Жидкости для электронных сигарет - гид для новичков. Жидкое состояние

Мы привыкли думать, что жидкости не имеют никакой собственной формы. Это неверно. Естественная форма всякой жидкости – шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если разлита без сосуда, либо же принимает форму сосуда, если налита в него. Находясь внутри другой жидкости такого же удельного веса, жидкость по закону Архимеда “теряет” свой вес: она словно ничего не весит, тяжесть на нее не действует – и тогда жидкость принимает свою естественную, шарообразную форму.
Прованское масло плавает в воде, но тонет в спирте. Можно поэтому приготовить такую смесь из воды и спирта, в которой масло не тонет и не всплывает. Введя в эту смесь немного масла посредством шприца, мы увидим странную вещь: масло собирается в большую круглую каплю, которая не вплывает и не тонет, а висит неподвижно [Чтобы форма шара не казалась искаженной, нужно производить опыт в сосуде с плоскими стенками (или в сосуде любой формы, но поставленном внутри наполненного водой сосуда с плоскими стенками)].

Рис. Масло внутри сосуда с разбавленным спиртом собирается в шар, который не тонет и не всплывает (опыт Плато).

Рис. Если масляный шар в спирте быстро вращать при помощи воткнутого в него стерженька, от шара отделяется кольцо.

Опыт надо проделывать терпеливо и осторожно, иначе получится не одна большая капля, а несколько шариков поменьше. Но и в таком виде опыт достаточно интересен.
Это, однако, еще не все. Пропустив через центр жидкого масляного шара длинный деревянный стерженек или проволоку, вращают их. Масляный шар принимает участие в этом вращении. (Опыт удается лучше, если насадить на ось небольшой смоченный маслом картонный кружочек, который весь оставался бы внутри шара.) Под влиянием вращения шар начинает сначала сплющиваться, а затем через несколько секунд отделяет от себя кольцо. Разрываясь на части, кольцо это образует не бесформенные куски, а новые шарообразные капли, которые продолжают кружиться около центрального шара.

Рис. Упрощение опыта Плато.

Впервые этот поучительный опыт произвел бельгийский физик Плато. Здесь описан опыт Плато в его классическом виде. Гораздо легче и не менее поучительно произвести его в ином виде. Маленький стакан споласкивают водой, наполняют прованским маслом и ставят на дно большого стакана; в последний наливают осторожно столько спирта, чтобы маленький стакан был весь в него погружен. Затем по стенке большого стакана из ложечки осторожно доливают понемногу воду. Поверхность масла в маленьком стакане становится выпуклой; выпуклость постепенно возрастает и при достаточном количестве подлитой воды поднимается из стакана, образуя шар довольно значительных размеров, висящий внутри смеси спирта и воды (рис. 58).
За неимением спирта можно проделать этот опыт с анилином – жидкостью, которая при обыкновенной температуре тяжелее воды, а при 75 – 85 °С легче ее. Нагревая воду, мы можем, следовательно, заставить анилин плавать внутри нее, причем он принимает форму большой шарообразной капли. При комнатной температуре капля анилина уравновешивается в растворе соли [Из других жидкостей удобен ортотолуидин – темно-красная жидкость; при 24° она имеет такую же плотность, как и соленая вода, в которую и погружают ортотолуидин].

Жидкости - это вещества в состоянии, промежуточном между твердым и газообразным. Для них характерна большая подвижность частиц и малое свободное пространство между ними. Отсюда - два основных свойства жидкостей: в отличие от твердых тел они легко меняют форму, но, как и твердые тела, обладают весьма малой сжимаемостью.

Жидкое состояние промежуточное между газообразным и твердым по многим признакам. Вязкость жидкостей намного меньше вязкости твердых тел и намного больше вязкости газов. Расстояние между молекулами газа в несколько раз превышает размеры молекул; в жидкости молекулы размещаются вплотную друг к другу. Поэтому плотность жидкости на несколько порядков больше плотности газов (при нормальном давлении) и почти не отличается от плотности твердых тел; так, плотность металлов при плавлении меняется в среднем на 3%. По величине внутренней энергии жидкость обычно значительно ближе к твердому телу, чем к газу; теплота плавления, как правило, не превышает 10% от теплоты испарения. Теплоемкость жидкости вблизи температуры плавления также близка к теплоемкости твердого тела.

Однако форма жидкого тела, как и газа, определяется формой сосуда.

