Некоторые из известных комет. Информация о кометах. Движение комет. Названия комет Какие бывают кометы

КОМЕТА
небольшое небесное тело, движущееся в межпланетном пространстве и обильно выделяющее газ при сближении с Солнцем. С кометами связаны разнообразные физические процессы, от сублимации (сухое испарение) льда до плазменных явлений. Кометы - это остатки формирования Солнечной системы, переходная ступень к межзвездному веществу. Наблюдение комет и даже их открытие нередко осуществляются любителями астрономии. Иногда кометы бывают столь яркими, что привлекают всеобщее внимание. В прошлом появление ярких комет вызывало у людей страх и служило источником вдохновения для художников и карикатуристов.
Движение и пространственное распределение. Все или почти все кометы являются составными частями Солнечной системы. Они, как и планеты, подчиняются законам тяготения, но движутся весьма своеобразно. Все планеты обращаются вокруг Солнца в одном направлении (которое называют "прямым" в отличие от "обратного") по почти круговым орбитам, лежащим примерно в одной плоскости (эклиптики), а кометы движутся как в прямом, так и обратном направлениях по сильно вытянутым (эксцентричным) орбитам, наклоненным под различными углами к эклиптике. Именно характер движения сразу выдает комету. Долгопериодические кометы (с орбитальным периодом более 200 лет) прилетают из областей, расположенных в тысячи раз дальше, чем самые удаленные планеты, причем их орбиты бывают наклонены под всевозможными углами. Короткопериодические кометы (период менее 200 лет) приходят из района внешних планет, двигаясь в прямом направлении по орбитам, лежащим недалеко от эклиптики. Вдали от Солнца кометы обычно не имеют "хвостов", но иногда имеют еле видимую "кому", окружающую "ядро"; вместе их называют "головой" кометы. С приближением к Солнцу голова увеличивается и появляется хвост.
Структура. В центре комы располагается ядро - твердое тело или конгломерат тел диаметром в несколько километров. Практически вся масса кометы сосредоточена в ее ядре; эта масса в миллиарды раз меньше земной. Согласно модели Ф.Уиппла, ядро кометы состоит из смеси различных льдов, в основном водяного льда с примесью замерзших углекислоты, аммиака и пыли. Эту модель подтверждают как астрономические наблюдения, так и прямые измерения с космических аппаратов вблизи ядер комет Галлея и Джакобини - Циннера в 1985-1986. Когда комета приближается к Солнцу ее ядро нагревается, и льды сублимируются, т.е. испаряются без плавления. Образовавшийся газ разлетается во все стороны от ядра, унося с собой пылинки и создавая кому. Разрушающиеся под действием солнечного света молекулы воды образуют вокруг ядра кометы огромную водородную корону. Помимо солнечного притяжения на разреженное вещество кометы действуют и отталкивающие силы, благодаря которым образуется хвост. На нейтральные молекулы, атомы и пылинки действует давление солнечного света, а на ионизованные молекулы и атомы сильнее влияет давление солнечного ветра. Поведение частиц, формирующих хвост, стало значительно понятнее после прямого исследования комет в 1985-1986. Плазменный хвост, состоящий из заряженных частиц, имеет сложную магнитную структуру с двумя областями различной полярности. На обращенной к Солнцу стороне комы формируется лобовая ударная волна, проявляющая высокую плазменную активность.

Хотя в хвосте и коме заключено менее одной миллионной доли массы кометы, 99,9% света исходит именно из этих газовых образований, и только 0,1% - от ядра. Дело в том, что ядро очень компактно и к тому же имеет низкий коэффициент отражения (альбедо). Потерянные кометой частицы движутся по своим орбитам и, попадая в атмосферы планет, становятся причиной возникновения метеоров ("падающих звезд"). Большинство наблюдаемых нами метеоров связано именно с кометными частицами. Иногда разрушение комет носит более катастрофический характер. Открытая в 1826 комета Биелы в 1845 на глазах у наблюдателей разделилась на две части. Когда в 1852 эту комету видели в последний раз, куски ее ядра удалились друг от друга на миллионы километров. Деление ядра обычно предвещает полный распад кометы. В 1872 и 1885, когда комета Биелы, если бы с нею ничего не случилось, должна была пересекать орбиту Земли, наблюдались необычайно обильные метеорные дожди.
См. также
МЕТЕОР ;
МЕТЕОРИТ . Иногда кометы разрушаются при сближении с планетами. 24 марта 1993 на обсерватории Маунт-Паломар в Калифорнии астрономы К. и Ю.Шумейкеры совместно с Д.Леви открыли недалеко от Юпитера комету с уже разрушенным ядром. Вычисления показали, что 9 июля 1992 комета Шумейкеров - Леви-9 (это уже девятая открытая ими комета) прошла вблизи Юпитера на расстоянии половины радиуса планеты от ее поверхности и была разорвана его притяжением более чем на 20 частей. До разрушения радиус ее ядра составлял ок. 20 км.

Таблица 1.
ОСНОВНЫЕ ГАЗОВЫЕ СОСТАВЛЯЮЩИЕ КОМЕТ


Растянувшись в цепочку, осколки кометы удалились от Юпитера по вытянутой орбите, а затем в июле 1994 вновь приблизились к нему и столкнулись с облачной поверхностью Юпитера.
Происхождение. Ядра комет - это остатки первичного вещества Солнечной системы, составлявшего протопланетный диск. Поэтому их изучение помогает восстановить картину формирования планет, включая Землю. В принципе некоторые кометы могли бы приходить к нам из межзвездного пространства, но пока ни одна такая комета надежно не выявлена.
Газовый состав. В табл. 1 перечислены основные газовые составляющие комет в порядке убывания их содержания. Движение газа в хвостах комет показывает, что на него сильно влияют негравитационные силы. Свечение газа возбуждается солнечным излучением.
ОРБИТЫ И КЛАССИФИКАЦИЯ
Чтобы лучше понять этот раздел, советуем познакомиться со статьями:
НЕБЕСНАЯ МЕХАНИКА ;
КОНИЧЕСКИЕ СЕЧЕНИЯ ;
ОРБИТА ;
СОЛНЕЧНАЯ СИСТЕМА .
Орбита и скорость. Движение ядра кометы полностью определяется притяжением Солнца. Форма орбиты кометы, как и любого другого тела в Солнечной системе, зависит от ее скорости и расстояния до Солнца. Средняя скорость тела обратно пропорциональна квадратному корню из его среднего расстояния до Солнца (a). Если скорость всегда перпендикулярна радиусу-вектору, направленному от Солнца к телу, то орбита круговая, а скорость называют круговой скоростью (vc) на расстоянии a. Скорость ухода из гравитационного поля Солнца по параболической орбите (vp) в раз больше круговой скорости на этом расстоянии. Если скорость кометы меньше vp, то она движется вокруг Солнца по эллиптической орбите и никогда не покидает Солнечной системы. Но если скорость превосходит vp, то она движется вокруг Солнца по эллиптической орбите и никогда не покидает Солнечной системы. Но если скорость превосходит vp , то комета один раз проходит мимо Солнца и навсегда покидает его, двигаясь по гиперболической орбите. На рисунке показаны эллиптические орбиты двух комет, а также почти круговые орбиты планет и параболическая орбита. На расстоянии, которое отделяет Землю от Солнца, круговая скорость равна 29,8 км/с, а параболическая - 42,2 км/с. Вблизи Земли скорость кометы Энке равна 37,1 км/с, а скорость кометы Галлея - 41,6 км/с; именно поэтому комета Галлея уходит значительно дальше от Солнца, чем комета Энке.



