Основной источник энергии для организма. Что является единственным источником энергии для организма человека и почему

ФИЗИОЛОГИЯ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ. РАЦИОНАЛЬНОЕ ПИТАНИЕ.

План лекции.

    Понятие об обмене веществ в организме животных и человека. Источники энергии в организме.

    Основные понятия и определения физиологии обмена веществ и энергии.

    Методы изучения энергетического обмена у человека.

    Понятие о рациональном питании. Правила составления пищевых рационов.

    Понятие об обмене веществ в организме животных и человека. Источники энергии в организме.

Организм человека представляет собой открытую термодина-мическую систему, которая характеризуется наличием обмена веществ и энергии.

Обмен веществ и энергии – это совокупность физических, биохимических и физиологических процессов превращения веществ и энергии в организме человека и обмен веществами и энергией между организмом и окружающей средой. Указанные процессы, протекающие в организме человека изучают многие науки: биофизика, биохимия, молекулярная биология, эндокринология и, конечно же, физиология.

Обмен веществ и обмен энергии тесно взаимосвязаны между собой, однако, с целью упрощения понятий, их рассматривают раздельно.

Обмен веществ (метаболизм) – совокупность химических и физических превращений, происходящих в организме и обеспечивающих его жизнедеятельность во взаимосвязи с внешней средой.

В обмене веществ различают две направленности процессов по отношению к структурам организма: ассимиляцию или анаболизм и диссимиляцию или катаболизм.

Ассимиляция (анаболизм) – совокупность процессов создания жи-вой материи. Указанные процессы потребляют энергию.

Диссимиляция (катаболизм) – совокупность процессов распада жи-вой материи. В результате диссимиляции энергия воспроизводится.

Жизнь животных и человека представляет из себя единство процес-сов ассимиляции и диссимиляции. Факторами, сопрягающими данные процессы, являются две системы:

    АТФ – АДФ (АТФ - аденозин три фосфат, АДФ – аденозин ди фосфат;

    НАДФ (окисленный) – НАДФ (восстановленный), где НАДФ – никотин амид ди фосфат.

Посредничество указанных соединений между процессами ассимиляции и диссимиляции обеспечивается тем, что молекулы АТФ и НАДФ выступают в роли универсальных биологических аккумуляторов энергии, ее переносчика, своеобразной «энергетической валютой» организма. Вместе с тем, прежде чем энергия аккумулируется в молекулах АТФ и НАДФ, ее необходимо извлечь из питательных веществ, которые поступают с пищей в организм. Такими пищевыми веществами являются известные вам белки, жиры и углеводы. К этому же следует добавить, что питательные вещества выполняют не только функцию поставщиков энергии, но и функцию поставщиков строительного материала (пластическая функция) для клеток, тканей и органов. Роль различных питательных веществ в реализации пластических и энергетических потребностей организма неодинакова. Углеводы в первую очередь выполняют энергетическую функцию, пластическая функция углеводов незначительна. Жиры в равной степени выполняют и энергетические и пластические функции. Белки являются основным строительным материалом для организма, но при определенных условиях могут являться и источниками энергии.

Источники энергии в организме.

Как уже отмечалось выше, основными источниками энергии в организме являются пищевые вещества: углеводы, жиры и белки. Освобождение энергии, содержащейся в пищевых веществах, в организме человека протекает в три этапа:

1 этап. Белки расщепляются до аминокислот, углеводы - до гексоз, например, до глюкозы или фруктозы, жиры – до глицерина и жирных кислот. На данном этапе организм в основном тратит энергию на расщепление веществ.

2 этап. Аминокислоты, гексозы и жирные кислоты в ходе биохимических реакций превращаются в молочную и пировиноградную кислоты, а также в Ацетил коэнзим А. На данном этапе из пищевых веществ высвобождается до 30% потенциальной энергии.

3 этап. При полном окислении все вещества расщепляются до СО 2 и Н 2 О. На данном этапе, в метаболическом котле Кребса, высвобождается оставшаяся часть энергии, около 70%. При этом не вся высвобождающаяся энергия аккумулируется в химическую энергию АТФ. Часть энергии распыляется в окружающую среду. Эта теплота получила название первичной теплоты (Q 1). Энергия аккумулированная АТФ в дальнейшем расходуется на различные виды работы в организме: механическую, электрическую, химическую и активный транспорт. При этом часть энергии теряется в виде так называемой вторичной теплоты Q 2 . Смотри схему 1.

Углеводы

Биологическое окисление

Н 2 О + СО 2 + Q 1 + АТФ

Механичес-кая работа

+ Q 2

Химическая работа

+ Q 2

Электричес-кая работа

+ Q 2

Активный транспорт

+ Q 2

Схема 1. Источники энергии в организме, результаты полного окисления пищевых веществ и виды выделяемой теплоты в организме.

Следует добавить, что количество выделяемой при окислении пищевых веществ не зависит от количества промежуточных реакций, а зависит от начального и конечного состояния химической системы. Данное положение было впервые сформулировано Гессом (закон Гесса).

Более подробно данные процессы вы рассмотрите на лекциях и занятиях, которые будут проводить с вами преподаватели кафедры биохимии.

Энергетическая ценность пищевых веществ.

Энергетическая ценность пищевых веществ оценивается при помощи специальных устройств – оксикалориметрах. Установлено, что при полном окислении 1 г. углеводов выделяется 4,1 ккал (1 ккал=4187 Дж.), 1 г. жиров - 9.45 ккал., 1 г. белков – 5,65 ккал. Следует добавить, что часть пищевых веществ, поступающих в организм, не усваивается. Например, в среднем не усваивается около 2% углеводов, 5% жиров и до 8% белков. К тому же, не все пищевые вещества в организме расщепляются до конечных продуктов – углекислого газа (диоксида углерода) и воды. Например, часть продуктов неполного расщепления белков в виде мочевины выделяется с мочой.

С учетом вышеизложенного можно отметить, что реальная энерге-тическая ценность пищевых веществ несколько ниже, чем установлен-ная в экспериментальных условиях. Реальная энергетическая ценность 1 г. углеводов составляет 4,0 ккал, 1 г. жиров – 9,0 ккал, 1 г. белков – 4,0 ккал.

    Основные понятия и определения физиологии обмена веществ и энергии.

Интегральной (общей) характеристикой энергетического обмена организма человека являются суммарные энергетические траты или валовый энергетические траты.

Валовые энергетические траты организма - совокупность энергетических трат организма в течение суток в условиях его обычного (естественного) существования. Валовые энергетические траты включают три компонента: основной обмен, специфическое динамическое действие пищи и рабочую прибавку. Валовые энергетические траты оценивают в кдж/кг/сутки или ккал/кг/сутки(1 кдж=0,239 ккал).

Основной обмен.

Начало учению об основном обмене положили работы ученых Тартусского университета Биддера и Шмидта (Bidder and Schmidt, 1852).

Основной обмен – минимальный уровень энергетических трат, необходимый для поддержания жизнедеятельности организма.

Представление об основном обмене, как минимальном уровне энергетических трат организма предъявляет и ряд требований к условиям, в которых должен оцениваться данный показатель.