В отличие от кристаллов в жидкости нет дальнего порядка, а имеется только ближний. Это значит, что определенный порядок в расположении молекул имеется, но если в кристаллах этот порядок один и тот же во всех областях кристалла, то в жидкости он может быть в различных областях различным. Прямым следствием отсутствия дальнего порядка является то, что свойства жидкости по всем направлениям одинаковы; говорят, что она изотропна в отличие от кристалла, который анизотропен (греческие слова «изос» означают «равный», «одинаковый», «анизос» - «неравный», «тропос» - «направление»). Жидкости - это очень широкий класс веществ: от простых, которые действительно изотропны и в которых отсутствует дальний порядок, до сложных, полимерных, в которых есть элементы дальнего порядка и анизотропии.

Наиболее характерное молекулярное свойство жидкости - поверхностное натяжение. Оно обусловлено тем, что молекулы в поверхностном слое находятся в особом состоянии по сравнению с молекулами внутри жидкости. Последние равномерно окружены со всех сторон соседями, а молекулы на поверхности - нет. Поэтому равнодействующая сил сцепления стремится втянуть внутрь молекулы поверхностного слоя, и для увеличения поверхности, например для растягивания жидкой пленки, надо затрачивать работу на извлечение молекул изнутри на поверхность.

Работа образования единицы поверхности называется поверхностным натяжением. Численно поверхностное натяжение равно силе, действующей на единицу длины линии, ограничивающей поверхность жидкости и стремящейся уменьшить эту поверхность. Под действием поверхностного натяжения жидкость принимает форму шара, обладающего при данном объеме наименьшей поверхностью. В знаменитом опыте Плато капля одной жидкости, помещенная в другую жидкость той же плотности, не смешивающуюся с первой, принимала сферическую форму. Такова же форма маленьких капелек ртути на стеклянной пластинке или капелек воды на покрытой парафином поверхности стекла. Ртуть не взаимодействует со стеклом, не смачивает его, а вода не смачивает парафин. Силы взаимодействия между молекулами жидкости и твердого тела вызывают растекание, например, капли воды по обезжиренному стеклу, сила тяжести сплющивает каплю, и тем сильнее, чем больше ее размеры. Подробно об этом можно прочитать в книге Я. Е. Гегузина «Капля» (М.: Наука, 1973).

Вязкость жидкости увеличивается с уменьшением температуры и скачком возрастает при кристаллизации. При переохлаждении жидкости ниже температуры плавления вязкость также сильно увеличивается, что замедляет кристаллизацию и способствует возникновению аморфного стеклообразного состояния. При нагревании жидкости обычно расширяются, за исключением воды (в интервале от 0 до ).

Как показал нидерландский ученый Я. Вант-Гофф, молекулы растворенного вещества в жидком растворе ведут себя подобно газу в таком же объеме и оказывают специфическое давление, которое он назвал осмотическим. Осмотическоедавление впервые наблюдал в 1748 г. французский физик Нолле в известном опыте с полупроницаемой перегородкой из бычьего пузыря.

Пузырь затягивал нижний конец сосуда А с раствором сахара в воде, погруженного в сосуд В с чистой водой. Молекулы воды могут проходить через пузырь, а значительно большие по размеру молекулы сахара - нет. В результате уровень раствора в сосуде А повышается, пока гидростатическое давление поднявшегося столба жидкости не окажется равным осмотическому давлению растворенного сахара.

Осмотическое давление велико и достигает в разбавленных растворах десятков тысяч атмосфер. Эффекты, связанные с осмотическим давлением, играют большую роль в природе (проникновение питательных веществ из почвы в растения , обмен веществ в живых организмах).

Однажды я провел эксперимент с ничего не подозревающим и не ожидающим от меня товарищем. Я замешал новый вкус жидкости и дал ему попробовать. «Вкусно, но ничего удивительного»,-сказал он. Через некоторое время я угостил его той же самой жидкостью, со словами:»Попробуй, отличный вкус!». И ему этот вкус тоже очень понравился. Разница была лишь в том, что это была та же самая жидкость. Разницу во вкусе он почувствовал лишь потому, что наше восприятие часто затуманивает наше суждение и объективность.

Мнения вейперов насчет настоя жидкостей разделились. Кто-то считает, что это пустая трата времени, а кто-то говорит что настаивание имеет огромное значение. Попытаемся разобраться, в чем же дело? В восприятии вкуса или же в действительной разнице во вкусе после настоя? Мы проведем тестирование вслепую, и решим эти вопросы раз и навсегда. Но для начала, давайте разберемся, что же такое настаивание жидкостей, какие процессы протекают в этот период, и рассмотрим несколько методик.

