Регуляция функции почек. Виды действия гормонов

В средней доле гипофиза вырабатывается гормон меланотропин (интермедин), который оказывает влияние на пигментный обмен.

Задняя доля гипофиза тесно связана с супраоптическим и паравентрикулярным ядром гипоталамуса. Нервные клетки этих ядер вырабатывают нейросекрет, который транспортируется в заднюю долю гипофиза. Накапливаются гормоны в питуицитах, в этих клетках гормоны превращаются в активную форму. В нервных клетках паравентрикулярного ядра образуется окситоцин , в нейронах супраоптического ядра – вазопрессин .

Вазопрессин выполняет две функции:

1) усиливает сокращение гладких мышц сосудов (тонус артериол повышается с последующим повышением артериального давления);

2) угнетает образование мочи в почках (антидиуретическое действие). Антидиуретическое действие обеспечивается способностью вазопрессина усиливать обратное всасывание воды из канальцев почек в кровь. Уменьшение образования вазопрессина является причиной возникновения несахарного диабета (несахарного мочеизнурения).

Окситоцин (оцитоцин) избирательно действует на гладкую мускулатуру матки, усиливает ее сокращение. Сокращение матки резко увеличивается, если она находилась под воздействием эстрогенов. Во время беременности окситоцин не влияет на сократительную способность матки, так как гормон желтого тела прогестерон делает ее нечувствительной ко всем раздражителям. Окситоцин стимулирует выделение молока, усиливается именно выделительная функция, а не его секреция. Особые клетки молочной железы избирательно реагируют на окситоцин. Акт сосания рефлекторно способствует выделению окситоцина из нейрогипофиза.

Гипоталамическая регуляция образования гормонов гипофиза

Нейроны гипоталамуса вырабатывают нейросекрет. Продукты нейросекреции, которые способствуют образованию гормонов передней доли гипофиза, называются либеринами, а тормозящие их образование – статинами. Поступление этих веществ в переднюю долю гипофиза происходит по кровеносным сосудам.

Регуляция образования гормонов передней доли гипофиза осуществляется по принципу обратной связи. Между тропной функцией передней доли гипофиза и периферическими железами существуют двусторонние отношения: тропные гормоны активируют периферические эндокринные железы, последние в зависимости от их функционального состояния тоже влияют на продукцию тропных гормонов. Двусторонние взаимоотношения имеются между передней долей гипофиза и половыми железами, щитовидной железой и корой надпочечников. Эти взаимоотношения называют «плюс-минус» взаимодействия. Тропные гормоны стимулируют («плюс») функцию периферических желез, а гормоны периферических желез подавляют («минус») продукцию и выделение гормонов передней доли гипофиза. Существует обратная связь между гипоталамусом и тропными гормонами передней доли гипофиза. Повышение концентрации в крови гормона гипофиза приводит к торможению нейросекрета в гипоталамусе.

Симпатический отдел вегетативной нервной системы усиливает выработку тропных гормонов, парасимпатический отдел угнетает.

Эти гормоны образуются в гипоталамусе. В нейрогипофизе происходит их накопление. В клетках супраоптического и паравентрикулярного ядер гипоталамуса осуществляется синтез окситоцина и антидиуретического гормона. Синтезированные гормоны путем аксонального транспорта с помощью белка - переносчика нейрофизина по гипоталамо-гипофизарному тракту - транспортируются в заднюю долю гипофиза. Здесь происходит депонирование гормонов и в дальнейшем выделение в кровь.

Антидиуретический. гормон (АДГ), или вазопрессин, осуществляет в организме антидиуретическое действие, которое выражается в стимуляции реабсорбции воды в дистальном отделе нефрона.

Это действие осуществляется благодаря взаимодействию гормона с вазопрессиновыми рецепторами типа V-2, что приводит к повышению проницаемости стенки канальцев и собирательных трубочек для воды, ее реабсорбции и концентрированию мочи. В клетках канальцев происходит также активация гиалуронидазы, что приводит к усилению деполимеризации гиалуроновой кислоты, в результате чего повышается реабсорбция воды и увеличивается объем циркулирующей жидкости.