Условия, в которых должен оцениваться основной обмен:

    состояние полного физического и психического покоя (желательно в положении лежа);

    температура комфорта окружающей среды (18-20 градусов по Цельсию);

    спустя 10 – 12 часов после последнего приема пищи, чтобы избежать увеличения энергетического обмена, связанного с приемом пищи.

Факторы, влияющие на основной обмен.

Основной обмен зависит от возраста, роста, массы тела и половой принадлежности.

Влияние возраста на основной обмен.

Самый высокий основной обмен в пересчете на 1 кг. Массы тела у новорожденных (50-54 ккал/кг/сутки), самый низкий у пожилых людей (после 70 лет основной обмен составляет в среднем 30 ккал/кг/сутки). На постоянный уровень основной обмен выходит к моменту полового созревания к 12 – 14 годам и остается стабильным до 30-35 лет (около 40 ккал/кг/сутки).

Влияние роста и массы тела на основной обмен.

Между массой тела и основным обменом существует практически линейная, прямая зависимость – чем больше масса тела, тем больше уровень основного обмена. Однако, эта зависимость не абсолютна. При повышении массы тела за счет мышечной ткани указанная зависимость практически линейна, однако, если увеличение массы тела связано с увеличением количества жировой ткани эта зависимость приобретает нелинейный характер.

Поскольку масса тела при прочих равных условиях зависит от роста (чем больше рост – тем больше масса тела), между ростом и основным обменом существует прямая зависимость – чем больше рост, тем больше основной обмен.

Учитывая тот факт, что рост и масса тела влияют на общую площадь тела, М. Рубнер (M.Rubner) сформулировал закон, в соответствии с которым основной обмен зависит от площади тела: чем больше площадь тела, тем больше основной обмен. Однако, указанный закон практически перестает работать в условиях, когда температура окружающей среды равна температуре тела. Кроме того, неодинаковая волосистость кожи существенно изменяет теплообмен между организмом и окружающей средой и поэтому закон Рубнера в этих условиях также имеет ограничения.

Влияние половой принадлежности на уровень основного обмена.

У мужчин уровень основного обмена на 5-6% выше, чем у женщин. Это объясняется различным соотношением жировой и мышечной ткани на 1 кг массы тела, а также различным уровнем метаболизма в связи с различиями химической структуры половых гормонов и их физиологическими эффектами.

Специфическое динамическое действие пищи.

Термин специфическое динамическое действие пищи впервые ввел в научный обиход М.Рубнер в 1902 году.

Специфическое динамическое действие пищи – это повышение энергетического обмена организма человека, связанное с приемом пищи. Специфическое динамическое действие пищи – это энергетические траты организма на механизмы утилизации принимаемой пищи. Указанный эффект в изменении энергетического обмена отмечается с момента подготовки к приему пищи, во время приема пищи и продолжается 10-12 часов после приема пищи. Максимальное увеличение энергетического обмена после приема пищи отмечаеся через 3 – 3,5 часа. Специальные исследования показали, что на утилизацию пищи затрачивается от 6 до 10% ее энергетической ценности.

Рабочая прибавка.

Рабочая прибавка является третьим компонентом валовых энергетических трат организма. Рабочая прибавка является частью энергетических трат организма на мышечную деятельность в окружающей среде. При тяжелой физической работе энергетические траты организма могут повышаться в 2 раза по сравнению с уровнем основного обмена.

    Методы изучения энергетического обмена у человека.

Для изучения энергетического обмена у человека разработан целый ряд методов объединенный общим названием – калориметрия.

Следующий класс основных химических соединений нашего организма - углеводы. Углеводы всем нам хорошо известны в виде обычного пищевого сахара (химически он является сахарозой ) или крахмала.
Углеводы делятся на простые и сложные. Из простых углеводов (моносахариды) наибольшее значение для человека имеют глюкоза, фруктоза и галактоза.
К сложным углеводам относятся олигосахариды (дисахариды: сахароза, лактоза и др.) и несахароподобные углеводы - полисахариды (крахмал, гликоген, клетчатка и др.).
Моносахариды и полисахариды отличаются по своему физиоло¬гическому действию на организм. Использование в пищевом рационе избытка легкоусвояемых моно- и дисахаридов способствует быстрому увеличению уровня сахара в крови, что может иметь негативное значение для больных с сахарным диабетом (СД) и ожирением.
Полисахариды значительно медленнее расщепляются в тонком кишечнике. Поэтому нарастание концентрации сахара в крови происходит постепенно. В связи с этим потребление продуктов, богатых крахмалом (хлеб, крупы, картофель, макароны), более полезно.
Вместе с крахмалом в организм поступают витамины, минеральные вещества, неперевариваемые пищевые волокна. К последним относятся клетчатка и пектиновые вещества.
Клетчатка (целлюлоза) оказывает благоприятное регулирующее действие на работу кишечника, желчевыводящих путей, препятствует застою пищи в желудочно-кишечном тракте, способствует выведению холестерина. К продуктам, богатым клетчаткой, относятся капуста, свекла, фасоль, ржаная мука,и др.
Пектиновые вещества входят в состав мякоти фруктов, листьев, зеленых частей стеблей. Они способны адсорбировать различные токсины (в том числе и тяжелые металлы). Много пектинов содержится в мармеладе, повидле, джемах, пастиле, но больше всего этих веществ имеется в мякоти тыквы, которая богата также и каротином (предшественник витамина А).
Большинство углеводов для организма человека - быстроусво-яемый источник энергии. Тем не менее углеводы не являются абсолютно необходимыми питательными веществами. Некоторые из них, например, важнейшее топливо для наших клеток - глюкоза, могут довольно легко синтезироваться из других химических соединений, в частности аминокислот или липидов.
Однако нельзя и недооценивать роль углеводов. Дело в том, что они не только способны, быстро сгорая в организме, обеспечивать его достаточным количеством энергии, но и откладываться про запас в виде гликогена - вещества, очень похожего на всем известный растительный крахмал. Основные запасы гликогена у нас сосредоточены в печени или мышцах. Если энергопотребности организма растут, например при значительной физической нагрузке, то запасы гликогена легко мобилизуются, гликоген превращается в глюкозу, а та уже используется клетками и тканями нашего организма как энергоноситель.

Опасность простых углеводов!

Настройки просмотра комментариев

Плоский список - свёрнутый Плоский список - развёрнутый Древовидный - свёрнутый Древовидный - развёрнутый

По дате - сначала новые По дате - сначала старые

Выберите нужный метод показа комментариев и нажмите "Сохранить установки".

К таким выводам пришли ученые из университетов Иерусалима (Израиль) и Йейля (США), проведя серию экспериментов.

Кузнечиков вида Melanoplus femurrubrum посадили в две клетки, в одну из которых запустили также пауков Pisaurina mira - их естественных врагов. Задачей было только напугать кузнечиков, чтобы отследить их реакцию на хищников, поэтому пауков снабдили "намордниками", склеив им жвалы. Кузнечики испытывали сильный стресс, в результате метаболизм в их организмах сильно увеличивался и появлялся "зверский" аппетит - по аналогии с людьми, которые едят много сладкого, когда волнуются. Кузнечики поглощали за короткий срок большое количество углеводов, углеводород из которых прекрасно усваивался организмом.