Классификация кометных орбит. Орбиты у большинства комет эллиптические, поэтому они принадлежат Солнечной системе. Правда, у многих комет это очень вытянутые эллипсы, близкие к параболе; по ним кометы уходят от Солнца очень далеко и надолго. Принято делить эллиптические орбиты комет на два основных типа: короткопериодические и долгопериодические (почти параболические). Пограничным считается орбитальный период в 200 лет.
РАСПРЕДЕЛЕНИЕ В ПРОСТРАНСТВЕ И ПРОИСХОЖДЕНИЕ
Почти параболические кометы. К этому классу относятся многие кометы. Поскольку их периоды обращения составляют миллионы лет, в течение века в окрестности Солнца появляется лишь одна десятитысячная их часть. В 20 в. наблюдалось ок. 250 таких комет; следовательно, всего их миллионы. К тому же далеко не все кометы приближаются к Солнцу настолько, чтобы стать видимыми: если перигелий (ближайшая к Солнцу точка) орбиты кометы лежит за орбитой Юпитера, то заметить ее практически невозможно. Учитывая это, в 1950 Ян Оорт предположил, что пространство вокруг Солнца на расстоянии 20-100 тыс. а.е. (астрономических единиц: 1 а.е. = 150 млн. км, расстояние от Земли до Солнца) заполнено ядрами комет, численность которых оценивается в 1012, а полная масса - в 1-100 масс Земли. Внешняя граница "кометного облака" Оорта определяется тем, что на этом расстоянии от Солнца на движение комет существенно влияет притяжение соседних звезд и других массивных объектов (см. ниже). Звезды перемещаются относительно Солнца, их возмущающее влияние на кометы изменяется, и это приводит к эволюции кометных орбит. Так, случайно комета может оказаться на орбите, проходящей вблизи Солнца, но на следующем обороте ее орбита немного изменится, и комета пройдет вдали от Солнца. Однако вместо нее из облака Оорта в окрестность Солнца будут постоянно попадать "новые" кометы.
Короткопериодические кометы. При прохождении кометы вблизи Солнца ее ядро нагревается, и льды испаряются, образуя газовые кому и хвост. После нескольких сотен или тысяч таких пролетов в ядре не остается легкоплавких веществ, и оно перестает быть видимым. Для регулярно сближающихся с Солнцем короткопериодических комет это означает, что менее чем за миллион лет их популяция должна стать невидимой. Но мы их наблюдаем, следовательно, постоянно поступает пополнение из "свежих" комет. Пополнение короткопериодических комет происходит в результате их "захвата" планетами, главным образом Юпитером. Ранее считалось, что захватываются кометы из числа долгопериодических, приходящих из облака Оорта, но теперь полагают, что их источником служит кометный диск, называемый "внутренним облаком Оорта". В принципе представление об облаке Оорта не изменилось, однако расчеты показали, что приливное влияние Галактики и воздействие массивных облаков межзвездного газа должны довольно быстро его разрушать. Необходим источник его пополнения. Таким источником теперь считают внутреннее облако Оорта, значительно более устойчивое к приливному влиянию и содержащее на порядок больше комет, чем предсказанное Оортом внешнее облако. После каждого сближения Солнечной системы с массивным межзвездным облаком кометы из внешнего облака Оорта разлетаются в межзвездное пространство, а им на смену приходят кометы из внутреннего облака. Переход кометы с почти параболической орбиты на короткопериодическую происходит в том случае, если она догоняет планету сзади. Обычно для захвата кометы на новую орбиту требуется несколько ее проходов через планетную систему. Результирующая орбита кометы, как правило, имеет небольшое наклонение и большой эксцентриситет. Комета движется по ней в прямом направлении, и афелий ее орбиты (наиболее удаленная от Солнца точка) лежит вблизи орбиты захватившей ее планеты. Эти теоретические соображения полностью подтверждаются статистикой кометных орбит.
Негравитационные силы. Газообразные продукты сублимации оказывают реактивное давление на ядро кометы (подобное отдаче ружья при выстреле), которое приводит к эволюции орбиты. Наиболее активный отток газа происходит с нагретой "послеполуденной" стороны ядра. Поэтому направление силы давления на ядро не совпадает с направлением солнечных лучей и солнечного тяготения. Если осевое вращение ядра и его орбитальное обращение происходят в одном направлении, то давление газа в целом ускоряет движение ядра, приводя к увеличению орбиты. Если же вращение и обращение происходят в противоположных направлениях, то движение кометы тормозится, и орбита сокращается. Если такая комета первоначально была захвачена Юпитером, то через некоторое время ее орбита целиком оказывается в области внутренних планет. Вероятно, именно это случилось с кометой Энке.
Кометы, задевающие Солнце. Особую группу короткопериодических комет составляют кометы, "задевающие" Солнце. Вероятно, они образовались тысячелетия назад в результате приливного разрушения крупного, не менее 100 км в диаметре, ядра. После первого катастрофического сближения с Солнцем фрагменты ядра совершили ок. 150 оборотов, продолжая распадаться на части. Двенадцать членов этого семейства комет Крейца наблюдались между 1843 и 1984. Возможно, их происхождение связано с большой кометой, которую видел Аристотель в 371 до н.э.



Комета Галлея. Это самая знаменитая из всех комет. Она наблюдалась 30 раз с 239 до н.э. Названа в честь Э. Галлея, который после появления кометы в 1682 рассчитал ее орбиту и предсказал ее возвращение в 1758. Орбитальный период кометы Галлея - 76 лет; последний раз она появилась в 1986 и в следующий раз будет наблюдаться в 2061. В 1986 ее изучали с близкого расстояния 5 межпланетных зондов - два японских ("Сакигаке" и "Суйсей"), два советских ("Вега-1" и "Вега-2") и один европейский ("Джотто"). Оказалось, что ядро кометы имеет картофелеобразную форму длиной ок. 15 км и шириной ок. 8 км, а его поверхность "чернее угля".Возможно, оно покрыто слоем органических соединений, например полимеризованного формальдегида. Количество пыли вблизи ядра оказалось значительно выше ожидаемого. См. также ГАЛЛЕЙ, ЭДМУНД.



Комета Энке. Эта тусклая комета была первой включена в семейство комет Юпитера. Ее период 3,29 года - наиболее короткий среди комет. Орбиту впервые вычислил в 1819 немецкий астроном И.Энке (1791-1865), отождествивший ее с кометами, наблюдавшимися в 1786, 1795 и 1805. Комета Энке ответственна за метеорный поток Тауриды, наблюдающийся ежегодно в октябре и ноябре.