  • Настаивание . Что такое настаивание жидкостей? Это метод улучшения вкуса. Обычно настаивают жидкость в статичном состоянии, иногда встряхивают и иногда взбалтывают (в зависимости от метода), чтобы жидкость вступала во взаимодействие с воздухом. Это как с хорошим вином — чем старше тем вкуснее. Далее в статье, мы рассмотрим ряд приёмов, направленных на ускорение времени настаивания жидкостей.
  • Состав и сырьё . Обычно их состав стандартен: пропиленгликоль, растительный глицерин, никотин, пищевые ароматизаторы. Иногда добавляют дистиллированную воду, алкоголь. Идея в настаивании состоит в лучшем смешивании разных свойств этих веществ. Это особенно важно, если Вы производитель и закупаете партию сырья для производства жидкостей, сырье как правило представляет собой смесь ароматизаторов и компонентов, без ярко выраженного вкуса.
  • Тестирование . Важным шагом в настаивании жидкостей является пробование жидкости. Во время настоя пробуйте, что получается, какие вкусы раскрываются, записывайте время настоя во время тестирования и со временем поймете когда жидкость настоялась как надо, и будете знать четкое время, необходимое для этого.
  • Контакт с воздухом . Не забывайте, что жидкости могут выдыхаться и контактировать с воздухом каждый раз когда открывается емкость с жидкостями. В каких то случаях это изменит цвет, а в каких то заберет вкус.
  • Реакция Майара . Химическая реакция между аминокислотами и сахарами, изменяющая цвет жидкостей. Наподобие как запекается и темнеет пирог, или зарумянивается пицца, темнеют стейки. Некоторые производители уверены, что именно реакция Майара лежит в основе изменения цвета жидкостей. На это у нас есть отдельное мнение, о нем чуть позже.

А теперь проведем эксперимент

Без сомнений, настаивание жидкостей изменяет их характеристики, зачастую меняется даже цвет. Но что же происходит со вкусом?

Итак, вы по каким-либо причинам решили приобрести электронную сигарету. Возможно, последовали веяниям моды. Может, пробуете таким способом бросить курить. Отлично – девайс выбрали, купили. Осталось дело за малым – выбрать жидкость. Но на самом деле этот момент даже более важен, чем выбор самой сигареты. Именно жидкость определяет вкусовые ощущения, испытываемые вами во время вдыхания пара.

Чтобы не растеряться при выборе жидкости для вейпа, нужно уметь правильно ее подобрать. Перед новичком стоит целый ряд вопросов: как определиться с крепостью? какую марку выбрать? с какого вкуса начать в первую очередь? Особо экстремальных новичков волнует даже такой вопрос: что будет если выпить жижу для вейпа?

Определившись с выбором электронной сигареты для новичка, следующим решением будет выбор жидкости для электронных сигарет.

Выбирая жидкость, нужно особо уделить внимание трем критериям:

  1. содержание глицерина;
  2. количество никотина;
  3. вкус.

Считается, что чем больше концентрации глицерина в составе жидкости для вейпинга, тем гуще и насыщенные будет выдуваемый пар. Если же в составе больше пропиленгликоля, вы не получите большого облака пара, зато сможете насладиться насыщенным вкусом.

Жидкости для электронных сигарет бывают как безникотиновые, так и с различным содержанием никотина. Если вы не хотите нанести вред здоровью, лучше выбрать первый вариант.

Вкус подбирается исключительно исходя из ваших предпочтений. Магазины товаров для вейпинга предлагают широкий ассортимент вкусов: фруктовых, ментоловых, десертных, ягодных. Людям, желающим бросить курить, сначала можно выбрать жидкость с табачным ароматом. Порой встречаются и очень необычные вкусы жидкостей: аромат пельменей, колбасы или сельдерея не оставят равнодушными заядлых вейперов, желающих получить новые ощущения.

Элементы, содержащиеся в жидкости

Все жидкости для электронных сигарет состоят из следующих компонентов:

  • глицерин;
  • пропиленгликоголь;
  • ароматизатор;
  • никотин.

Основные компоненты – это глицерин и пропиленгликоль. Они сочетаются в разных пропорциях, чаще всего 30-40% одного вещества на 50-60% другого. Для разбавления используется 10% дистилированной воды.