При недостаточности образования АДГ развивается несахарный диабет, или несахарное мочеизнурение, который проявляется выделением больших количеств мочи (до 25 л в сутки) низкой плотности, повышенной жаждой. Причинами несахарного диабета могут быть острые и хронические инфекции, при которых поражается гипоталамус (грипп, корь, малярия), черепно-мозговые травмы, опухоль гипоталамуса.

Избыточная секреция АДГ ведет, напротив, к задержке воды в организме.

Окситоцин избирательно действует на гладкую мускулатуру матки, вызывая ее сокращения при родах. На поверхностной мембране клеток существуют специальные окситоциновые рецепторы. Во время беременности окситоцин не повышает сократительную активность матки, но перед родами под влиянием высоких концентраций эстрогенов резко возрастает чувствительность матки к окситоцину. Окситоцин участвует в процессе лактации. Усиливая сокращения миоэпителиальных клеток в молочных железах, он способствует выделению молока. Увеличение секреции окситоцина происходит под влиянием импульсов от рецепторов шейки матки, а также механорецепторов сосков грудной железы при кормлении грудью. Эстрогены усиливают секрецию окситоцина. Функции окситоцина в мужском организме изучены не достаточно.



Недостаток продукции окситоцина вызывает слабость родовой деятельности.

Щитовидная железа

Щитовидная железа состоит из двух долей, соединенных перешейком и расположенных на шее по обеим сторонам трахеи ниже щитовидного хряща. Она имеет дольчатое строение. Ткань железы состоит из фолликулов, заполненных коллоидом, в котором имеются йодсодержащие гормоны тироксин (тетрайодтиронин) и трийодтиронин в связанном состоянии с белком тиреоглобулином. В межфолликулярном пространстве расположены парафолликулярные клетки, которые вырабатывают гормон тиреокальцитонин. Содержание тироксина в крови больше, чем трийодтиронина. Однако активность трийодтиронина выше, чем тироксина. Эти гормоны образуются из аминокислоты тирозина путем ее йодирования. Инактивация происходит в печени посредством образования парных соединений с глюкуроновой кислотой.

Йодсодержащие гормоны выполняют в организме следующие функции: 1) усиление всех видов обмена (белкового, липидного, углеводного), повышение основного обмена и усиление энергообразования в организме; 2) влияние на процессы роста, физическое и умственное развитие; 3) увеличение частоты сердечных сокращений; 4) стимуляция деятельности пищеварительного тракта: повышение аппетита, усиление перистальтики кишечника, увеличение секреции пищеварительных соков; 5) повышение температуры тела за счет усиления теплопродукции; 6) повышение возбудимости симпатической нервной системы.

Секреция гормонов щитовидной железы регулируется тиреотропным гормоном аденогипофиза, тиреолиберином гипоталамуса, содержанием йода в крови. При недостатке йода в крови, а также йодсодержащих гормонов по механизму положительной обратной связи усиливается выработка тиреолиберина, который стимулирует синтез тиреотропного гормона, что, в свою очередь, приводит к увеличению продукции гормонов щитовидной железы. При избыточном количестве йода в крови и гормонов щитовидной железы работает механизм отрицательной обратной связи.

Нарушения функции щитовидной железы проявляются ее гипофункцией и гиперфункцией. Если недостаточность функции развивается в детском возрасте, то это приводит к задержке роста, нарушению пропорций тела, полового и умственного развития. Такое патологическое состояние называется кретинизмом.

У взрослых гипофункция щитовидной железы приводит к развитию патологического состояния - микседемы. При этом заболевании наблюдается торможение нервно-психической активности, что проявляется в вялости, сонливости, апатии, снижении интеллекта, нарушении половых функций, угнетении всех видов обмена веществ и снижении основного обмена. У таких больных увеличена масса тела за счет повышения количества тканевой жидкости и отмечается одутловатость лица. Отсюда и название этого заболевания: микседема - слизистый отек

Гипофункция щитовидной железы может развиться у людей проживающих в местностях, где в воде и почве отмечается недостаток йода. Это так называемый эндемический зоб. Щитовидная железа при этом заболевании увеличена (зоб), возрастает количество фолликулов, однако из-за недостатка йода гормонов o6разуется мало, что приводит к соответствующим нарушениям в организме, проявляющимся в виде гипотиреоза.