Помимо этого, "объевшиеся" кузнечики, как оказалось, после смерти могут приносить вред экосистеме. Ученые обнаружили это, поместив остатки их тел в образцы почвы, где происходил процесс перегноя. Активность почвенных микробов падала на 62% в лабораторных условиях, и на 19% в полевых условиях, говорится в исследовании.

Чтобы проверить результаты эксперимента, ученые создали химическую модель "в реальном времени", заменив остовы настоящих кузнечиков органическими "куколками", состоящими, как и естественные прототипы, из углеводов, белков и хитина в разных пропорциях. Результаты опытов показали, что чем больше в останках кузнечиков был процент азота (содержащегося в белках), тем лучше в почвах шли процессы разложения органики.

Углеводы Органические

Углеводы

Органические соединения составляют в среднем 20-30 % массы клетки живого организма. К ним относятся биологические полимеры: белки, нуклеиновые кислоты, углеводы, а также жиры и ряд небольших молекул-гормонов, пигментов, АТФ и пр. В различные типы клеток входит неодинаковое количество органических соединений. В растительных клетках преобладают сложные углеводы-полисахариды, в животных - больше белков и жиров. Тем не менее, каждая из групп органических веществ в любом типе клеток выполняет сходные функции: обеспечивает энергией, является строительным материалом.

1. КРАТКАЯ СПРАВКА ОБ УГЛЕВОДАХ

Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров. Молярная масса углеводов колеблется в пределах от 100 до 1000000 Да (Дальтон-масса, приблизительно равная массе одного атома водорода). Их общую формулу обычно записывают в виде Сn(Н2О)n (где n - не меньше трех). Впервые в 1844 г. этот термин ввел отечественный ученый К. Шмид (1822-1894).

Название «углеводы» возникло на основании анализа первых известных представителей этой группы соединений. Оказалось, что эти вещества состоят из углерода, водорода и кислорода, причем соотношение числа атомов водорода и кислорода у них такое же, как и в воде: на два атома водорода - один атом кислорода. Таким образом, их рассматривали как соединение углерода с водой. В дальнейшем стало известно много углеводов, не отвечающих этому условию, однако название «углеводы» до сих пор остается общепринятым. В животной клетке углеводы находятся в количестве, не превышающем 2-5 %. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90 % сухой массы (например, в клубнях картофеля, семенах).

2. КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Выделяют три группы углеводов: моносахариды, или простые сахара (глюкоза, фруктоза); олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (сахароза, мальтоза); полисахариды, включающие более 10 молекул сахаров (крахмал, целлюлоза).

3. СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ОРГАНИЗАЦИИ МОНО- И ДИСАХАРИДОВ: СТРОЕНИЕ; НАХОЖДЕНИЕ В ПРИРОДЕ; ПОЛУЧЕНИЕ. ХАРАКТЕРИСТИКА ОТДЕЛЬНЫХ ПРЕДСТАВИТЕЛЕЙ

Моносахариды - это кетонные или альдегидные производные многоатомных спиртов. Атомы углерода, водорода и кислорода, входящие в их состав, находятся в соотношении 1:2:1. Общая формула для простых сахаров - (СН2О)n. В зависимости от длины углеродного скелета (количества атомов углерода), их разделяют на: триозы-С3, тетрозы-С4, пентозы-С5, гексозы-С6 и т. д. Кроме того, сахара разделяют на:

Альдозы, имеющие в составе альдегидную группу, - С=О. К ним относится | Н глюкоза:

H H H H H
CH2OH - C - C - C - C - C
| | | | \\
OH OH OH OH OH

Кетозы, имеющие в составе кетонную группу, - C-. К ним, например, || относится фруктоза.

В растворах все сахара, начиная с пентоз, имеют циклическую форму; в линейной же форме присутствуют только триозы и тетрозы. При образовании циклической формы атом кислорода альдегидной группы связывается ковалентной связью с предпоследним атомом углерода цепи, в результате образуются полуацетали (в случае альдоз) и полукетали (в случае кетоз).

ХАРАКТЕРИСТИКА МОНОСАХАРИДОВ, ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ

Из тетроз в процессах обмена наиболее важна эритроза. Этот сахар - один из промежуточных продуктов фотосинтеза. Пентозы встречаются в природных условиях главным образом как составные части молекул более сложно построенных веществ, например сложных полисахаридов, носящих название пентозанов, а также растительных камедей. Пентозы в значительном количестве (10-15 %) содержатся в древесине, соломе. В природе преимущественно встречается арабиноза. Она содержится в вишневом клее, свекле и аравийской камеди, откуда ее и получают. Рибоза и дезоксирибоза широко представлены в животном и растительном мире, это сахара, входящие в состав мономеров нуклеиновых кислот РНК и ДНК. Получают рибозу эпимеризацией арабинозы.

Ксилоза образуется при гидролизе полисахарида ксилозана, содержащегося в соломе, отрубях, древесине, шелухе подсолнечника. Продуктами различных типов брожения ксилозы являются молочная, уксусная, лимонная, янтарная и другие кислоты. Организмом человека ксилоза усваивается плохо. Гидролизаты, содержащие ксилозу, используются для выращивания некоторых видов дрожжей, они в качестве белкового источника применяются для кормления сельскохозяйственных животных. При восстановлении ксилозы получают спирт ксилит, его используют как заменитель сахара для больных диабетом. Широко применяют ксилит как стабилизатор влажности и пластификатор (в бумажной промышленности, парфюмерии, производстве целлофана). Он является одним из основных компонентов при получении ряда поверхностно-активных веществ, лаков, клеев.

Из гексозы наиболее широко распространены глюкоза, фруктоза, галактоза, их общая формула - С6Н12О6.

Глюкоза (виноградный сахар, декстроза) содержится в соке винограда и других сладких плодов и в небольших количествах - в организмах животных и человека. Глюкоза входит в состав важнейших дисахаридов - тростникового и виноградного сахаров. Высокомолекулярные полисахариды, т. е. крахмал, гликоген (животный крахмал) и клетчатка, целиком построены из остатков молекул глюкозы, соединенных друг с другом различными способами. Глюкоза - первичный источник энергии для клеток.

В крови человека глюкозы содержится 0,1-0,12 %, снижение показателя вызывает нарушение жизнедеятельности нервных и мышечных клеток, иногда сопровождаемое судорогами или обморочным состоянием. Уровень содержания глюкозы в крови регулируется сложным механизмом работы нервной системы и желез внутренней секреции. Одно из массовых тяжелых эндокринных заболеваний - сахарный диабет - связано с гипофункцией островковых зон поджелудочной железы. Сопровождается значительным снижением проницаемости мембраны мышечных и жировых клеток для глюкозы, что приводит к повышению содержания глюкозы в крови, а также в моче.

Глюкозу для медицинских целей получают путем очистки - перекристаллизации - технической глюкозы из водных или водно-спиртовых растворов. Глюкоза используется в текстильном производстве и в некоторых других производствах в качестве восстановителя. В медицине чистая глюкоза применяется в виде растворов для введения в кровь при ряде заболеваний и в виде таблеток. Из нее получают витамин С.