Чем выше концентрация глицерина в составе, тем больше облака пара. Если вы приобрели электронную сигарету с сабомным испарителем и намткой для выдувания объемных облаков пара, то вам стоит обратить особое внимание именно на жидкости с преобладающим содержанием глицерина.

При желании можно мешать одну жидкость с другой, создавая новые сочетания вкусов и добиваясь для себя оптимального содержания основных компонентов. Так что на вопрос можно ли смешивать разные жидкости ответ утвердительный.

Зачем нужен никотин в жидкости для электронной сигареты

Никотин в нужен для удовлетворения потребности насыщения этим веществом. Если вы новичок, то не покупайте изначально жидкость с высоким содержанием никотина (больше 18 мг). С непривычки с организмом может случиться отравление никотином.

Как определить нужную для себя крепость

Выбрать крепость жижи для вейпа можно исходя из следующей таблицы:

Крепость (мг /мл) Кому подойдет
0 Подойдет для некурящих, а также для тех, кто бросает курить
6-8 Оптимальная крепость для новичков. Используется также при отказе от курения.
11-12 Годится людям, курящим либо очень редко, либо только легкие сигареты
16-18 Для того чтобы заменить курение одной пачки обычных сигарет обычно используется эта крепость
22-24 Подойдет ярым курильщикам, выкуривающем более пачки в день
36 Применяется для разведения слабых растворов. Лучше не пробовать эту жидкость в неразбавленном виде.

Начинающему, даже если он заядлый курильщик, не нужно даже пробовать сразу покупать крепкую жидкость. На многих устройствах с сабомными испарителями крепость ощущается значительно сильнее, чем указано на бутыльке флакона. Так что ориентироваться нужно не только на приведенную таблицу, но и на тип электронной сигареты. Всегда лучше постепенно увеличивать содержание никотина, чтобы подобрать оптимальную для вашего организма концентрацию.

Сколько жидкости требуется

Для заправки обычно используются флакончики объемом 10 и 30 мл. На расход жидкости влияют такие факторы как частота и интенсивность парения, а также устройство самого девайса. В среднем, флакона на 30 мл хватает на 1-1,5 недели. Новички обычно расходуют намного меньше, а опытные парильщики – больше. Все это говорит о том, что расход жидкости для электронных сигарет индивидуален для каждого человека.

Обзор брендов

Теперь, когда вы имеете представление о том, как подобрать правильно жидкость для электронных сигарет исходя из индивидуальных предпочтений, можно получить больше информации о брендах-изготовителях жидкостей.

Среди российских марок самыми популярными являются Armango6 SafeLiq и Red Smokers Corsar . Последние два варианта не ударят по кошельку, но в то же время имеют богатый выбор вкусов разной насыщенности.

Китайские бренды жидкостей для электронных сигарет: Vardex, Dekang, Joyetech . Последняя является мировым лидером среди брендов, продающие средства для заправки электронных сигарет. Новые вкусы, изготавливаемые этой фирмой, быстро становятся популярными.

Среди брендов премиум-класса стоит отметить Flovour Art и Savourea . Жидкости производятся в европейских фармацевтических лабораториях и имеют ни с чем не сравнимый вкус.

Электронные сигареты – отличная альтернатива традиционным сигаретам во время промежуточного этапа перед полным отказом от курения. Помните о том, что даже заменив обычные сигареты на электронные устройства, вы не избавитесь от вредной привычки. Даже низкое содержание никотина в жидкостях наносит вред здоровью, пусть даже менее значительный, чем обычные сигареты. Соблюдайте в «парении» меру, тем самым старайтесь полностью освободиться от пагубной привычки.

В повседневной жизни мы постоянно сталкиваемся с тремя состояниями вещества - жидким, газообразным и твердым. О том, что представляют собой твердые тела и газы, мы имеем довольно ясное представление. Газ - совокупность молекул, которые движутся беспорядочно по всем направлениям. Все молекулы твердого тела сохраняют взаимное расположение. Они совершают только незначительные колебания.

Особенности жидкого вещества

А что же представляют собой жидкие вещества? Основной их особенностью является то, что, занимая промежуточное положение между кристаллами и газами, они сочетают в себе определенные свойства двух этих состояний. Например, для жидкостей, так же как и для твердых свойственно наличие объема. Однако в то же время жидкие вещества, так же как и газы, принимают форму сосуда, в котором находятся. Многие из нас полагают, что у них нет своей собственной формы. Однако это не так. Естественная форма любой жидкости - шар. Сила тяжести обычно мешает ей принять эту форму, поэтому жидкость либо принимает форму сосуда, либо растекается по поверхности тонким слоем.