Комета Джакобини - Циннера. Эту комету открыл М. Джакобини в 1900 и переоткрыл Э. Циннер в 1913. Ее период 6,59 лет. Именно с ней 11 сентября 1985 впервые сблизился космический зонд "International Cometary Explorer", который прошел через хвост кометы на расстоянии 7800 км от ядра, благодаря чему были получены данные о плазменной компоненте хвоста. С этой кометой связан метеорный поток Джакобиниды (Дракониды).
ФИЗИКА КОМЕТ
Ядро. Все проявления кометы так или иначе связаны с ядром. Уиппл предположил, что ядро кометы является сплошным телом, состоящим в основном из водяного льда с частицами пыли. Такая модель "грязного снежка" легко объясняет многократные пролеты комет вблизи Солнца: при каждом пролете испаряется тонкий поверхностный слой (0,1-1% полной массы) и сохраняется внутренняя часть ядра. Возможно, ядро является конгломератом нескольких "кометезималей", каждая не более километра в диаметре. Такая структура могла бы объяснить распад ядер на части, как это наблюдалось у кометы Биелы в1845 или у кометы Веста в 1976.
Блеск. Наблюдаемый блеск освещенного Солнцем небесного тела с неизменной поверхностью меняется обратно пропорционально квадратам его расстояний от наблюдателя и от Солнца. Однако солнечный свет рассеивается в основном газопылевой оболочкой кометы, эффективная площадь которой зависит от скорости сублимации льда, а та, в свою очередь, - от теплового потока, падающего на ядро, который сам изменяется обратно пропорционально квадрату расстояния до Солнца. Поэтому блеск кометы должен меняться обратно пропорционально четвертой степени расстояния до Солнца, что и подтверждают наблюдения.
Размер ядра. Размер ядра кометы можно оценить из наблюдений в то время, когда оно далеко от Солнца и не окутано газопылевой оболочкой. В этом случае свет отражается только твердой поверхностью ядра, и его видимый блеск зависит от площади сечения и коэффициента отражения (альбедо). У ядра кометы Галлея альбедо оказалось очень низким - ок. 3%. Если это характерно и для других ядер, то диаметры большинства из них лежат в диапазоне от 0,5 до 25 км.
Сублимация. Переход вещества из твердого состояния в газообразное важен для физики комет. Измерения яркости и спектров излучения комет показали, что плавление основных льдов начинается на расстоянии 2,5-3,0 а.е., как должно быть, если лед в основном водяной. Это подтвердилось при изучении комет Галлея и Джакобини - Циннера. Газы, наблюдающиеся первыми при сближении кометы с Солнцем (CN, C2), вероятно, растворены в водяном льде и образуют газовые гидраты (клатраты). Каким образом этот "составной" лед будет сублимироваться, в значительной степени зависит от термодинамических свойств водяного льда. Сублимация пыле-ледяной смеси происходит в несколько этапов. Потоки газа и подхваченные ими мелкие и пушистые пылинки покидают ядро, поскольку притяжение у его поверхности крайне слабое. Но плотные или скрепленные между собой тяжелые пылинки газовый поток не уносит, и формируется пылевая кора. Затем солнечные лучи нагревают пылевой слой, тепло проходит внутрь, лед сублимируется, и газовые потоки прорываются, ломая пылевую кору. Эти эффекты проявились при наблюдении кометы Галлея в 1986: сублимация и отток газа происходили лишь в нескольких областях ядра кометы, освещенных Солнцем. Вероятно, в этих областях обнажился лед, тогда как остальная поверхность была закрыта корой. Вырвавшиеся на свободу газ и пыль формируют наблюдаемые структуры вокруг ядра кометы.
Кома. Пылинки и газ из нейтральных молекул (табл. 1) образуют почти сферическую кому кометы. Обычно кома тянется от 100 тыс. до 1 млн. км от ядра. Давление света может деформировать кому, вытянув ее в антисолнечном направлении.
Водородная корона. Поскольку льды ядра в основном водяные, то и кома в основном содержит молекулы H2O. Фотодиссоциация разрушает H2O на H и OH, а затем OH - на O и H. Быстрые атомы водорода улетают далеко от ядра прежде чем оказываются ионизованными, и образуют корону, видимый размер которой часто превосходит солнечный диск.
Хвост и сопутствующие явления. Хвост кометы может состоять из молекулярной плазмы или пыли. Некоторые кометы имеют хвосты обоих типов. Пылевой хвост обычно однородный и тянется на миллионы и десятки миллионов километров. Он образован пылинками, отброшенными давлением солнечного света от ядра в антисолнечном направлении, и имеет желтоватый цвет, поскольку пылинки просто рассеивают солнечный свет. Структуры пылевого хвоста могут объясняться неравномерным извержением пыли из ядра или разрушением пылинок. Плазменный хвост в десятки и даже сотни миллионов километров длиной - это видимое проявление сложного взаимодействия между кометой и солнечным ветром. Некоторые покинувшие ядро молекулы ионизуются солнечным излучением, образуя молекулярные ионы (H2O+, OH+, CO+, CO2+) и электроны. Эта плазма препятствует движению солнечного ветра, пронизанного магнитным полем. Наталкиваясь на комету, силовые линии поля оборачиваются вокруг нее, принимая форму шпильки для волос и образуя две области противоположной полярности. Молекулярные ионы захватываются в эту магнитную структуру и образуют в центральной, наиболее плотной ее части видимый плазменный хвост, имеющий голубой цвет из-за спектральных полос CO+ . Роль солнечного ветра в формировании плазменных хвостов установили Л.Бирман и Х. Альвен в 1950-х годах. Их расчеты подтвердили измерения с космических аппаратов, пролетевших через хвосты комет Джакобини - Циннера и Галлея в 1985 и 1986. В плазменном хвосте происходят и другие явления взаимодействия с солнечным ветром, налетающим на комету со скоростью ок. 400 км/с и образующим перед ней ударную волну, в которой уплотняется вещество ветра и головы кометы. Существенную роль играет процесс "захвата"; суть его в том, что нейтральные молекулы кометы свободно проникают в поток солнечного ветра, но сразу после ионизации начинают активно взаимодействовать с магнитным полем и ускоряются до значительных энергий. Правда, иногда наблюдаются весьма энергичные молекулярные ионы, необъяснимые с точки зрения указанного механизма. Процесс захвата возбуждает также плазменные волны в гигантском объеме пространства вокруг ядра. Наблюдение этих явлений имеет фундаментальный интерес для физики плазмы. Замечательное зрелище представляет "обрыв хвоста". Как известно, в нормальном состоянии плазменный хвост связан с головой кометы магнитным полем. Однако нередко хвост отрывается от головы и отстает, а на его месте образуется новый. Это случается, когда комета проходит через границу областей солнечного ветра с противоположно направленным магнитным полем. В этот момент магнитная структура хвоста перестраивается, что выглядит как обрыв и формирование нового хвоста. Сложная топология магнитного поля приводит к ускорению заряженных частиц; возможно, этим объясняется появление упомянутых выше быстрых ионов.
Столкновения в Солнечной системе. Из наблюдаемого количества и орбитальных параметров комет Э. Эпик вычислил вероятность столкновения с ядрами комет различного размера (табл. 2). В среднем 1 раз за 1,5 млрд. лет Земля имеет шанс столкнуться с ядром диаметром 17 км, а это может полностью уничтожить жизнь на территории, равной площади Северной Америки. За 4,5 млрд. лет истории Земли такое могло случаться неоднократно. Гораздо чаще происходят катастрофы меньшего масштаба: в 1908 над Сибирью, вероятно, вошло в атмосферу и взорвалось ядро небольшой кометы, вызвав полегание леса на большой территории.

Комета Лавджоя. В ноябре 2011 года австралийский астроном Терри Лавджой обнаружил одну из крупнейших комет околосолнечной группы Крейца, диаметром около 500 метров. Она пролетела сквозь солнечную корону и не сгорела, была хорошо видна с Земли и даже сфотографирована с МКС.


Комета Макнота. Первая ярчайшая комета XXI века, также названная «Большая комета 2007 года». Открыта астрономом Робертом Макнотом в 2006 году. В январе и феврале 2007 была отлична видна невооружённым глазом жителям южного полушария планеты. Следующее возвращение кометы нескоро — через 92600 лет.


Кометы Хякутакэ и Хейла-Боппа появились одна за другой — в 1996 и 1997 годах, соревнуясь в яркости. Если комета Хейла-Боппа была открыта ещё в 1995 и летела строго «по расписанию», Хякутакэ обнаружили лишь за пару месяцев до её сближения с Землёй.