При гиперфункции щитовидной железы развивается заболевание тиреотоксикоз (диффузный токсический зоб, Базедова болезнь, болезнь Грейвса). Характерными признаками этого заболевания являются увеличение щитовидной железы (зоб) экзофтальм, тахикардия, повышение обмена веществ, особенно основного, потеря массы тела, увеличение аппетита, нарушение теплового баланса организма, повышение возбудимости и раздражительности.

Кальцитонин, или тиреокальцитонин , вместе с паратгормоном околощитовидных желез участвует в регуляции кальциевого обмена. Под его влиянием снижается уровень кальция в крови (гипокальциемия). Это происходит в результате действия гормона на костную ткань, где он активирует функцию остеобластов и усиливает процессы минерализации. Функция остеокластов, разрушающих костную ткань, напротив, угнетается. В почках и кишечнике кальцитонин угнетает реабсорбцию кальция и усиливает обратное всасывание фосфатов. Продукция тиреокальцитонина регулируется уровнем кальция в плазме крови по типу обратной связи. При снижении содержания кальция тормозится выработка тиреокальцитонина, и наоборот.

Формирование состава конечной мочи осуществляется в ходе трех процессов — , реабсорбции и секреции в канальцах, трубочках и протоках. Оно представлено следующей формулой:

Выделение = (Фильтрация — Реабсорбция) + Секреция.

Интенсивность выделения многих веществ из организма определяется в большей степени реабсорбцией, а некоторых веществ — секрецией.

Реабсорбция (обратное всасывание) - это возврат необходимых организму веществ из просвета канальцев, трубочек и протоков в интерстиций и кровь (рис. 1).

Реабсорбция характеризуется двумя особенностями.

Во-первых, канальцевая реабсорбция жидкости (воды), как и , является значительным в количественном отношении процессом. Это означает, что потенциальный эффект от малого изменения реабсорбции может оказаться очень существенным для объема выделяемой мочи. Например, снижение реабсорбция всего на 5% (со 178,5 до 169,5 л/сут) увеличит объем конечной мочи с 1,5 л до 10,5 л/сут (в 7 раз, или на 600%) при прежнем уровне фильтрации в клубочках.

Во-вторых, канальцевая реабсорбция отличается высокой селективностью (избирательностью). Некоторые вещества (аминокислоты, глюкоза) почти полностью (более чем на 99%) реабсорбируются, а вода и электролиты (натрий, калий, хлор, бикарбонаты) в очень значительных количествах подвергаются реабсорбции, но их реабсорбция может существенно изменяться в зависимости от потребностей организма, что сказывается на содержании этих веществ в конечной моче. Другие вещества (например, мочевина) реабсорбируются значительно хуже и выделяются в больших количествах с мочой. Многие вещества после фильтрации не подвергаются реабсорбции и полностью экскретируются при любой их концентрации в крови (например, креатинин, инулин). Благодаря избирательной реабсорбции веществ в почках осуществляется точный контроль состава жидких сред организма.

Рис. 1. Локализация транспортных процессов (секреции и реабсорбцин в нефроне)

Вещества в зависимости от механизмов и степени их реабсорбции делят на пороговые и беспороговые.

Пороговые вещества в нормальных условиях реабсорбируются из первичной мочи почти полностью при участии механизмов облегченного транспорта. Эти вещества появляются в значительных количествах в конечной моче, когда их концентрация в плазме крови (и тем самым в первичной моче) увеличится и превысит «порог выведения», или «почечный порог». Величина этого порога определяется возможностями белков-переносчиков в мембране эпителиальных клеток обеспечивать перенос профильтровавщихся веществ через стенку канальцев. При исчерпании (перенасыщении) возможностей транспорта, когда в переносе задействованы все белки-переносчики, часть вещества не может реабсорбироваться в кровь, и оно появляется в конечной моче. Так, например, порог выведения для глюкозы составляет 10 ммоль/л (1,8 г/л) и почти в 2 раза превышает ее нормальное содержание в крови (3,33-5,55 ммоль/л). Это означает, что если концентрация глюкозы в плазме крови превышает 10 ммоль/л, то наблюдается глюкозурия — выделение глюкозы с мочой (в количествах более 100 мг/суг). Интенсивность глюкозурии возрастает пропорционально увеличению содержания глюкозы в плазме крови, что является важным диагностическим признаком тяжести сахарного диабета. В норме уровень глюкозы в плазме крови (и первичной моче) даже после еды почти никогда не превышает величины (10 ммоль/л), необходимой для ее появления в конечной моче.