Галактоза вместе с глюкозой входит в состав некоторых гликозидов и полисахаридов. Остатки молекул галактозы входят в состав сложнейших биополимеров - ганглиозидов, или гликосфинголипидов. Они обнаружены в нервных узлах (ганглиях) человека и животных и содержатся также в ткани мозга, в селезенке в эритроцитах. Получают галактозу главным образом гидролизом молочного сахара.

Фруктоза (фруктовый сахар) в свободном состоянии содержится во фруктах, меде. Входит в состав многих сложных сахаров, например тростникового сахара, из которого она может быть получена гидролизом. Образует сложно построенный высокомолекулярный полисахарид инулин, содержащийся в некоторых растениях. Фруктозу получают также из инулина. Фруктоза - ценный пищевой сахар; она в 1,5 раза слаще сахарозы и в 3 раза слаще глюкозы. Она хорошо усваивается организмом. При восстановлении фруктозы образуются сорбит и маннит. Сорбит применяют как заменитель сахара в питании больных диабетом; кроме того, его используют для производства аскорбиновой кислоты (витамин С). При окислении фруктоза дает винную и щавелевую кислоту.

Дисахариды - типичные сахароподобные полисахариды. Это твердые вещества, или некристаллизующиеся сиропы, хорошо растворимые в воде. Как аморфные, так и кристаллические дисахариды обычно плавятся в некотором интервале температур и, как правило, с разложением. Дисахариды образуются в результате реакции конденсации между двумя моносахаридами, обычно гексозами. Связь между двумя моносахаридами называют гликозидной связью. Обычно она образуется между первым и четвертым углеродными атомами соседних моносахаридных единиц (1,4-гликозидная связь). Этот процесс может повторяться бессчетное число раз, в результате чего и возникают гигантские молекулы полисахаридов. После того как моносахаридные единицы соединятся друг с другом, их называют остатками. Таким образом мальтоза состоит из двух остатков глюкозы.

Среди дисахаридов наиболее широко распространены мальтоза (глюкоза + глюкоза), лактоза (глюкоза + галактоза), сахароза (глюкоза + фруктоза).

ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ ДИСАХАРИДОВ

Мальтоза (солодовый сахар) имеет формулу С12Н22О11. Название возникло в связи со способом получения мальтозы: ее получают из крахмала при воздействии солода (лат. maltum - солод). В результате гидролиза мальтоза расщепляется на две молекулы глюкозы:

С12Н22О11 + Н2О = 2С6Н12О6

Солодовый сахар является промежуточным продуктом при гидролизе крахмала, он широко распространен в растительных и животных организмах. Солодовый сахар значительно менее сладок, чем тростниковый (в 0,6 раза при одинаковых концентрациях).

Лактоза (молочный сахар). Название этого дисахарида возникло в связи с его получением из молока (от лат. lactum - молоко). При гидролизе лактоза расщепляется на глюкозу и галактозу:

Лактозу получают из молока: в коровьем молоке ее содержится 4-5,5 %, в женском молоке - 5,5-8,4 %. Лактоза отличается от других сахаров отсутствием гигроскопичности: она не отсыревает. Молочный сахар применяется как фармацевтический препарат и питание для грудных детей. Лактоза в 4 или 5 раз менее сладка, чем сахароза.

Сахароза (тростниковый или свекловичный сахара). Название возникло в связи с ее получением либо из сахарной свеклы, либо из сахарного тростника. Тростниковый сахар был известен за много столетий до нашей эры. Лишь в середине XVIII в. этот дисахарид был обнаружен в сахарной свекле и только в начале XIX в. он был получен в производственных условиях. Сахароза очень распространена в растительном мире. Листья и семена всегда содержат небольшое количество сахарозы. Она содержится также в плодах (абрикосах, персиках, грушах, ананасах). Ее много в кленовом и пальмовом соках, кукурузе. Это наиболее известный и широко применяемый сахар. При гидролизе из него образуются глюкоза и фруктоза:

С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6

Смесь равных количеств глюкозы и фруктозы, получающаяся в результате инверсии тростникового сахара (в связи с изменением в процессе гидролиза правого вращения раствора на левое), называется инвертным сахаром (инверсия вращения). Природным инвертным сахаром является мед, состоящий в основном из глюкозы и фруктозы.

Сахарозу получают в огромных количествах. Сахарная свекла содержит 16-20 % сахарозы, сахарный тростник - 14-26 %. Промытую свеклу измельчают и в аппаратах многократно извлекают сахарозу водой, имеющей температуру около 80 град. Полученную жидкость, содержащую, кроме сахарозы, большое количество различных примесей, обрабатывают известью. Известь осаждает в виде кальциевых солей ряд органических кислот, а также белки и некоторые другие вещества. Часть извести при этом образует с тростниковым сахаром растворимые в холодной воде кальциевые сахараты, которые разрушаются обработкой диоксидом углерода.

Осадок карбоната кальция отделяют фильтрацией, фильтрат после дополнительной очистки упаривают в вакууме до получения кашицеобразной массы. Выделившиеся кристаллы сахарозы отделяют при помощи центрифуг. Так получают сырой сахарный песок, имеющий желтоватый цвет, маточный раствор бурого цвета, некристаллизующийся сироп (свекловичная патока, или меласса). Сахарный песок очищают (рафинируют) и получают готовый продукт.

4. БИОЛОГИЧЕСКАЯ РОЛЬ БИОПОЛИМЕРОВ - ПОЛИСАХАРИДОВ

Полисахариды - высокомолекулярные (до 1000000 Да) полимерные соединения, состоящие из большого числа мономеров - сахаров, их общая формула Сx(Н2О)y. Наиболее часто встречающимся мономером полисахаридов является глюкоза, встречаются маноза, галактоза и другие сахара. Полисахариды делятся на:
- гомополисахариды, состоящие из молекул моносахаридов одного типа (так, крахмал и целлюлоза состоят только из глюкозы);
- гетерополисахариды, в состав которых в качестве мономеров могут входить несколько различных сахаров (гепарин).

Если в полисахариде присутствуют только 1,4= гликозидные связи, мы получим линейный, неразветвленный полимер (целлюлоза); если присутствуют как 1,4=, так и 1,6= связи, полимер будет разветвленным (гликоген). К числу наиболее важных полисахаридов относятся: целлюлоза, крахмал, гликоген, хитин.

Целлюлоза, или клетчатка (от лат. сellula - клеточка), является основным компонентом клеточной стенки растительных клеток. Это линейный полисахарид, состоящий из глюкозы, соединенных 1,4= связями. Клетчатка составляет от 50 до 70 % древесины. Хлопок представляет собой почти чистую клетчатку. Волокна льна и конопли состоят преимущественно из клетчатки. Наиболее чистыми образцами клетчатки является очищенная вата, получаемая из хлопка, и фильтровальная бумага.

