внимание пропорциональный карликовый рост в сочетании с недоразвитием половых органов.

Гиперфункция оксифильных клеток передней доли гипофиза ведет к избытку продукции СТГ. Если чрезмерная его продукция проявляется в пубертатном периоде, развивается гипофизарный гигантизм. Если же избыточная функция оксифильных клеток гипофиза проявляется у взрослых, это ведет к развитию синдрома акромегалии. У гипофизарного гиганта обращает на себя внимание непропорциональность роста отдельных частей тела: очень длинными оказываются конечности, а туловище и голова кажутся относительны небольшими. При акромегалии увеличиваются размеры выступающих частей головы: носа, верхнего края глазниц, скуловых дуг, нижней челюсти, ушей. Чрезмерно крупными становятся также дистальные отделы конечностей: кисти, стопы. Проявляется общее утолщение костей. Кожа грубеет, становится пористой, складчатой, сальной, появляется гипергидроз.

Гиперфункция базофильных клеток передней доли гипофиза ведет к развитию болезни Иценко-Кушинга, обусловленной в основном избыточной продукцией адренокортикотропного гормона (АКТГ) и связанным с этим повышением выделения гормонов коры надпочечников (стероидов). Болезнь характеризуется прежде всего своеобразной формой ожирения. Обращает на себя внимание круглое, багровое, сальное лицо. Также на лице характерны высыпания по типу акне, а у женщин - еще и рост волос на лице по мужскому типу. Гипертрофия жировой клетчатки особенно отчетлива на лице, на шее в области VII шейного позвонка, в верхней части живота. Конечности больного по сравнению с ожиревшими лицом и туловищем кажутся худыми. На коже живота, передневнутренней поверхности бедер обычно видны полосы растяжения, напоминающие стрии беременных. Кроме того, характерно повышение артериального давления, возможны аменорея или импотенция.

При выраженной недостаточности функций гипоталамо-гипофизарной области может развиться гипофизарное истощение, или болезнь Симонса. Болезнь прогрессирует постепенно, истощение при ней достигает резкой степени выраженности. Потерявшая тургор кожа становится сухой, матовой, морщинистой, лицо приобретает монголоидный характер, волосы седеют и выпадают, отмечается ломкость ногтей. Рано наступает аменорея или импотенция. Отмечаются сужение круга интересов, апатия, депрессия, сонливость.

Синдромы нарушения сна и бодрствования могут носить пароксизмальный или затянувшийся, подчас стойкий характер (см. главу 17). Среди них, пожалуй, лучше других изучен синдром нарколепсии, проявляющийся неудержимым стремлением ко сну, возникающим в дневное время, даже в самой неподходящей обстановке. Часто сочетающаяся с нарколепсией катаплексия характеризуется приступами резкого снижения мышечного тонуса, приводящего больного к состоянию обездвиженности на период от нескольких секунд до 15 мин. Приступы катаплексии нередко возникают у больных, находящихся в состояния аффекта (смех, чувство гнева и т.п.), возможны также состояния катаплексии, возникающие при пробуждении (катаплексия пробуждения).

Современные методы физиологических исследований, в частности опыт стереотаксических операций, позволили установить, что гипоталамическая область, наряду с другими структурами лимбико-ретикулярного комплекса, принимает участие в формировании эмоций, создании так называемого эмоционального фона (настроения) и обеспечении внешних эмоциональных проявлений. По мнению П.К. Анохина (1966), область гипоталамуса определяет

первичное биологическое качество эмоционального состояния, его характерное внешнее выражение.

Эмоциональные реакции, прежде всего эмоции стенического характера, ведут к повышению функций эрготропных структур гипоталамуса, которые через посредство вегетативной нервной системы (в основном ее симпатического отдела) и эндокринно-гуморальной системы стимулируют функции коры больших полушарий, что, в свою очередь, влияет на многие органы и ткани, активизирует в них метаболические процессы. В результате возникает напряжение или стресс, проявляющийся мобилизацией средств адаптации организма к новой обстановке, помогающих ему защититься от влияющих на него или только ожидаемых вредных эндогенных и экзогенных факторов.