Беспороговые вещества не имеют порога выведения и удаляются из организма при любой их концентрации в плазме крови. Такими веществами обычно являются продукты метаболизма, подлежащие удалению из организма (креатинин), и другие органические вещества (например, инулин). Эти вещества используются для исследования функций почек.

Одни из удаляемых веществ могут частично реабсорбироваться (мочевина, мочевая кислота) и выводятся не полностью (табл. 1), другие практически не реабсорбируются (креатинин, сульфаты, инулин).

Таблица 1. Фильтрация, реабсорбции и выделение почками различных веществ

Реабсорбция — многоэтапный процесс , включающий переход воды и растворенных в ней веществ сначала из первичной мочи в межклеточную жидкость, а затем через стенки перитубулярных капилляров в кровь. Переносимые вещества могут проникать в межклеточную жидкость из первичной мочи двумя путями: трансцеллюлярно (через клетки канальцевого эпителия) либо парацеллюлярно (по межклеточным пространствам). Реабсорбция макромолекул при этом осуществляется за счет эндоцитоза, а минеральных и низкомолекулярных органических веществ — за счет активного и пассивного транспорта, воды — через аквапорины пассивно, путем осмоса. Из межклеточных пространств в перитубулярные капилляры растворенные вещества реабсорбируются под действием разницы сил между давлением крови в капиллярах (8-15 мм рт. ст.) и ее коллоидно-осмотическим (онкотическим) давлением (28-32 мм рт. ст.).

Процесс реабсорбции ионов Na+ из просвета канальцев в кровь состоит как минимум из грех этапов. На 1-м этапе ионы Na+ поступают из первичной мочи в клетку эпителия канальца через апикальную мембрану пассивно путем облегченной диффузии с помощью белков-переносчиков по концентрационному и электрическому градиентам, создаваемым работой Na+/K+ насоса базолатеральной поверхности эпителиальной клетки. Поступление ионов Na+ в клетку часто сопряжено с совместным транспортом глюкозы (белок-переносчик (SGLUT-1) или аминокислот (в проксимальном канальце), ионов К+ и CI+ (в петле Генле) в клетку (котранспорт, симпорт) или с контртранспортом (антипортом) ионов Н+ , NH3+ из клетки в первичную мочу. На 2-м этапе транспорт ионов Na+ через базолагеральную мембрану в межклеточную жидкость осуществляется первично-активным транспортом против электрического и концентрационного градиентов с помощью Na+/К+ насоса (АТФазы). Реабсорбция ионов Na+ способствует обратному всасыванию воды (путем осмоса), вслед за которой пассивно всасываются ионы CI-, НС0 3 -, частично мочевина. На 3-м этапе реабсорбция ионов Na+, воды и других веществ из межклеточной жидкости в капилляры происходит под действием сил градиентов гидростатического и .

Глюкоза, аминокислоты, витамины реабсорбируются из первичной мочи путем вторично-активного транспорта (симпорта совместно с ионом Na+). Белок-переносчик апикальной мембраны эпителиальной клетки канальца связывает ион Na+ и молекулу органического вещества (глюкозу SGLUT-1 или аминокислоту) и перемещает их внутрь клетки, причем движущей силой является диффузия Na+ в клетку по электрохимическому градиенту. Из клетки через базолагеральную мембрану глюкоза (с участием белка-переносчика GLUT-2) и аминокислоты выходят пассивно путем облегченной диффузии по концентрационному градиенту.