Комета Лекселя. В 1770 году комета D/1770 L1, открытая русским астрономом Андреем Ивановичем Лекселем, прошла на рекордно близком расстоянии от Земли — лишь 1.4 миллиона километров. Это примерно в четыре раза дальше, чем от нас находится Луна. Комета была видна невооружённым глазом.


Комета затмения 1948 года. 1 ноября 1948 года во время полного солнечного затмения астрономы неожиданно обнаружили яркую комету неподалёку от Солнца. Официально названная C/1948 V1, она являлась последней «внезапной» кометой нашего времени. Её можно было разглядеть невооружённым глазом вплоть до конца года.


Большая январская комета 1910 года появилась в небе за пару месяцев до кометы Галлея, которую все ждали. Первой новую комету заметили шахтёры из алмазных шахт Африки 12 января 1910 года. Как и многие сверхяркие кометы, её было видно даже днём.


Большая мартовская комета 1843 года также входит в семейство околосолнечных комет Крейца. Она пролетела лишь в 830 тыс. км. от центра Солнца и была хорошо заметна с Земли. Её хвост — один из самых длинных среди всех известных комет, две астрономических единицы (1 АЕ равняется расстоянию между Землёй и Солнцем).


Большая сентябрьская комета 1882 года — ярчайшая комета XIX века, также входящая в семейство Крейца. Примечательна длинным «антихвостом», направленным в сторону Солнца.


Большая комета 1680 года, она же комета Кирха, она же комета Ньютона. Первая комета, обнаруженная с помощью телескопа, одна из ярчайших комет XVII века. Исаак Ньютон изучал орбиту этой кометы, чтобы получить подтверждение законов Кеплера.


Комета Галлея, безусловно, самая известная из всех периодических комет. Она посещает Солнечную систему каждые 75−76 лет и каждый раз хорошо видна невооружённым глазом. Её орбиту высчитал английский астроном Эдмунд Галлей, он же предсказал её возвращение в 1759 году. В 1986 её исследовали космические аппараты, собрав множество данных о структуре комет. Следующее появление кометы Галлея — 2061 год.

Конечно, всегда остаётся риск столкновения какой-нибудь шальной кометы с Землёй, что повлечёт за собой невероятные разрушения и вероятную гибель цивилизации, но пока это лишь пугающая теория. Самые яркие кометы могут быть видны даже днём, представляя потрясающее зрелище. Перед вами — десять самых знаменитых комет в человеческой истории.

Кометы Солнечной системы всегда интересовали исследователей космического пространства. Вопрос о том, что из себя представляют данные явления, волнует и людей, далеких от изучения комет. Попробуем разобраться, как выглядит это небесное тело, может ли оно влиять на жизнедеятельность нашей планеты.

Содержание статьи:

Комета - это небесное тело, образовавшееся в Космосе, размеры которого достигают масштаба небольшого населенного пункта. Состав комет (холодные газы, пыль и обломки камней) делает подобное явление поистине уникальным. Хвост кометы оставляет шлейф, который исчисляется миллионами километров. Данное зрелище завораживает своей грандиозностью и оставляет больше вопросов, чем ответов.

Понятие кометы как элемента Солнечной системы


Чтобы разобраться с данным понятием, следует отталкиваться от орбит комет. Немало этих космических тел проходит через Солнечную систему.

Рассмотрим подробно особенности комет:

  • Кометы - это так называемые снежки, проходящие по своей орбите и имеющие в составе пыльные, скалообразные и газообразные скопления.
  • Разогревание небесного тела происходит в течение периода приближения к главной звезде Солнечной системы.
  • У комет отсутствуют спутники, которые характерны для планет.
  • Системы образований в виде колец также не свойственны для комет.
  • Размер данных небесных тел определить сложно и порой нереально.
  • Кометы не поддерживают жизнь. Впрочем, их состав может служить определенным строительным материалом.
Все перечисленное свидетельствует о том, что данное явление изучается. Об этом же говорит наличие двадцати миссий по исследованию объектов. Пока наблюдение ограничивается в основном изучением через сверхмощные телескопы, но перспективы открытий в этой области очень впечатляют.

Особенности строения комет

Описание кометы можно распределить на характеристики ядра, комы и хвостовой части объекта. Это говорит о том, что нельзя назвать изучаемое небесное тело простой конструкцией.

Ядро кометы


Практически вся масса кометы заключена именно в ядре, которое является наиболее сложным объектом для изучения. Причина состоит в том, что ядро скрыто даже от самых мощных телескопов материей светящегося плана.

Существует 3 теории, которые по-разному рассматривают строение ядра комет:

  1. Теория «грязного снежка» . Это предположение наиболее распространено и принадлежит американскому ученому Фреду Лоуренсу Уипплу. По данной теории, твердый участок кометы - не что иное, как соединение льда и фрагментов вещества метеоритного состава. По мнению этого специалиста, различают старые кометы и тела более молодой формации. Структура их различна по причине того, что более зрелые небесные тела неоднократно приближались к Солнцу, что подплавило их изначальный состав.
  2. Ядро состоит из пыльного материала . Теория была озвучена в начале 21 столетия благодаря изучению явления американской космической станцией. Данные этой разведки говорят о том, ядро - это пыльный материал очень рыхлого характера с порами, занимающими большинство его поверхности.
  3. Ядро не может представлять из себя монолитную конструкцию . Далее гипотезы расходятся: подразумевают структуру в виде снежного роя, глыб каменно-ледяного скопления и метеоритного нагромождения вследствие влияния планетарных гравитаций.
Все теории имеют право оспариваться или быть поддержанными учеными, практикующимися в этой области. Наука не стоит на месте, поэтому открытия в изучении строения комет еще долго будут ошеломлять своими неожиданными находками.

Кома кометы


Вместе с ядром голову кометы формирует кома, которая представляет из себя туманообразную оболочку светлого цвета. Шлейф такой составляющей кометы тянется на довольно большое расстояние: от ста тысяч до почти полутора миллионов километров от основы объекта.

Можно обозначить три уровня комы, которые выглядят следующим образом:

  • Внутренняя часть химического, молекулярного и фотохимического состава . Строение ее определяется тем, что в этой области сосредоточены и наиболее активизируются основные изменения, происходящие с кометой. Реакции химического плана, распад и ионизация нейтрально заряженных частиц - все это характеризует процессы, которые протекают во внутренней коме.
  • Кома радикалов . Состоит из активных по своей химической природе молекул. В данном участке не наблюдается повышенной активности веществ, которая так характерна для комы внутреннего плана. Впрочем, и здесь продолжается процесс распада и возбуждения описываемых молекул в более спокойном и плавном режиме.
  • Кома атомного состава . Ее еще называют ультрафиолетовой. Эту область атмосферы кометы наблюдают в водородной линии Лайман-альфа в удаленном ультрафиолетовом спектральном участке.
Изучение всех этих уровней важно для более глубинного исследования такого явления, как кометы Солнечной системы.

Хвост кометы


Хвост кометы - это уникальное по своей красоте и эффектности зрелище. Обычно направляется он от Солнца и выглядит в виде газо-пылевого шлейфа вытянутой формы. Четких границ такие хвосты не имеют, и можно сказать, что их цветовая гамма близка к полной прозрачности.