В качестве причин стресса (стрессоров) могут быть самые разнообразные хронические и острые психические воздействия, провоцирующие эмоциональное перенапряжение, инфекции, интоксикации, травмы. В период стресса обычно меняется функция многих систем и органов, прежде всего сердечно- сосудистой и дыхательной систем (учащение сердцебиения, повышение арте- риального давления, перераспределение крови, учащение дыхания и т.д.).

По Г. Селье (Selye H., род. в 1907 г.), стресс-синдром, или синдром общей адаптации, в своем развитии проходит 3 фазы: реакцию тревоги, во время которой мобилизуются защитные силы организма; стадию сопротивления, отражающую полную адаптацию к стрессу; стадию истощения, которая наступает неизбежно, если стрессор оказывается чрезмерно интенсивным или действует на организм слишком долго, так как энергия адаптации или приспособляемости живого организма к стрессу не безгранична. Стадия истощения стресссиндрома проявляется возникновением болезненного состояния, носящего неспецифический характер. Различные варианты таких болезненных состояний Г. Селье назвал болезнями адаптации. Им присущи сдвиги гормонального и вегетативного баланса, дисметаболические расстройства, обменные нарушения, изменения реактивности нервной ткани. «В этом смысле, - писал Селье, - определенные нервные и эмоциональные нарушения, артериальная гипертония, некоторые виды ревматизма, аллергических, сердечно-сосудистых и почечных болезней также суть болезнь адаптации».

Промежуточный мозг — это отдел мозга, отвечающий за реакции человека на внешние раздражители. Он располагается на конце мозгового ствола и его полностью покрывают большие полушария мозга. Его ветви делятся на 3 части, эти центры называются: таламус, эпиталамус и гипоталамус. Промежуточный мозг его строение и основные функции изучаются на протяжении нескольких сотен лет, так-как это важнейший отдел головного мозга. Он выполняет обширные функции и отвечает за множество процессов в человеческом организме.

Что представляют собой отделы промежуточного мозга

Первый отдел таламус выполняет функцию дверей, сквозь них в мозговую кору проходят данные об окружающей действительности и расположении тела в пространстве. Таламус соединяет в себе ядра, выполняющие 3 вида функций специфические, неспецифические и ассоциативные. Всего ядер 80.

Специфические ядра своего рода распределительный пункт для афферентных сигналов, они распределяют сигналы на различные области мозговой коры, и получают сигналы от слуховых, зрительных и осязательных рецепторов, а также рецепторов мышц и органов. Они напрямую задействованы в формировании всех видов чувствительности: вкусовой, осязательной, слуховой и других. При неверном функционировании специфических ядер чувствительность того или иного вида может исчезнуть. Возможна потеря слуха, зрения или анальгезия – болезнь при которой человек не чувствует боль.

Неспецифические ядра выполняют работу ретикуляторной формации таламусов. Ретикулярная формация влияет на все виды нервно-мозговой деятельности и помогает мозгу правильно функционировать. Ядра отправляют нейронные импульсы на мозговую кору и представляют собой некий путь анализатора для передачи полной информационной картины. Поражение этих ядер вызывают признаки отклонения в сознании, что может вызвать потерю пространственной ориентации и даже слабоумие.

Ассоциативные ядра таламуса связывают доли мозговой коры больших полушарий. При повреждениях ядер этого типа возникают разрушительные процессы в речевой, зрительной и слуховой деятельности организма.

Полезно узнать: Средний мозг: строение, функции, развитие

Таламус является проводником информации в мозговую кору и проводит фильтрацию поступающей информации на входе, характеризует её, отправляя в кору только самую необходимую.

Таламус – это апогей болевой восприимчивости организма. При его поражениях есть риск возникновения повышенной болевой чувствительности или наоборот полная её потеря.

Надбугорье, или так называемый эпиталамус — это центр, отвечающий за функции регуляции деятельности внутренних органов, поведения тела исходя из внешних влияний, работу гормональной системы организма. Эпиталамус состоит из 2-х частей: поводка и шишковидной железы, совместно образующих одну из стенок 3-го желудочка. В состав надбугорья входят 96 ядер, разделенных на 3 группы, названные передним, задним и средним надбугорьем. Каждая группа отвечает за определенные функции в организме и имеет высокую значимость в работе мозга.