Белки молекулярной массой менее 70 кД, фильтрующиеся из крови в первичную мочу, реабсорбируются в проксимальных канальцах путем пиноцитоза, частично расщепляются в эпителии лизосомными ферментами, и низкомолекулярные компоненты и аминокислоты возвращаются в кровь. Появление белка в моче обозначается термином «протеинурия» (чаще альбуминурия). Кратковременная протеинурия до 1 г/л может развиться у здоровых лиц после интенсивной продолжительной физической работы. Наличие постоянной и более высокой протеинурии — признак нарушения механизмов клубочковой фильтрации и (или) канальцевой реабсорбции в почках. Клубочковая (гломерулярная) протеинурия обычно развивается при повышении проницаемости клубочкового фильтра. В результате белок поступает в полость капсулы Шумлянского-Боумена и проксимальные канальцы в количествах, превышающих возможности его ребсорбции механизмами канальцев — развивается умеренная протеинурия. Канальцевая (тубулярная) протеинурия связана с нарушением реабсорбции белка вследствие повреждения эпителия канальцев или нарушения лимфооттока. При одновременном повреждении клубочковых и канальцевых механизмов развивается высокая протеинурия.

Реабсорбция веществ в почках тесно связана с процессом секреции. Термин «секреция» для описания работы почек используется в двух значениях. Во-первых, секреция в почках рассматривается как процесс (механизм) транспорта веществ, подлежащих удалению в просвет канальцев не через клубочки, а из интерстиция почки или непосредственно из клеток почечного эпителия. При этом выполняется экскреторная функция почки. Секреция веществ в мочу осуществляется активно и (или) пассивно и часто сопряжена с процессами образования этих веществ в эпителиоцитах канальцев почек. Секреция дает возможность быстро удалить из организма ионы К+, Н+, NН3+, а также некоторые другие органические и лекарственные вещества. Во-вторых, термин «секреция» используется для описания синтеза в почках и высвобождения ими в кровь гормонов эритропоэтина и кальцитриола, фермента ренина и других веществ. В почках активно идут процессы глюконеогенеза, и образующаяся при этом глюкоза также транспортируется (секретируется) в кровь.

Реабсорбция и секреция веществ в различных отделах нефрона

Осмотическое разведение и концентрирование мочи

Проксимальные канальцы обеспечивают реабсорбцию большей части воды из первичной мочи (примерно 2/3 объема клубочкового фильтрата), значительное количество ионов Na + , К+, Са 2+ , СI-, НСО 3 -. Практически все органические вещества (аминокислоты, белки, глюкоза, витамины), микроэлементы и другие необходимые организму вещества реабсорбируются в проксимальных канальцах (рис. 6.2). В других отделах нефрона осуществляется только реабсорбция воды, ионов и мочевины. Столь высокая реабсорбционная способность проксимального канальца обусловлена рядом структурных и функциональных особенностей его эпителиальных клеток. Они оснащены хорошо развитой щеточной каемкой на апикальной мембране, а также широким лабиринтом межклеточных пространств и каналов на базальной стороне клеток, что существенно увеличивает площадь всасывания (в 60 раз) и ускоряет транспорт веществ через них. В эпителиоцитах проксимальных канальцев очень много митохондрий, и интенсивность метаболизма в них в 2 раза превосходит таковую в нейронах. Это обеспечивает возможность получения достаточного количества АТФ для осуществления активного транспорта веществ. Важная особенность реабсорбции в проксимальной части канальцев заключается в том, что вода и растворенные в ней вещества реабсорбируются здесь в эквивалентных количествах, что обеспечивает изоосмолярность мочи проксимальных канальцев и ее изоосмотичность с плазмой крови (280-300 мосмоль/л).

В проксимальных канальцах нефрона происходит первично-активная и вторично-активная секреция веществ в просвет канальцев с помощью различных белков-переносчиков. Секреция выводимых веществ осуществляется как из крови перитубулярных капилляров, так и химических соединений, образующихся непосредственно в клетках канальцевого эпителия. Из плазмы крови в мочу секретируются многие органические кислоты и основания (например, парааминогиппуровая кислота (ПАГ), холин, тиамин, серотонин, гуанидин и др.), ионы (Н+, NH3+, К+), лекарственные вещества (пенициллин и др.). Для ряда ксенобиотиков органического происхождения, поступивших в организм (антибиотики, красители, рентгено- контрастные вещества), скорость их выделения из крови путем канальцевой секреции значительно превышает их выведение путем клубочковой фильтрации. Секреция ПАГ в проксимальных канальцах идет столь интенсивно, что кровь очищается от нее уже за одно прохождение через перитубулярные капилляры коркового вещества (следовательно, определяя клиренс ПАГ, можно рассчитать объем эффективного, участвующего в моче- образовании почечного плазмотока). В клетках канальцевого эпителия при дезаминировании аминокислоты глутамина образуется аммиак (NH 3), который секретируется в просвет канальца и поступает в мочу. В ней аммиак связывается с ионами Н+ с образованием иона аммония NH 4 + (NH 3 + Н+ -> NH4+). Секретируя NH 3 , и ионы Н + , почки принимают участие в регуляции кислотно-основного состояния крови (организма).