Федор Бредихин предложил классифицировать сверкающие шлейфы по таким подвидам:

  1. Прямолинейные и узкоформатные хвосты . Данные составляющие кометы имеют направление от главной звезды Солнечной системы.
  2. Немного деформированные и широкоформатные хвосты . Эти шлейфы уклоняются от Солнца.
  3. Короткие и сильно деформированные хвосты . Такое изменение вызвано значительным отклонением от главного светила нашей системы.
Можно разграничить хвосты комет и по причине их образования, что выглядит следующим образом:
  • Пылевой хвост . Отличительной визуальной чертой данного элемента является то, что свечение его имеет характерный красноватый оттенок. Шлейф подобного формата - однородный по своей структуре, протягивается на миллион, а то и десяток миллионов километров. Образовался он за счет многочисленных пылинок, которые энергия Солнца отбросила на дальнее расстояние. Желтый оттенок хвоста объясняется рассеиванием пылинок солнечным светом.
  • Хвост плазменной структуры . Этот шлейф гораздо обширнее, чем пылевой, потому что протяженность его исчисляется десятками, а порой и сотнями миллионов километров. Комета вступает во взаимодействие с солнечным ветром, от чего и возникает подобное явление. Как известно, солнечные вихревые потоки пронизаны большим количеством полей магнитной природы образования. Они, в свою очередь, сталкиваются с плазмой кометы, что приводит к созданию пары областей с диаметрально различной полярностью. Временами происходит эффектный обрыв этого хвоста и образование нового, что выглядит очень впечатляюще.
  • Антихвост . Появляется он по другой схеме. Причина заключается в том, что направляется он в солнечную сторону. Влияние солнечного ветра на подобное явление крайне невелико, потому что в состав шлейфа входят пылевые частицы крупного размера. Наблюдать подобный антихвост реально только при моменте пересечения Землей орбитальной плоскости кометы. Дискообразное образование окружает небесное тело практически со всех сторон.
Осталось немало вопросов касаемо такого понятия, как кометный хвост, что дает возможность более углубленно изучать данное небесное тело.

Основные разновидности комет


Виды комет можно разграничить по времени их обращения вокруг Солнца:
  1. Короткопериодические кометы . Время обращения такой кометы не превышает 200 лет. На максимальной отдаленности от Солнца они не имеют хвостов, а только еле уловимую кому. При периодическом приближении к главному светилу шлейф появляется. Зафиксировано более четырехсот подобных комет, среди которых есть короткопериодичные небесные тела с термином обращения вокруг Солнца 3-10 лет.
  2. Кометы с долгим периодом обращения . Облако Оорта, по мнению ученых, периодически поставляет таких космических гостей. Орбитальный термин данных явлений превышает отметку в двести лет, что делает изучение подобных объектов более проблематичным. Двести пятьдесят таких пришельцев дают основание утверждать, что на самом деле их миллионы. Не все из них настолько приближаются к главной звезде системы, что появляется возможность наблюдать за их деятельностью.
Изучение данного вопроса всегда будет привлекать специалистов, которые хотят постичь тайны бесконечного космического пространства.

Самые известные кометы Солнечной системы

Существует большое количество комет, которые проходят через Солнечную систему. Но есть наиболее известные космические тела, о которых стоит поговорить.

Комета Галлея


Комета Галлея стала известна благодаря наблюдениям за ней известного исследователя, в честь которого она и получила свое название. Отнести ее можно к короткопериодическим телам, потому что возвращение ее к главному светилу исчисляется периодом в 75 лет. Стоит отметить изменение этого показателя в сторону параметров, которые колеблются в пределах 74-79 лет. Знаменитость ее заключается в том, что это первое небесное тело такого типа, орбиту которого удалось рассчитать.

Безусловно, некоторые долгопериодические кометы более эффектны, но 1P/Halley реально наблюдать даже невооруженным глазом. Этот фактор делает подобное явление уникальным и популярным. Практически тридцать зафиксированных появлений этой кометы порадовали сторонних наблюдателей. Периодичность их напрямую зависит от гравитационного влияния крупных планет на жизнедеятельность описанного объекта.

Скорость кометы Галлея по отношению к нашей планете поражает, потому что превышает все показатели деятельности небесных тел Солнечной системы. Сближение земной орбитальной системы с орбитой кометы можно наблюдать в двух точках. Это приводит к двум пыльным образованиям, которые в свою очередь формируют метеоритные потоки под названием Аквариды и Ореаниды.

Если рассматривать структуру подобного тела, то она мало чем отличается от других комет. При приближении к Солнцу наблюдается образование сверкающего шлейфа. Ядро кометы относительно мало, что может свидетельствовать о груде обломков в виде строительного материала для основы объекта.

Насладиться необыкновенным зрелищем прохождения кометы Галлея можно будет летом 2061 года. Обещается лучшая видимость грандиозного явления по сравнению с более чем скромным визитом в 1986 году.


Это достаточно новое открытие, которое было сделано в июле 1995 года. Два исследователя Космоса обнаружили эту комету. Причем, эти ученые вели отдельные друг от друга поиски. Существует множество разных мнений касательно описываемого тела, но специалисты сходятся на версии, что оно является одной из самых ярких комет прошлого столетия.

Феноменальность данного открытия заключается в том, что в конце 90-х годов комету наблюдали без специальных аппаратов в течение десяти месяцев, что само по себе не может не удивлять.

Оболочка твердого ядра небесного тела довольно неоднородна. Обледеневшие участки не перемешанных газов соединены с углеродной окисью и прочими природными элементами. Обнаружение минералов, которые характерны для структуры земной коры, и некоторые метеоритные образования лишний раз подтверждают, что комета Хейла-Бопа возникла в пределах нашей системы.

Влияние комет на жизнедеятельность планеты Земля


Существует много гипотез и предположений относительно этой взаимосвязи. Есть некоторые сравнения, которые носят сенсационный характер.

Исландский вулкан Эйяфьятлайокудль начал свою активную и разрушительную двухгодичную деятельность, которая удивила многих ученых того времени. Случилось это практически сразу после того, как знаменитый император Бонапарт увидел комету. Возможно, это совпадение, но есть и другие факторы, которые заставляют задуматься.

Ранее описываемая комета Галлея странно повлияла на активность таких вулканов, как Руис (Колумбия), Тааль (Филиппины), Катмай (Аляска). Свое воздействие от этой кометы почувствовали люди, проживающие рядом с вулканом Коссуин (Никарагуа), который начал одну из самых разрушительных деятельностей тысячелетия.

Комета Энке стала причиной мощнейшего извержения вулкана Кракатау. Все это может зависеть от солнечной активности и деятельности комет, которые провоцируют при своем приближении к нашей планете некоторые ядерные реакции.

Падение комет является довольно редким. Однако некоторые специалисты считают, что Тунгусский метеорит относится как раз к подобным телам. В качестве аргументов они приводят такие факты:

  • За пару дней до катастрофы наблюдалось появление зорь, которые своей пестротой свидетельствовали об аномальности.
  • Возникновение такого явления, как белые ночи, в несвойственных для него местах сразу после падения небесного тела.
  • Отсутствие такого показателя метеоритности, как наличие твердого вещества данной конфигурации.
Сегодня нет вероятности повторения подобного столкновения, но не стоит забывать, что кометы - это объекты, траектория которых может измениться.

Как выглядит комета - смотрите на видео:


Кометы Солнечной системы - тема увлекательная и требующая дальнейшего изучения. Ученые всего мира, занимающиеся исследованием Космоса, стараются разгадать тайны, которые несут в себе эти небесные тела поразительной красоты и мощи.