Гипоталамус прочно скреплен с работой гипофиза. Он является одним из отделов мозга, отвечающих за оценку поступающей информации, и формирует программу действий. Нейронная система гипоталамуса подвержена влиянию гормонов и различных химических веществ.

Гипоталамус систематизирует общую работу эндокринной, вегетативной и соматической систем, отвечает за пищевые привычки, регулирование обмена веществ, жажды, необходим для нормального течения беременности и лактации.

Нарушения в работе гипоталамуса часто приводят к гибели, так как вызывают губительные для организма изменения: отсутствие чувства голода, сильная непрекращающаяся жажда, неправильный обмен веществ, нарушение терморегуляции организма и другие.

Выработка гормона окситоцин зависит от гипоталамуса, входящего в промежуточный мозг его основная функция необычайно важна для женщин в период беременности и лактации.

Заключение


Промежуточный мозг (diencephalon) находится между средним мозгом и полушариями большого мозга, включает III желудочек и образования, формирующие стенки III желудочка. В промежуточном мозге выделяют 4 части верхний отдел – эпиталамус, средний отдел – таламус, нижний отдел – гипоталамус и задний отдел – метаталамус. III желудочек имеет форму узкой щели. Дно его образовано гипоталамусом. Переднюю стенку III желудочка составляет юнкая концевая пластинка, которая начинается у зрительного перекреста и переходит в ростральную пластинку мозолистого тела. В верхнем отделе передней стенки III желудочка находятся столбы свода. Около столбов свода в передней его стенке находится отверстие, соединяющее III желудочек с боковым желудочком. Боковые стенки III желудочка представлены таламусом. Под задней спайкой мозга III желудочек переходит в водопровод среднего мозга.

Таламус (thalamus) характеризуется сложным цитоархитектоническим строением. Внутренняя поверхность таламуса обращена к III желудочку, образуя его стенку. Внутренняя поверхность отделяется от верхней мозговой полоской. Верхнюю поверхность покрывает белое вещество. Передняя часть верхней поверхности утолщается и образует передний бугорок (tuberculum anterius thalami), а задний бугорок образует подушку (pulvinar). Латерально верхняя поверхность таламуса граничит с хвостатым ядром (nucl. caundatus), отделяясь от него пограничной полоской. Наружная поверхность таламуса отделяется внутренней капсулой от чечевицеобразного ядра и головки хвостатого ядра.

Таламус состоит из множества ядер. Основными ядрами таламуса являются:

Передние (nucll. anteriores);

Срединные (nucll. mediani);

Медиальные (nucll. mediales);

Внутрипластинчатые (nucll. intralaminares);

Вентролатеральные (nucll. ventrolaterales);

Задние (nucll. posteriores);

Ретикулярные (nucll. reticulares)

Кроме того, выделяют следующие группы ядер:

Комплекс специфических, или релейных, таламических ядер, через которые проводятся афферентные влияния определенной модальности;

Неспецифические таламические ядра, не связанные с проведением афферентных влияний какой либо определенной модальности и проецирующиеся на кору большого мозга более диффузно, чем специфические ядра;

Ассоциативные ядра таламуса, к которым относятся ядра, получающие раздражения от других ядер таламуса и передающие эти влияния на ассоциативные области коры головного мозга.

Подбугорное ядро (nucl. subthalamicus) относится к субталамической области промежуточного мозга и состоит из однотипных мультиполярпых клеток. К субталамической области относятся также ядра Н, Н1 и Н2 полей и неопределенная зона (zona incerta). Поле Н1 располагается под таламусом и состоит из волокон, соединяющих гипоталамус с полосатым телом. Под полем Н1 находится неопределенная зона, переходящая в перивентрикулярную зону III желудочка. Под неопределенной зоной лежит поле Н2, соединяющее бледный шар с подбугорным ядром и перивентрикулярными ядрами гипоталамуса

К эпиталамусу относятся поводки, спайка поводков, задняя спайка и шишковидное тело. В треугольнике поводка располагаются ядра поводка: медиальное, состоящее из мелких клеток, и латеральное, в котором преобладают крупные клетки.