Крахмал - разветвленный полисахарид растительного происхождения, состоящий из глюкозы. В полисахариде остатки глюкозы связаны 1,4= и 1,6= гликозидными связями. При их расщеплении растения получают глюкозу, необходимую в процессе их жизнедеятельности. Крахмал образуется при фотосинтезе в зеленых листьях в виде зерен. Эти зерна особенно легко обнаружить в микроскопе, используя известковую реакцию с йодом: крахмальные зерна окрашиваются в синий или сине-черный цвет.

По накоплению крахмальных зерен можно судить об интенсивности фотосинтеза. Крахмал в листьях расщепляется на моносахариды или олигосахариды и переносится в другие части растений, например в клубни картофеля или зерна злаков. Здесь вновь происходит отложение крахмала в виде зерен. Наибольшее содержание крахмала в следующих культурах:

Рис (зерно) - 62-82 %;
- кукуруза (зерно) - 65-75 %;
- пшеница (зерно) - 57-75 %;
- картофель (клубни) - 12-24 %.

В текстильной промышленности крахмал используется для производства загустителей красок. Он применяется в спичечной, бумажной, полиграфической промышленности, в переплетном деле. В медицине и фармакологии крахмал идет на приготовление присыпок, паст (густых мазей), а также необходим в производстве таблеток. Подвергая крахмал кислотному гидролизу, можно получить глюкозу в виде чистого кристаллического препарата или в виде патоки - окрашенного некристаллизующегося сиропа.

Налажено производства модифицированных крахмалов, подвергавшихся специальной обработке или содержащих улучшающие их свойства добавки. Модифицированные крахмалы широко применяются в различных отраслях промышленности.

Гликоген - более разветвленный, чем крахмал, полисахарид животного происхождения, состоящий из глюкозы. Он играет исключительно важную роль в организмах животных как запасной полисахарид: все процессы жизнедеятельности, в первую очередь мышечная работа, сопровождаются расщеплением гликогена, отдающего сосредоточенную в нем энергию. В тканях организма из гликогена в результате ряда сложных превращений может образовываться молочная кислота.

Гликоген содержится во всех животных тканях. Особенно его много в печени (до 20 %) и мышцах (до 4 %). Он присутствует также в некоторых низших растениях, дрожжах и грибах, его можно выделить путем обработки животных тканей 5-10 %-ной трихлоруксусной кислотой с последующим осаждением извлеченного гликогена спиртом. С йодом растворы гликогена дают окрашивание от винно-красного до красно-бурого, в зависимости от происхождения гликогена, вида животного и других условий. Окрашивание йодом исчезает при кипячении и вновь появляется при охлаждении.

Хитин по своей структуре и функции очень близок к целлюлозе - это тоже структурный полисахарид. Хитин встречается у некоторых грибов, где он играет в клеточных стенках опорную роль благодаря своей волокнистой структуре, а также у некоторых групп животных (особенно у членистоногих) в качестве важного компонента их наружного скелета. Строение хитина сходно со строением целлюлозы, его длинные параллельные цепи также собраны в пучки.

5. ХИМИЧЕСКИЕ СВОЙСТВА УГЛЕВОДОВ

Все моносахариды и некоторые дисахариды, в том числе мальтоза и лактоза, относятся к группе редуцирующих (восстанавливающих) сахаров. Сахароза - нередуцирующий сахар. Восстановительная способность сахаров зависит у альдоз от активности альдегидной группы, а у кетоз - от активности как кетогруппы, так и первичных спиртовых групп. У нередуцирующих сахаров эти группы не могут вступать в какие-либо реакции, потому что здесь они участвуют в образовании гликозидной связи. Две обычные реакции на редуцирующие сахара - реакция Бенедикта и реакция Фелинга - основаны на способности этих сахаров восстанавливать ион двухвалентной меди до одновалентной. В обеих реакциях используется щелочной раствор сульфата меди (2) (CuSO4), который восстанавливается до нерастворимого оксида меди (1) (Cu2O). Ионное уравнение: Cu2+ + e = Cu+ дает синий раствор, кирпично-красный осадок. Все полисахариды нередуцирующие.

ЗАКЛЮЧЕНИЕ

Основная роль углеводов связана с их энергетической функцией. При их ферментативном расщеплении и окислении выделяется энергия, которая используется клеткой. Полисахариды играют главным образом роль запасных продуктов и легко мобилизируемых источников энергии (например, крахмал и гликоген), а также используются в качестве строительного материала (целлюлоза и хитин).

Полисахариды удобны в качестве запасных веществ по ряду причин: будучи нерастворимы в воде, они не оказывают на клетку ни осмотического, ни химического влияния, что весьма важно при длительном хранении их в живой клетке: твердое, обезвоженное состояние полисахаридов увеличивает полезную массу продуктов запаса за счет экономии их объемов. При этом существенно уменьшается вероятность потребления этих продуктов болезнетворными бактериями, грибами и другим микроорганизмами, которые, как известно, не могут заглатывать пищу, а всасывают питательные вещества всей поверхностью тела. При необходимости запасные полисахариды легко могут быть превращены в простые сахара путем гидролиза. Кроме того, соединяясь с липидами и белками, углеводы образуют гликолипиды и гликопротеиды-два.

Существует несколько причин, по которым мы должны обратить на питание особое внимание. Во-первых, все клетки и ткани нашего организма формируются из той пищи, которую мы едим. Во-вторых, пища является источником энергии, необходимой для функционирования организма. В-третьих, пища - это главная часть окружающей среды, с которой мы взаимодействуем. И последнее, пища была создана для того, чтобы наслаждаться ею, для того, чтобы быть неотъемлемой частью радости жизни, и наши чувства позволяют нам по достоинству оценить качество, вкус и саму ткань поедаемого продукта.

Сегодня мы предлагаем вам поговорить о энергетических питательных веществах, содержащихся в нашей пище. К ним относятся углеводы, жиры и белки. Говоря в общем, мы считаем углеводы непосредственным источником энергии, белки - теми кирпичиками, из которых строится весь наш организм, и жиры - энергетическими складами.

В овощах и плодах основные питательные вещества представлены углеводами. Продукты сада и огорода содержат простые (глюкоза, фруктоза, сахароза) и сложные (крахмал, пектины, клетчатка) углеводы. В овощах углеводы представлены крахмалом, за исключением свеклы и моркови, где преобладают сахара. Во фруктах преимущественно содержатся сахара.

Крахмал является важнейшим углеводом растений. Состоит он из большого количества молекул глюкозы. Крахмалом богат картофель. Несколько меньше его в бобовых и поздних сортах яблок. В яблоках, например, в процессе их созревания количество крахмала увеличивается, а при хранении снижается. Это вызвано тем, что при дозревании во время хранения крахмал в продукте переходит в сахар. Много его в зеленых бананах, а в зрелых в 10 раз меньше, так как он превращается в сахара. Крахмал нужен организму в основном для удовлетворения его потребности в сахаре. В пищеварительном тракте под влиянием ферментов и кислот крахмал расщепляется на молекулы глюкозы, которые затем используются для нужд организма.