Маленькое ядро кометы является единственной её твёрдой частью, в нём сосредоточена почти вся её масса. Поэтому ядро - первопричина всего остального комплекса кометных явлений. Ядра комет до сих пор всё ещё недоступны телескопическим наблюдениям, так как они вуалируются окружающей их светящейся материей, непрерывно истекающей из ядер. Применяя большие увеличения, можно заглянуть в более глубокие слои светящейся газопылевой оболочки, но и то, что останется, будет по своим размерам всё ещё значительно превышать истинные размеры ядра. Центральное сгущение, видимое в атмосфере кометы визуально и на фотографиях, называется фотометрическим ядром. Считается, что в центре его находится собственно ядро кометы, то есть располагается центр масс. Однако, как показал советский астроном Д.О. Мохнач, центр масс может не совпадать с наиболее яркой областью фотометрического ядра. Это явление носит название эффекта Мохнача.

Туманная атмосфера, окружающая фотометрическое ядро, называется комой. Кома вместе с ядром составляют голову кометы - газовую оболочку, которая образуется в результате прогревания ядра при приближении к Солнцу. Вдали от Солнца голова выглядит симметричной, но с приближением к нему она постепенно становится овальной, затем удлиняется ещё сильнее и в противоположной от Солнца стороне из неё развивается хвост, состоящий из газа и пыли, входящих в состав головы.

Ядро - самая главная часть кометы. Однако до сих пор нет единодушного мнения, что оно представляет собой на самом деле. Ещё во времена Лапласа существовало мнение, что ядро кометы - твёрдое тело, состоящее из легко испаряющихся веществ типа льда или снега, быстро превращающихся в газ под воздействием солнечного тепла. Эта классическая ледяная модель кометного ядра была существенно дополнена в последнее время. Наибольшим признанием пользуется разработанная Уиплом модель ядра - конгломерата из тугоплавких каменистых частиц и замороженной летучей компоненты (метана, углекислого газа, воды и др.). В таком ядре ледяные слои из замороженных газов чередуются с пылевыми слоями. По мере прогревания газы, испаряясь, увлекают за собой облака пыли. Это позволяет объяснить образование газовых и пылевых хвостов у комет, а также способность небольших ядер к газовыделению.

Согласно Уиплу механизм истечения вещества из ядра объясняется следующим образом. У комет, совершивших небольшое число прохождений через перигелий, - так называемых «молодых» комет - поверхностная защитная корка ещё не успела образоваться, и поверхность ядра покрыта льдами, поэтому газовыделение протекает интенсивно путём прямого испарения. В спектре такой кометы преобладает отражённый солнечный свет, что позволяет спектрально отличать «старые» кометы от «молодых». Обычно «молодыми» называются кометы, имеющие большие полуоси орбит, так как предполагается, что они впервые проникают во внутренние области Солнечной системы. «Старые» кометы - это кометы с коротким периодом обращения вокруг Солнца, многократно проходившие свой перигелий. У «старых» комет на поверхности образуется тугоплавкий экран, так как при повторных возвращениях к Солнцу поверхностный лед, подтаивая, «загрязняется». Этот экран хорошо защищает находящийся под ним лёд от воздействия солнечного света.

Модель Уипла объясняет многие кометные явления: обильное газовыделение из маленьких ядер, причину негравитационных сил, отклоняющих комету от расчётного пути. Потоки, истекающие из ядра, создают реактивные силы, которые и приводят к вековым ускорениям или замедлениям в движении короткопериодических комет.

Существуют также другие модели, отрицающие наличие монолитного ядра: одна представляет ядро как рой снежинок, другая - как скопление каменно-ледяных глыб, третья говорит о том, что ядро периодически конденсируется из частиц метеорного роя под действием гравитации планет. Всё же наиболее правдоподобной считается модель Уипла.

Массы ядер комет в настоящее время определяются крайне неуверенно, поэтому можно говорить о вероятном диапазоне масс: от нескольких тонн (микрокометы) до нескольких сотен, а возможно, и тысяч миллиардов тонн (от 10 до 10- 10 тонн).

Кома кометы окружает ядро в виде туманной атмосферы. У большинства комет кома состоит из трёх основных частей, заметно отличающихся своими физическими параметрами:

наиболее близкая, прилегающая к ядру область - внутренняя, молекулярная, химическая и фотохимическая кома,

видимая кома, или кома радикалов,

ультрафиолетовая, или атомная кома.

На расстоянии в 1 а.е. от Солнца средний диаметр внутренней комы D= 10км, видимой D= 10- 10км и ультрафиолетовой D= 10км.

Во внутренней коме происходят наиболее интенсивные физико-химические процессы: химические реакции, диссоциация и ионизация нейтральных молекул. В видимой коме, состоящей в основном из радикалов (химически активных молекул) (CN, OH, NH и др.), процесс диссоциации и возбуждения этих молекул под действием солнечной радиации продолжается, но уже менее интенсивно, чем во внутренней коме.

Л.М. Шульман на основании динамических свойств вещества предложил делить кометную атмосферу на следующие зоны:

пристеночный слой (область испарения и конденсации частиц на ледяной поверхности),

околоядерную область (область газодинамического движения вещества),

переходную область,

область свободномолекулярного разлёта кометных частиц в межпланетное пространство.

Но не для всякой кометы должно быть обязательным наличие всех перечисленных атмосферных областей.

По мере приближения кометы к Солнцу диаметр видимой головы день ото дня растёт, после прохождения перигелия её орбиты голова снова увеличивается и достигает максимальных размеров между орбитами Земли и Марса. В целом для всей совокупности комет диаметры голов заключены в широких пределах: от 6000 км до 1 млн. км.

Головы комет при движении кометы по орбите принимают разнообразные формы. Вдали от Солнца они круглые, но по мере приближения к Солнцу, под воздействием солнечного давления, голова принимает вид параболы или цепной линии.

С.В. Орлов предложил следующую классификацию кометных голов, учитывающую их форму и внутреннюю структуру:

Тип E; - наблюдается у комет с яркими комами, обрамлёнными со стороны Солнца светящимися параболическими оболочками, фокус которых лежит в ядре кометы.

Тип C; - наблюдается у комет, головы которых в четыре раза слабее голов типа E и по внешнему виду напоминают луковицу.

Тип N; - наблюдается у комет, у которых отсутствует и кома и оболочки.

Тип Q; - наблюдается у комет, имеющих слабый выступ в сторону Солнца, то есть аномальный хвост.

Тип h; - наблюдается у комет, в голове которых генерируются равномерно расширяющиеся кольца - галосы с центром в ядре.

Наиболее впечатляющая часть кометы - её хвост. Хвосты почти всегда направлены в противоположную от Солнца сторону. Хвосты состоят из пыли, газа и ионизированных частиц. Поэтому в зависимости от состава частицы хвостов отталкиваются в противоположную от Солнца сторону силами, исходящими из Солнца.

Ф. Бессель, исследуя форму хвоста кометы Галлея, впервые объяснил её действием отталкивающих сил, исходящих из Солнца. Впоследствии Ф.А. Бредихин разработал более совершенную механическую теорию кометных хвостов и предложил разбить их на три обособленные группы, в зависимости от величины отталкивающего ускорения.

Анализ спектра головы и хвоста показал наличие следующих атомов, молекул и пылевых частиц:

Органические C, C, CCH, CN, CO, CS, HCN, CHCN.

Неорганические H, NH, NH, O, OH, HO.

Металлы - Na, Ca, Cr, Co, Mn, Fe, Ni, Cu, V, Si.

Ионы - CO, CO, CH, CN, N, OH, HO.

Пыль - силикаты (в инфракрасной области).

Механизм свечения кометных молекул был расшифрован в 1911 году К. Шварцшильдом и Е. Кроном, которые пришли к выводу, что это механизм флуоресценции, то есть переизлучения солнечного света.