По своим свойствам жидкое состояние вещества особенно сложно, что обусловлено промежуточным его положением. Оно начало изучаться еще со времен Архимеда (2200 лет назад). Однако анализ того, как ведут себя молекулы жидкого вещества, до сих пор является одной из наиболее трудных областей прикладной науки. Общепризнанной и вполне законченной теории жидкостей все еще нет. Однако кое-что об их поведении мы можем сказать вполне определенно.

Поведение молекул в жидкости

Жидкость - что-то такое, что может течь. Ближний порядок наблюдается в расположении ее частиц. Это означает, что расположение соседей, ближайших к ней, по отношению к любой частице является упорядоченным. Однако по мере того, как она удаляется от других, положение ее по отношению к ним делается все менее упорядоченным, а затем порядок и вовсе исчезает. Жидкие вещества состоят из молекул, которые движутся намного более свободно, чем в твердых телах (а в газах - еще свободнее). В течение определенного времени каждая из них устремляется то в одну сторону, то в другую, не удаляясь от своих соседей. Однако молекула жидкости время от времени вырывается из окружения. Она попадает в новое, переходя в другое место. Здесь снова в течение определенного времени она совершает подобные колебанию движения.

Вклад Я. И. Френкеля в изучение жидкостей

Я. И. Френкелю, советскому ученому, принадлежат большие заслуги в разработке целого ряда проблем, посвященных такой теме, как жидкие вещества. Химия сильно продвинулась вперед благодаря его открытиям. Он считал, что в жидкостях тепловое движение имеет следующий характер. В течение определенного времени каждая молекула колеблется около положения равновесия. Однако она меняет свое место время от времени, перемещаясь скачком на новое положение, которое от предыдущего отстоит на расстояние, составляющее примерно размеры самой этой молекулы. Другими словами, внутри жидкости молекулы перемещаются, но медленно. Часть времени они пребывают около определенных мест. Следовательно, движение их представляет собой что-то вроде смеси совершаемых в газе и в твердом теле движений. Колебания на одном месте через некоторое время сменяются свободным переходом с места на место.

Давление в жидкости

Некоторые свойства жидкого вещества нам известны благодаря постоянному взаимодействию с ними. Так, из опыта повседневности мы знаем о том, что оно действует на поверхность твердых тел, которые соприкасаются с ней, с известными силами. Они именуются силами

Например, приоткрывая отверстие водопроводного крана пальцем и включая воду, мы ощущаем, как она давит на палец. А пловец, который нырнул на большую глубину, не случайно испытывает боль в ушах. Она объясняется тем, что на барабанную перепонку уха воздействуют силы давления. Вода - жидкое вещество, поэтому она обладает всеми его свойствами. Для того чтобы измерить температуру воды на глубине моря, следует использовать очень прочные термометры, чтобы их не могло раздавить давление жидкости.

Это давление обусловлено сжатием, то есть изменением объема жидкости. Она обладает по отношению к этому изменению упругостью. Силы давления - это и есть силы упругости. Следовательно, если жидкость действует на тела, соприкасающиеся с ней, значит, она сжата. Поскольку плотность вещества при сжатии растет, можно считать, что жидкости по отношению к изменению плотности обладают упругостью.

Испарение

Продолжая рассматривать свойства жидкого вещества, переходим к испарению. Вблизи поверхности его, а также непосредственно в поверхностном слое действуют силы, обеспечивающие само существование этого слоя. Они не позволяют покидать объем жидкости молекулам, находящимся в нем. Однако некоторая их часть благодаря тепловому движению развивает довольно большие скорости, с помощью которых становится возможно преодолеть эти силы и покинуть жидкость. Мы называем это явление испарением. Его можно наблюдать при любой температуре воздуха, однако с ее увеличением интенсивность испарения возрастает.

Конденсация

Если молекулы, покинувшие жидкость, удаляются из пространства, находящегося вблизи ее поверхности, то вся она, в конце концов, испаряется. Если же покинувшие ее молекулы не удаляются, они формируют пар. Попавшие в область, находящуюся вблизи поверхности жидкости, молекулы пара втягиваются в нее Этот процесс получил название конденсации.