Фруктоза содержится во многих плодах и овощах. Чем богаче ею плоды, тем они слаще. Доказана прямая зависимость выносливости и работоспособности человека от содержания этого вещества в мышцах и печени. При малой подвижности человека, нервных стрессах, гнилостных процессах в кишечнике, тучности фруктоза наиболее благоприятна из прочих углеводов.

Глюкоза находится в плодах в свободном виде. Она входит в состав крахмала, клетчатки, сахарозы и других углеводов. Глюкоза, которую наш организм использует для производства энергии, - это высококачественное горючее. Циркулируя с потоком крови, глюкоза восполняет постоянную нужду клеток организма. Она наиболее быстро и легко используется организмом для образования гликогена, питания тканей мозга, работы мышц, в том числе сердечной.

Сахароза в больших количествах содержится в сахарной свекле и сахарном тростнике. Независимо от источников сырья, сахар представляет собой почти чистую сахарозу. Ее содержание в сахарном песке составляет 99,75%, а в сахаре-рафинаде – 99,9%.

Для усвоения простых углеводов (глюкозы, фруктозы и галактозы) пищеварения не требуется. Столовый сахар и мальтоза перевариваются в простые сахара в считанные минуты. Для того чтобы снабдить кровь этой быстро усваиваемой энергией, нашему рациону требуется совсем немного сахара. В случае перенасыщения поджелудочная железа вынуждена работать сверхурочно, производя избыточный инсулин для превращения излишков сахара в жир. В любой определенный промежуток времени наш организм способен справляться должным образом только с ограниченным количеством простых сахаров.

Излишки сахара стопорят человеческую машину подобно тому, как переполненный карбюратор застопоривает двигатель автомобиля, это всего лишь одна из опасностей злоупотребления сахаром. Есть и другие вредные воздействия. Они таковы:

  • истощение запасов витамина В1;
  • заболевание зубов, поскольку сахар создает идеальную среду для разрушающих зубы микроорганизмов;
  • угнетение иммунной системы вследствие того, что сахар угнетает способность белых кровяных клеток убивать микробы;
  • повышенное количество жира в крови (от превращения глюкозы в триглицерид);
  • стимулирование гипогликемии и возможное начало диабета;
  • желудочное раздражение, возникающее, когда в желудке содержится более 10% сахара (раствор концентрированного сахара – это сильный раздражитель слизистой оболочки);
  • запор (в богатых сахаром продуктах обычно недостаточное содержание волокон);
  • повышение уровня холестерина в крови.

Мы сможем избежать этих осложнений, если заменим в нашем рационе рафинированный сахар на фрукты (один зрелый банан содержит шесть чайных ложек сахара), а основой диеты сделаем сложные углеводы, содержащиеся в пшенице, рисе, картофеле, бобовых и других продуктах, в составе которых есть крахмал.

Большинство сложных углеводов усваиваются на протяжении нескольких часов и высвобождают простые сахара постепенно. Это позволяет поджелудочной железе, печени, надпочечной железе, почкам и другим органам использовать эту энергию должным образом. Более того, из-за повышенного волокнистого содержания углеводсодержащих продуктов мы обычно на такой диете не переедаем.

Другое преимущество сложных углеводов состоит в том, что они содержат минералы, необходимые для соответствующего усвоения других питательных веществ. Рафинированный сахар не имеет ни минералов, ни витаминов, ни волокнистого содержания.

Идеальная диета должна включать, если вообще должна его содержать, минимальное количество сахара (меда, сахарозы, мальтозы, сладких сиропов), а вместо него - обилие сложных углеводов, которыми богаты картофель, злаковые, хлеб и иные продукты из муки грубого помола. Сложные углеводы должны составлять главную часть ежедневного потребления калорий.

«И сказал Бог: вот, Я дал вам всякую траву, сеющую семя, какая есть на всей земле, и всякое дерево, у которого плод древесный, сеющий семя, - вам сие будет в пищу» (Бытие 1: 29).

Подготовила А. Конакова

Источниками энергии для организма человека являются белки, жиры, углеводы которые составляют 90% сухого веса всего питания и поставляют 100% энергии. Все три питательных вещества обеспечивают энергию (измеряется в калориях), но количество энергии в 1 грамме вещества различно:

  • 4 килокалории в грамме углеводов или белков;
  • 9 килокалорий в грамме жира.

В грамме жира в 2 раза больше энергии для организма чем в грамме углеводов и белков.

Эти питательные вещества также различаются в том, как быстро они поставляют энергию. Углеводы поставляются быстрее, а жиры медленнее.

Белки, жиры, углеводы перевариваются в кишечнике, где они разбиваются на основные единицы:

  • углеводы в сахаре
  • белки в аминокислотах
  • жиры в жирных кислотах и глицерине.

Организм использует эти базовые единицы для создания веществ, которые необходимы для выполнения основных жизненных функций (в том числе другие углеводы, белки, жиры).

Виды углеводов

В зависимости от размера молекулы углеводов могут быть простыми или сложными.

  • Простые углеводы: различные виды сахаров, таких, как глюкоза и сахароза (столовый сахар), являются простыми углеводами. Это маленькие молекулы, поэтому они быстро поглощается организмом и являются быстрым источником энергии. Они быстро увеличивают уровень глюкозы в крови (уровень сахара в крови). Фрукты, молочные продукты, мед и кленовый сироп содержат большое количество простых углеводов, которые обеспечивают сладкий вкус в большинстве конфет и пирожных.
  • Сложные углеводы: эти углеводы состоят из длинных строк простых углеводов. Поскольку сложные углеводы большие молекулы, они должны быть разбиты на простые молекулы прежде, чем они могут быть поглощены. Таким образом, они, как правило, обеспечивают энергию для организма более медленно, чем простые, но все же быстрее, чем белок или жир. Это потому что они перевариваются медленнее, чем простые углеводы, и меньше шансов быть преобразованными в жир. Они также повышают уровень сахара в крови более медленными темпами и на более низких уровнях, чем простые, но для более длительного времени. Сложные углеводы включают крахмал и белки, которые имеются в продуктах пшеницы (хлеб и макаронные изделия), другие зерновые (рожь и кукуруза), бобы и корнеплоды (картофель).

Углеводы могут быть:

  • рафинированными
  • нерафинированными

Рафинированные – обработанные, волокна и отруби, а также многие из витаминов и минералов, которые они содержат удалены. Таким образом в процессе метаболизма обрабатываются эти углеводы быстро и обеспечивают мало питания, хотя они содержат примерно столько же калорий. Рафинированные продукты часто обогащенные, то есть витамины и минералы добавляются искусственно, чтобы повысить питательную ценность. Диета с высоким содержанием простых или рафинированных углеводов, как правило, повышают риск ожирения и диабета.

Нерафинированные углеводы из растительных продуктов. В них углеводы содержатся в виде крахмала и клетчатки. Это такие продукты как картофель, цельное зерно, овощи, фрукты.

Если люди потребляют больше углеводов, чем они нуждаются, организм хранит некоторые из этих углеводов в клетках (как гликоген), а остальные преобразует в жир. Гликоген является сложным углеводом для преобразования в энергию и хранится в печени и мышцах. Мышцы используют гликоген энергию в периоды интенсивных упражнений. Количество углеводов, хранящихся как гликоген, может обеспечить калориями на день. Несколько других тканей тела хранят сложные углеводы, которые не могут быть использованы как источник энергии для организма.