Иногда в кометах наблюдаются достаточно необычные структуры: лучи, выходящие под различными углами из ядра и образующие в совокупности лучистый хвост; галосы - системы расширяющихся концентрических колец; сжимающиеся оболочки - появление нескольких оболочек, постоянно двигающихся к ядру; облачные образования; омегообразные изгибы хвостов, появляющиеся при неоднородностях солнечного ветра.

Также существуют и нестационарные процессы в головах комет: вспышки яркости, связанные с усилением коротковолновой радиации и корпускулярных потоков; разделение ядер на вторичные фрагменты.

Проект «Вега» («Венера - комета Галлея») был одним из самых сложных в истории космических исследований. Он состоял из трёх частей: изучение атмосферы и поверхности Венеры при помощи посадочных аппаратов, изучение динамики атмосферы Венеры при помощи аэростатных зондов, пролёт через кому и плазменную оболочку кометы Галлея.

Автоматическая станция «Вега-1» стартовала с космодрома Байконур 15 декабря 1984 года, через 6 дней за ней последовала «Вега-2». В июне 1985 года они друг за другом прошли вблизи Венеры, успешно проведя исследования, связанные с этой частью проекта.

Но самой интересной была третья часть проекта - исследования кометы Галлея. Космическим аппаратам впервые предстояло «увидеть» ядро кометы, неуловимое для наземных телескопов. Встреча «Веги-1» с кометой произошла 6 марта, а «Веги-2» - 9 марта 1986 года. Они прошли на расстоянии 8900 и 8000 километров от её ядра.

Самой важной задачей в проекте было исследование физических характеристик ядра кометы. Впервые ядро рассматривалось как пространственно разрешённый объект, были определены его строение, размеры, инфракрасная температура, получены оценки его состава и характеристик поверхностного слоя.

В то время ещё не представлялось технической возможности совершить посадку на ядро кометы, так как слишком велика была скорость встречи - в случае с кометой Галлея это 78 км/с. Опасно было даже пролетать на слишком близком расстоянии, так как кометная пыль могла разрушить космический аппарат. Расстояние пролёта было выбрано с учётом количественных характеристик кометы. Использовалось два подхода: дистанционные измерения с помощью оптических приборов и прямые измерения вещества (газа и пыли), покидающего ядро и пересекающего траекторию движения аппарата.

Оптические приборы были размещены на специальной платформе, разработанной и изготовленной совместно с чехословацкими специалистами, которая поворачивалась во время полёта и отслеживала траекторию движения кометы. С ёе помощью проводились три научных эксперимента: телевизионная съёмка ядра, измерение потока инфракрасного излучения от ядра (тем самым определялась температура его поверхности) и спектра инфракрасного излучения внутренних «околоядерных» частей комы на длинах волн от 2,5 до 12 микрометров с целью определения его состава. Исследования ИК излучения проводились при помощи инфракрасного спектрометра ИКС.

Итоги оптических исследований можно сформулировать следующим образом: ядро - вытянутое монолитное тело неправильной формы, размеры большой оси - 14 километров, в поперечнике - около 7 километров. Каждые сутки его покидают несколько миллионов тонн водяного пара. Расчёты показывают, что такое испарение может идти от ледяного тела. Но вместе с тем приборы установили, что поверхность ядра чёрная (отражательная способность менее 5%) и горячая (примерно 100 тысяч градусов Цельсия).

Измерения химического состава пыли, газа и плазмы вдоль траектории полёта показали наличие водяного пара, атомных (водород, кислород, углерод) и молекулярных (угарный газ, диоксид углерода, гидроксил, циан и др.) компонентов, а также металлов с примесью силикатов.

Проект был осуществлён при широкой международной кооперации и с участием научных организаций многих стран. В результате экспедиции «Вега» учёные впервые увидели кометное ядро, получили большой объём данных о его составе и физических характеристиках. Грубая схема была заменена картиной реального природного объекта, ранее никогда не наблюдавшегося.

В настоящее время NASA готовит три больших экспедиции. Первая из них называется «Stardust» («Звёздная пыль»). Она предполагает запуск в 1999 году космического аппарата, который пройдёт в 150 километрах от ядра кометы Wild 2 в январе 2004 года. Основная его задача: собрать для дальнейших исследований кометную пыль с помощью уникальной субстанции, называемой «аэрогель». Второй проект носит название «Contour» («COmet Nucleus TOUR»). Аппарат будет запущен в июле 2002 года. В ноябре 2003 года он встретится с кометой Энке, в январе 2006 года - с кометой Швассмана-Вахмана-3, и, наконец, в августе 2008 года - с кометой d"Arrest. Он будет оснащён совершенным техническим оборудованием, которое позволит получить высококачественные фотографии ядра в различных спектрах, а также собрать кометные газ и пыль. Проект также интересен тем, что космический аппарат при помощи гравитационного поля Земли может быть переориентирован в 2004-2008 году на новую комету. Третий проект - самый интересный и сложный. Он называется «Deep Space 4» и входит в программу исследований под названием «NASA New Millennium Program». В его ходе предполагается посадка на ядро кометы Tempel 1 в декабре 2005 года и возвращение на Землю в 2010 году. Космический аппарат исследует ядро кометы, соберёт и доставит на Землю образцы грунта.

Наиболее интересными событиями за последние несколько лет стали: появление кометы Хейла-Боппа и падение кометы Шумахера-Леви 9 на Юпитер.

Комета Хейла-Боппа появилась на небе весной 1997 года. Её период составляет 5900 лет. С этой кометой связаны некоторые интересные факты. Осенью 1996 года американский астроном-любитель Чак Шрамек передал во всемирную сеть Интернет фотографию кометы, на которой отчётливо был виден яркий белый объект неизвестного происхождения, слегка сплюснутый по горизонтали. Шрамек назвал его «Saturn-like object» (сатурнообразный объект, сокращённо - «SLO»). Размеры объекта в несколько раз превосходили размеры Земли.

Реакция официальных научных представителей была странной. Снимок Шрамека был объявлен подделкой, а сам астроном - мистификатором, но вразумительного объяснения характера SLO не было предложено. Снимок, опубликованный в Интернет, вызвал взрыв оккультизма, распространялось огромное количество рассказов о грядущем конце света, «мёртвой планете древней цивилизации», злобных пришельцах, готовящихся к захвату Земли с помощью кометы, даже выражение: «What the hell is going on?» («Что за чертовщина происходит?») перефразировали в «What the Hale is going on?»… До сих пор не ясно, что это был за объект, какова его природа.

Предварительный анализ показал, что второе «ядро» - звезда на заднем плане, но последующие снимки опровергли это предположение. С течением времени «глаза» опять соединились, и комета приняла первоначальный вид. Этот феномен также не был объяснён ни одним учёным.

Таким образом, комета Хейла-Боппа была не стандартным явлением, она дала учёным новый повод для размышлений.

Другим нашумевшим событием стало падение в июле 1994 года короткопериодической кометы Шумахера-Леви 9 на Юпитер. Ядро кометы в июле 1992 года в результате сближения с Юпитером разделилось на фрагменты, которые впоследствии столкнулись с планетой-гигантом. В связи с тем, что столкновения происходили на ночной стороне Юпитера, земные исследователи могли наблюдать лишь вспышки, отражённые спутниками планеты. Анализ показал, что диаметр фрагментов от одного до нескольких километров. На Юпитер упали 20 кометных осколков.

Учёные утверждают, что распад кометы на части - редкое событие, захват кометы Юпитером - ещё более редкое происшествие, а столкновение большой кометы с планетой - экстраординарное космическое событие.