Следовательно, если молекулы не удаляются, со временем уменьшается скорость испарения. Если плотность пара в дальнейшем увеличивается, достигается ситуация, при которой количество молекул, покидающих за определенное время жидкость, будет равняться количеству молекул, которые возвращаются за это же время в нее. Так возникает состояние динамического равновесия. Пар, находящийся в нем, называется насыщенным. Давление и плотность его увеличиваются с повышением температуры. Чем она выше, тем большее количество молекул жидкости имеет достаточную для испарения энергию и тем большей плотностью должен обладать пар для того, чтобы с испарением могла сравняться конденсация.

Кипение

Когда в процессе нагревания жидких веществ достигается такая температура, при которой насыщенные пары имеют такое же давление, как и внешняя среда, устанавливается равновесие между насыщенным паром и жидкостью. Если жидкость сообщает дополнительное количество теплоты, сразу же происходит превращение в пар соответствующей массы жидкости. Этот процесс именуют кипением.

Кипение представляет собой интенсивное испарение жидкости. Оно происходит не только с поверхности, а касается всего ее объема. Внутри жидкости появляются пузырьки пара. Для того чтобы перейти в пар из жидкости, молекулам необходимо приобрести энергию. Она нужна для преодоления сил притяжения, благодаря которым они удерживаются в жидкости.

Температура кипения

Это та, при которой наблюдается равенство двух давлений - внешнего и насыщенных паров. Она увеличивается при увеличении давления и уменьшается при его уменьшении. Из-за того, что с высотой столба давление в жидкости меняется, кипение в ней происходит на различных уровнях при разной температуре. Только находящийся над поверхностью жидкости в процессе кипения, имеет определенную температуру. Она определяется лишь внешним давлением. Именно ее мы и имеем в виду, когда говорим о температуре кипения. Она отличается у разных жидкостей, что широко применяется в технике, в частности, при разгонке нефтепродуктов.

Скрытая теплота парообразования - это количество тепла, необходимое для того, чтобы превратить в пар изотермически определенное количество жидкости, если внешнее давление то же, что и давление насыщенных паров.

Свойства жидкостных пленок

Все мы знаем о том, как можно получить пену, растворив в воде мыло. Это не что иное, как множество пузырьков, которые ограничены состоящей из жидкости тончайшей пленкой. Однако из образующей пену жидкости можно получить также и отдельную пленку. Свойства ее очень интересны. Пленки эти могут быть очень тонкими: их толщина в самых тонких частях не превышает стотысячной доли миллиметра. Однако они порой очень устойчивы, несмотря на это. Мыльную пленку можно подвергать деформации и растяжению, сквозь нее может проходить струя воды, при этом не разрушая ее. Как же объяснить такую устойчивость? Для того чтобы появилась пленка, необходимо к чистой жидкости прибавить вещества, растворяющиеся в ней. Но не любые, а такие, которые значительно понижают поверхностное натяжение.

Жидкостные пленки в природе и технике

В технике и природе мы встречаемся главным образом не с отдельными пленками, а с пеной, которая представляет собой их совокупность. Ее нередко можно наблюдать в ручьях, где в спокойную воду падают небольшие струйки. Способность воды пениться в данном случае связана с наличием в ней органического вещества, которое выделяют корни растений. Это пример того, как пенятся природные жидкие вещества. А как же обстоит дело с техникой? При строительстве, например, используют специальные материалы, которые обладают ячеистой структурой, напоминающей пену. Они легки, дешевы, достаточно прочны, плохо проводят звуки и теплоту. Для получения их в специальные растворы добавляют способствующие пенообразованию вещества.

Вывод

Итак, мы узнали, какие вещества относятся к жидким, выяснили, что жидкость является промежуточным состоянием вещества между газообразным и твердым. Поэтому у нее есть свойства, характерные для того и другого. которые сегодня широко используются в технике и промышленности (например, жидкокристаллические дисплеи) являются ярким примером этого состояния вещества. В них объединены свойства твердых тел и жидкостей. Сложно представить, какие вещества жидкие изобретет в будущем наука. Однако ясно, что в этом состоянии вещества есть большой потенциал, который можно использовать во благо человечества.

Особый интерес к рассмотрению физико-химических процессов, протекающих в жидком состоянии, обусловлен тем, что сам человек состоит на 90% из воды, которая является самой распространенной на Земле жидкостью. Именно в ней происходят все жизненно важные процессы как в растительном, так и в животном мире. Поэтому для всех нас актуально изучать жидкое состояние вещества.

Похожие публикации