К метаталамусу относятся медиальное и латеральное коленчатые тела. Латеральное коленчатое тело находится под подушкой таламуса. Латеральное коленчатое тело является одним из основных подкорковых центров для передачи зрительных ощущений, а также участвует в осуществлении бинокулярного зрения.

Медиальное коленчатое тело располагается между верхним холмиком пластинки крыши и подушкой таламуса. В медиальном коленчатом теле выделяют два ядра: дорсальное и вентральное. На клетках медиального коленчатого тела оканчиваются волокна латеральной петли и берет начало центральный слуховой путь, идущий к слуховой коре. Медиальное коленчатое тело является подкорковым центром слухового анализатора.

Гипоталамус (hypothalamus) – филогенетически наиболее старая часть промежуточного мозга. Гипоталамус имеет сложное строение. В предоптической области (передней гипоталамической области) выделяются медиальное предоптическое и латеральное предоптическое ядра, паравентрикулярное и супраоптическое ядра, переднее гипоталамическое ядро и супрахиазматическое ядро.

В промежуточной гипоталамической области выделяются дорсомедиальное гипоталамическое ядро, вентромедиальное гипоталамическое ядро, ядро воронки, которое также называют дугообразным ядром. Эта группа ядер располагается в медиальной части этой области гипоталамуса. Латеральная часть этих отделов гипоталамуса занята латеральным гипоталамическим ядром, серобугорным ядром, серобугорно сосцевидным ядром и перифорникальным ядром.

Задняя гипоталамическая область содержит медиальное и латеральное ядра сосцевидного тела, заднее гипоталамическое ядро.

Гипоталамус обладает сложной системой афферентных и эфферентных путей.

Афферентные пути. 1) медиальный пучок переднего мозга, связывающий перегородку и преоптическую область с ядрами гипоталамуса; 2) свод, соединяющий кору гиппокампа с гипоталамусом; 3) таламо гипофизарные волокна, соединяющие таламус с гипоталамусом; 4) покрышечно сосцевидный пучок, содержащий волокна, идущие из среднего мозга к гипоталамусу; 5) задний продольный пучок, несущий импульсы от ствола мозга к гипоталамусу; 6) паллидогипоталамический путь. Установлены также непрямые мозжечково гипоталамические связи, оптико гипоталамические пути, вагосупраоптические связи.

Эфферентные пути гипоталамуса: 1) пучки волокон перивентрикулярной системы к заднемедиальным таламическим ядрам и преимущественно к нижней части ствола мозга, а также к ретикулярной формации среднего мозга и спинному мозгу; 2) сосцевидные пучки, идущие к передним ядрам таламуса и ядрам среднего мозга; 3) гипоталамо гипофизарный путь к нейрогипофизу. Кроме того, имеется комиссуральный путь, благодаря которому медиальные гипоталамические ядра одной стороны вступают в контакт с медиальными и латеральными ядрами другой.

Таким образом, гипоталамус образован комплексом нервных клеток, их отростков и нейросекреторных клеток. В связи с этим регулирующие влияния гипоталамуса передаются к эффекторам, в том числе к эндокринным железам, не только с помощью гипоталамических нейрогормонов (рилизинг факторов), переносимых с током крови и, следовательно, действующих гуморально, но и по эфферентным нервным волокнам.

Гипоталамус является одним из основных образований мозга, участвующих в регуляции вегетативных, висцеральных, трофических и нейроэндокринных функций. Гипоталамус играет существенную роль в регуляции деятельности внутренних органов, желез внутренней секреции, симпатического и парасимпатического отдела вегетативной нервной системы.

Гипоталамусу свойственна очень важная нейросекреторная функция. В нервных клетках гипоталамических ядер образуется нейросекрет, причем нейросекреторные гранулы, вырабатывающиеся в разных ядрах, отличаются по химическому составу и свойствам. Гипоталамусу также свойственна особая роль в регуляции выделения гормонов гипофизом. Он играет важную роль в регуляции обмена веществ (углеводного, белкового, водного). Одной из функций гипоталамической области является регуляция деятельности сердечно сосудистой системы. При нарушении функций гипоталамических ядер происходит изменение терморегуляции и трофики тканей. Гипоталамус участвует в формировании биологических мотиваций и эмоций.

Похожие публикации