Недавно в американской лаборатории на одном из самых мощных компьютеров Intel Teraflop с производительностью 1 триллион операций в секунду была просчитана модель падения кометы радиусом 1 километр на Землю. Вычисления заняли 48 часов. Они показали, что такой катаклизм станет смертельным для человечества: в воздух поднимутся сотни тонн пыли, закрыв доступ солнечному свету и теплу, при падении в океан образуется гигантское цунами, произойдут разрушительные землетрясения… По одной из гипотез, динозавры вымерли в результате падения большой кометы или астероида. В штате Аризона существует кратер диаметром 1219 метров, образовавшийся после падения метеорита 60 метров в диаметре. Взрыв был эквивалентен взрыву 15 миллионов тонн тринитротолуола. Предполагается, что знаменитый Тунгусский метеорит 1908 года имел диаметр около 100 метров. Поэтому учёные работают сейчас над созданием системы раннего обнаружения, уничтожения или отклонения крупных космических тел, пролетающих недалеко от нашей планеты.

комета обнаружение уничтожение космический тело

Комета (от др.-греч. κομ?της , kom?t?s — «волосатый, косматый») — небольшое ледяное небесное тело, движущееся по орбите в Солнечной системе, которое частично испаряется при приближении к Солнцу, в результате чего возникает диффузная оболочка из пыли и газа, а также один или несколько хвостов.
Первое появление кометы, которое удалось зарегистрировать в хрониках, датируется 2296 годом до н.э. И сделала это женщина, жена императора Яо, у которого появился на свет сын ставший впоследствии императором Та-Ю, основателем династии Хиа. Именно с этого момента и следили за ночным небом китайские астрономы и лишь благодаря им, мы знаем об этой дате. С нее и начинает отсчет история кометной астрономии. Китайцы не только описывали кометы, но и наносили на звездную карту пути комет, что позволило современным астрономам отождествить самые яркие из их, проследить эволюцию их орбит и получить другую полезную информацию.
Невозможно не заметить на небе зрелища столь редкостного, когда на небе видно туманное светило, иногда настолько яркое, что может сверкать сквозь облака (1577 год), затмевая даже Луну. Аристотель в IV веке до н.э. объяснил явление кометы следующим образом: легкая, теплая, «сухая пневма» (газы Земли) поднимается к границам атмосферы, попадает в сферу небесного огня и воспламеняется - так образуются «хвостатые звезды». Аристотель утверждал, что кометы вызывают сильные бури, засуху. Его представления были общепризнанными в течение двух тысячелетий. В средние века кометы считались предвестниками войн и эпидемий. Так вторжение норманнов в Южную Англию в 1066 году связывали с появлением в небе кометы Галлея. С появлением в небе кометы ассоциировалось и падение Константинополя в 1456 году. Изучая появление кометы в 1577 году, Тихо Браге установил, что она движется далеко за орбитой Луны. Начиналось время исследования орбит комет...
Первым фанатиком, жаждущим открытия комет, был служащий Парижской обсерватории Шарль Мессье. В историю астрономии он вошел как составитель каталога туманностей и звездных скоплений, предназначавшегося для поиска комет, чтобы не принимать далекие туманные объекты за новые кометы. За 39 лет наблюдений Мессье открыл 13 новых комет! В первой половине XIX столетия среди «ловцов» комет особенно отличился Жан Понс. Сторож Марсельской обсерватории, а позднее ее директор, соорудил небольшой любительский телескоп и, следуя примеру своего соотечественника Мессье, занялся поисками комет. Дело оказалось столь увлекательным, что за 26 лет он открыл 33 новых кометы! Не случайно астрономы прозвали его «Кометным магнитом». Рекорд, установленный Понсом, до сих пор остается непревзойденным. Доступно наблюдениям порядка 50 комет. В 1861 году получен первый снимок кометы. Однако, согласно архивных данных в анналах Гарвардского университете обнаружена запись от 28 сентября 1858 года, в которой Георг Бонд сообщил о попытке получить фотографическое изображение кометы в фокусе 15" рефрактора! При выдержке 6" проработалась наиболее яркая часть комы размером 15 угловых секунд. Фотография не сохранилась.
Каталог кометных орбит 1999г содержит 1722 орбиты для 1688 кометных появлений, относящихся к 1036 различным кометам. С древнейших времен до наших дней замечено и описано уже около 2000 комет. За 300 лет после Ньютона вычислены орбиты более 700 из них. Общие результаты таковы. Большинство комет движется по эллипсам, умеренно или сильно вытянутым. Самым коротким маршрутом ходит комета Энке - от орбиты Меркурия до Юпитера и обратно за 3,3 года. Самая далекая из тех, что наблюдались дважды, - комета, открытая в 1788 г. Каролиной Гершель и вернувшаяся через 154 года с расстояния 57 а.е. В 1914 г. на побитие рекорда дальности пошла комета Делавана. Она удалится на 170 000 а.е. и "финиширует" через 24 млн лет.
На данный момент обнаружено более 400 короткопериодических комет . Из них около 200 наблюдалось в более чем одном прохождении перигелия. Многие из них входят в так называемые семейства. Например, приблизительно 50 самых короткопериодических комет (их полный оборот вокруг Солнца длится 3—10 лет) образуют семейство Юпитера . Немного малочисленнее семейства Сатурна , Урана и Нептуна (к последнему, в частности, относится знаменитая комета Галлея).
Земные наблюдения многих комет и результаты исследований кометы Галлея с помощью космических аппаратов в 1986г подтвердили гипотезу, высказанную впервые Ф. Уипплом в 1949г о том, что ядра комет представляют собой что-то вроде “грязных снежков” нескольких километров в поперечнике. По-видимому, они состоят из замерзших воды, двуокиси углерода, метана и аммиака с вмерзшей внутрь пылью и каменистым веществом. При приближении кометы к Солнцу лед под действием солнечного тепла начинает испаряться, а улетучивающийся газ образует вокруг ядра диффузную светящуюся сферу, называемую комой. Кома может достигать в поперечнике миллиона километров. Само по себе ядро слишком мало, чтобы его можно было непосредственно увидеть. Наблюдения в ультрафиолетовом диапазоне спектра, проведенные с космических аппаратов, показали, что кометы окружены огромными облаками водорода, размером во много миллионов километров. Водород получается в результате разложения молекул воды под действием солнечного излучения. В 1996г было обнаружено рентгеновское излучение кометы Хиякутаке, а впоследствии открыли, что и другие кометы являются источниками рентгеновского излучения.
Наблюдения в 2001г, проведенные с помощью высоко-дисперсионного спектрометра телескопа Subara, позволили астрономам впервые измерить температуру заледенелого аммиака в ядре кометы. Значение температуры в 28 + 2 градуса по Кельвину позволяет предположить, что комета LINEAR (C/1999 S4) сформировалась между орбитами Сатурна и Урана. Это означает, что теперь астрономы могут не только определять условия, в которых формируются кометы, но и находить место их возникновения. С помощью спектрального анализа в головах и хвостах комет были обнаружены органические молекулы и частицы: атомарный и молекулярный углерод, гибрид углерода, окись углерода, сульфид углерода, цианистый метил; неорганические составляющие: водород, кислород, натрий, кальций, хром, кобальт, марганец, железо, никель, медь, ванадий. Наблюдаемые в кометах молекулы и атомы, в большинстве случаев, являются «обломками» более сложных родительских молекул и молекулярных комплексов. Природа происхождения родительских молекул в кометных ядрах до сих пор не разгадана. Пока только ясно, что это очень сложные молекулы и соединения типа аминокислот! Некоторые исследователи считают, что такой химический состав может служить катализатором возникновения жизни или начальным условием ее зарождения при попадании этих сложных соединений в атмосферы или на поверхности планет с достаточно устойчивыми и благоприятными условиями.
Похожие публикации