Гликемический индекс углеводов

Гликемический индекс углеводов представляет значение, как быстро их потребление повышает уровень сахара в крови. Диапазон значений от 1 (самое медленное усвоение) до 100 (быстрое, индекс чистой глюкозы). Однако, как быстро на самом деле повышается уровень зависит от продуктов, попадающих в организм.

Гликемический индекс, как правило, ниже для сложных углеводов, чем для простых углеводов, но есть исключения. Например, фруктоза (сахар в плодах) имеет незначительное влияние на уровень сахара в крови.

На гликемический индекс влияет технология обработки и состав продовольствия:

  • обработка: обработанные, нарезанные или мелко молотые продукты, как правило, имеют высокий гликемический индекс
  • тип крахмала: различные виды крахмала поглощаются по-разному. Крахмал картофельный переваривается и сравнительно быстро впитывается в кровь. Ячмень переваривается и поглощается гораздо медленнее.
  • содержание волокна: больше клетчатки пища, тем труднее это переварить. Как следствие сахар более медленно всасывается в кровь
  • спелость фруктов: зрелые плоды, больше сахара в нем и чем выше его гликемический индекс
  • содержание жира или кислоты: содержит больше жира или кислоты пищи, медленно перевариваются и медленно ее сахара всасываются в кровь
  • приготовление пищи: как готовится пища может повлиять на то как быстро всасывается в кровь. Как правило, приготовление пищи или измельчение пищи увеличивает его гликемический индекс, поскольку после процесса приготовления пищи их легче переваривать и усваивать.
  • другие факторы: процессы питания организма варьируется от человека к человеку, как быстро влияют углеводы на преобразование в сахар и всасывание. Насколько хорошо пережевана пища и как быстро глотается важно.

Гликемический индекс некоторых продуктов

Продукты Состав Индекс
Фасоль Семена фасоли 33
Чечевица красная 27
Соя 14
Хлеб Ржаной хлеб 49
Белый 69
Цельная пшеница 72
Зерновые культуры Все отруби 54
Кукурузные хлопья 83
Овсяная каша 53
Запыхаться риса 90
Измельченные пшеница 70
Молочные Молоко, мороженое и йогурт 34 – 38
Фрукты Яблоко 38
Банан 61
Мандарин 43
Апельсиновый сок 49
Клубника 32
Зерно Ячмень 22
Коричневый рис 66
Белый рис 72
Макаронные изделия - 38
Картофель Мгновенное пюре (через блендер) 86
Пюре 72
Сладкое пюре 50
Закуски Кукурузные чипсы 72
Печенье овсяное 57
Картофельные чипсы 56
Сахар Фруктоза 22
Глюкоза 100
Мед 91
Сахар-рафинад 64

Гликемический индекс важный параметр, потому что углеводы повышают сахар в крови, если быстро (с высоким гликемическим индексом) то увеличивается уровень инсулина. Увеличение инсулина может привести к низкому уровню сахара в крови (гипогликемия) и голоду, который, как правило, потребляет лишние калории и набирает вес.

Углеводы с низким гликемическим индексом не сильно увеличивают уровень инсулина. В результате люди чувствуют себя сытыми дольше после еды. Потребление углеводов с низким гликемическим индексом также приводит к более здоровому уровню холестерина и снижает риск ожирения и диабета у людей с диабетом, риск осложнений из-за диабета.

Несмотря на связь между продуктами с низким гликемическим индексом и улучшением здоровья, использование индекса для выбора продуктов не приводит автоматически к здоровому питанию.

Например, высокий гликемический индекс у картофельных чипсов и некоторых конфет не выбор здорового питания, но некоторые пищевые продукты с высоким гликемическим индексом содержат ценные витамины и минералы.

Таким образом, гликемический индекс следует использовать только в качестве общего руководства для выбора продуктов.

Гликемическая нагрузка продуктов

Гликемический индекс показывает, как быстро углеводы в пище всасываются в кровь. Он не включает количество углеводов в пище, которые имеют важное значение.

Гликемическая нагрузка, относительно новый термин, включает гликемический индекс и количество углеводов в пище.

Продукты питания, такие как морковь, бананы, арбуз или хлеб из муки грубого помола, могут иметь высокий гликемический индекс, но содержат сравнительно мало углеводов и, таким образом, у них низкая гликемическая нагрузка продуктов. Такие продукты имеют незначительное влияние на уровень сахара в крови.

Белки в продуктах

Белки состоят из структуры, называемой аминокислоты и образуют сложные образования. Поскольку белки являются сложными молекулами, организм занимает больше времени, чтобы впитать их. В результате они гораздо медленный и долгий источник энергии для организма человека, чем углеводы.

Существуют 20 аминокислот. Организм человека синтезирует некоторые из компонентов в организме, но он не может синтезировать 9 аминокислот - называемые незаменимые аминокислоты. Они должны употребляться в рационе питания. Каждый нуждается в 8 из этих аминокислот: изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валина. Младенцы также нуждаются в 9 аминокислоте — гистидине.

Процент белка, который организм может использовать для синтеза незаменимых аминокислот варьируется. Организм может использовать 100% белка в яйце и высокий процент из белков молока и мяса, но может использовать немного меньше половины белка из большинства овощей и зерновых.

Организм любого млекопитающего нуждается в белке для обслуживания и замены тканей росте. Белок обычно не используется как источник энергии для организма человека. Однако если организм не получает достаточного количества калорий из других питательных веществ или из жира, хранящихся в организме, белок используется для энергии. Если больше белка чем необходимо, организм преобразует белок и сохраняет его компоненты как жир.

Живое тело содержит большое количество белка. Белок, главный строительный блок в организме и является основным компонентом большинства клеток. Например, мышцы, соединительная ткань и кожа все построено из белка.

Взрослые должны съесть около 60 граммов белка в день (1,5 грамм на килограмм веса или 10-15% от общего числа калорий).

Взрослым, которые пытаются развить мышцы нужно немного больше. Детям также необходимо белка больше потому, что они растут.

Жиры

Жиры являются сложными молекулами, состоящими из жирных кислот и глицерина. Организм нуждается в жирах для роста и как источник энергии для организма. Жир также используется для синтеза гормонов и других веществ, необходимых для деятельности органа (например, простагландины).

Жиры медленный источник энергии, но наиболее энергоэффективный вид пищи. Каждый грамм жира поставляет телу около 9 калорий, более чем вдвое больше, чем поставляемые белки или углеводы. Жиры — эффективная форма энергии и тело хранит излишки энергии как жир. Организм откладывает избыточный жир в брюшной полости (сальниковый жир) и под кожу (подкожный жир), чтобы использовать, когда требуется больше энергии. Тело может также изъять избыток жира из кровеносных сосудов и из органов, где он может блокировать поток крови и из поврежденных органов, что часто вызывает серьезные расстройства.

Жирные кислоты

Когда организм нуждается в жирных кислотах, он может сделать (синтезировать) некоторые из них. Некоторые кислоты, называемые незаменимые жирные кислоты, не могут быть синтезированы и должны потребляться в рационе питания.

Незаменимые жирные кислоты составляют около 7% жира, потребляемого в нормальной диете и около 3% от общего количества калорий (около 8 грамм). Они включают линолевую и линоленовую кислоты, которые присутствуют в некоторых растительных маслах. Эйкозапентаеновая и докозагексаеновая кислоты, которые являются жирными кислотами необходимы для развития мозга и могут быть синтезированы из линолевой кислоты. Однако они также присутствуют в некоторых морских рыбных продуктах, которые являются более эффективным источником.

Где находится жир?

Тип жира

Источник

Мононенасыщенные Авокадо, оливковое масло

Арахисовое масло

Полиненасыщенные Рапс, кукуруза, соя, подсолнечник и многие другие жидкие растительные масла
Насыщенные Мясо, особенно говядины

Жирное молочные продукты, такие как цельное молоко, сливочное масло и сыр

Кокосовое и пальмовое масла

Искусственно гидрогенизированные растительные масла

Омега-3 жирные кислоты Льняное семя

Озерная форель и некоторых глубоководных рыб, таких как скумбрия, лосось, сельдь и тунец

Зеленые листовые овощи

Грецкие орехи

Омега-6 жирные кислоты Растительные масла (в том числе подсолнечника, сафлора, кукуруза, хлопковое и соевого масла)

Рыбий жир

Яичные желтки

Транс-жиры Коммерчески запеченные продукты, такие, как печенье, крекеры и пончики

Картофель фри и другие жареные продукты

Маргарин

Картофельные чипсы

Линолевая и арахидоновая кислоты состоят из омега-6 жирных кислот.

Линоленовой кислота, эйкозапентаеновая и докозагексаеновая кислоты представляют омега-3 жирные кислоты.

Питание, богатое омега-3 жирными кислотами может снизить риск атеросклероза (включая заболевание коронарной артерии). Озерная форель и некоторые глубоководные рыбы содержат большое количество Омега-3 жирных кислот.

Необходимо потреблять достаточное количество омега-6 жирных кислот

Виды жиров

Существуют различные виды жиров

  • мононенасыщенные
  • полиненасыщенные
  • насыщенные

Употребление насыщенных жиров увеличивает уровень холестерина и риск атеросклероза. Продукты, полученные от животных обычно содержат насыщенные жиры, которые, как правило, твердые при комнатной температуре. Жиры, полученных из растений обычно содержат мононенасыщенные или полиненасыщенные жирные кислоты, которые, как правило, жидкие при комнатной температуре. Исключением являются пальмовое и кокосовое масло. Они содержат больше насыщенных жиров, чем другие растительные масла.

Транс-жиры (транс-жирные кислоты) — другая категория жира. Они искусственные и формируются путем добавления атомов водорода (гидрирования) мононенасыщенных или полиненасыщенных жирных кислот. Жиры могут полностью или частично быть гидрогенизированные (насыщенные атомами воды). Основным источником питания транс-жиров является частично гидрогенизированные растительные масла в коммерчески подготовленных продуктах. Потребление транс-жиров может негативно повлиять на уровень холестерина в организме и может способствовать риску атеросклероза.

Жиры в питании

  • жир должен быть ограничен и составлять менее 30% от общего количества ежедневных калорий (или менее 90 грамм в день)
  • насыщенные жиры должны употребляться ограниченно до 10%.

Когда потребление жиров сокращается до 10% или меньше от общего количества ежедневных калорий, уровень холестерина резко уменьшается.

Углеводы, белки и жиры представляют основные источники энергии для человека необходимой для жизнедеятельности и их качество имеет важное значения для здоровья.

Первоначальным источником энергии для живых организмов служит энергия солнечного света. Фототрофы - растения и фотосинтезирующие микроорганизмы - непосредственно используют световую энергию для синтеза сложных органических веществ (жиров, белков, углеводов и др.), являющихся вторичными источниками энергии. Гетеротрофы, к которым относятся животные, используют химическую энергию, выделяющуюся при окислении органических веществ, синтезированных растениями.

Биоэнергетические процессы можно разделить на процессы производства и аккумуляции энергии и процессы, в которых за счет запасенной энергии выполняется полезная работа (Рис.1.1). Фотосинтез - основной биоэнергетический процесс на Земле. Это сложная многоступенчатая система фотофизических, фотохимических и темновых биохимических процессов, в которых энергия солнечного света трансформируется в химическую или электрохимическую формы энергии. В первом случае это энергия, заключенная в сложных органических молекулах, а во втором - энергия градиента протонов на мембранах, которая также преобразуется в химическую форму. В фотосинтезирующих организмах кванты солнечного света поглощаются молекулами хлорофилла и переводят их электроны в возбужденное состояние с повышенной энергией. Именно за счет энергии возбужденных электронов в молекулах хлорофилла фотосинтетическая система фототрофов из простых молекул углекислого газа и воды синтезирует глюкозу и другие органические молекулы (аминокислоты, жирные кислоты, нуклеотиды и т.д.), из которых впоследствии в организме строятся углеводы, белки, жиры и нуклеиновые кислоты. Продуктом этих реакций также является молекулярный кислород.

Суммарное уравнение основных реакций фотосинтеза:

6 CO 2 + 6 H 2 O C 6 H 12 O 6 (глюкоза) + 6 O 2 ,

где hн - энергия фотонов.

Глобальная роль фотосинтеза исключительно велика. Мощность солнечного излучения порядка 10 26 Вт. Из нее до поверхности Земли доходит около 2 10 17 Вт, а из этой величины примерно 4 10 13 Вт используется фотосинтезирующими организмами для синтеза органических веществ (Самойлов, 2004). Эта энергия поддерживает жизнь на Земле. За счет нее синтезируется около 7,510 10 тонн биомассы в год (в расчете на углерод). При этом порядка 4 10 10 тонн углерода фиксируется фитопланктоном в океане и 3,510 10 тонн - растениями и фотосинтезирующими микроорганизмами на суше.

Человечество потребляет продукты фотосинтеза в виде пищи, съедая органические вещества, первично произведенные растениями или вторично произведенные животными, поедающими растения, и в виде топлива, в качестве которого на 90 % используются ранее запасенные продукты фотосинтеза - нефть и уголь (остальную энергию дают атомные и гидроэлектростанции).

Извлечение энергии, накопленной фототрофными организмами, и ее последующее использование осуществляется в процессах питания и дыхания. При прохождении по пищеварительному тракту пища размельчается, клетки разрушаются и биополимеры (белки, нуклеиновые кислоты, жиры и углеводы) расщепляются на низкомолекулярные мономеры (аминокислоты, нуклеотиды, жирные кислоты и сахара), которые в кишечнике всасываются в кровь и транспортируются по всему организму. Из них клетки извлекают атомы водорода, несущие высокоэнергетические электроны, энергию которых удается частично запасать в виде молекул аденозинтрифосфата (adenosine triphosphate, ATP). ATP - универсальный источник энергии, используемый как батарейка, там и тогда, где и когда необходимо выполнить полезную работу.

Похожие публикации