В петле Генле реабсорбция воды и ионов пространственно разделены, что обусловлено особенностями строения и функций ее эпителия, а также гиперосмотичностью мозгового вещества почек. Нисходящая часть петли Генле высокопроницаема для воды и только умеренно проницаема для растворенных в ней веществ (включая натрий, мочевину и др.). В нисходящей части петли Генле происходит реабсорбция 20% воды (под действием высокого осмотического давления в окружающей каналец среде), а осмотически активные вещества остаются в канальцевой моче. Это обусловлено высоким содержанием хлорида натрия и мочевины в гиперосмотичной межклеточной жидкости мозгового слоя почки. Осмотичность мочи по мере ее продвижения к вершине петли Генле (вглубь мозгового слоя почки) возрастает (за счет реабсорбции воды и поступления хлорида натрия и мочевины по концентрационному градиенту), а объем — уменьшается (за счет реабсорбции воды). Данный процесс называется осмотическим концентрированием мочи. Максимальная осмотичность канальцевой мочи (1200-1500 мосмоль/л) достигается на вершине петли Генле юкстамедуллярных нефронов.

Далее моча поступает в восходящее колено петли Генле, эпителий которого не проницаем для воды, но проницаем для ионов, растворенных в ней. Этот отдел обеспечивает реабсорбцию 25% ионов (Na + , K+, СI-) от их общего количества, поступившего в первичную мочу. Эпителий толстой восходящей части петли Генле имеет мощную ферментную систему активного транспорта ионов Na+ и К+ в виде Na+/К+ насосов, встроенных в базальные мембраны эпителиальных клеток.

В апикальных мембранах эпителия имеется котранспортный белок, одновременно переносящий из мочи в цитоплазму один ион Na+ два иона СI- и один ион К+. Источником движущей силы для этого котранспортера является энергия, с которой ионы Na+ по градиенту концентрации устремляются в клетку, ее достаточно и для перемещения ионов К против градиента концентрации. Ионы Na+ могут поступать в клетку и в обмен на ионы Н с помощью Na+/Н+ котранспортера. Выход (секреция) К+ и Н+ в просвет канальца создает в нем избыточный положительный заряд (до +8 мВ), который способствует диффузии катионов (Na+, К+, Са 2+ , Mg 2+) парацеллюлярно, через межклеточные контакты.

Вторично-активный и первично-активный транспорт ионов из восходящего колена петли Генле в окружающее каналец пространство является важнейшим механизмом создания высокого осмотического давления в интерстиции мозгового слоя почки. В восходящем отделе петли Генле вода не реабсорбируется, а концентрация осмотически активных веществ (прежде всего ионов Na+ и СI+) в канальцевой жидкости снижается вследствие их реабсорбции. Поэтому на выходе из петли Генле в канальцах всегда находится гипотоничная моча с концентрацией осмотически активных веществ ниже 200 мосмоль/л. Такое явление называют осмотическим разведением мочи , а восходящую часть петли Генле — разводящим сегментом нефрона.

Создание гиперосмотичности в мозговом веществе почки рассматривается как главная функция петли нефрона. Выделяют несколько механизмов ее создания:

  • активная работа поворотно-противоточной системы канальцев (восходящего и нисходящего) петли нефрона и мозговых собирательных протоков. Движение жидкости в петле нефрона в противоположных направлениях навстречу друг другу вызывает суммацию небольших поперечных градиентов и формирует большой продольный корково-мозговой градиент осмоляльности (от 300 мосмоль/л в корковом веществе до 1500 мосмоль/л возле вершины пирамид в мозговом веществе). Механизм работы петли Генле получил название поворотно-противоточной множительной системы нефрона. Петля Генле юкстамедуллярных нефронов, пронизывающая насквозь все мозговое вещество почки, играет основную роль в этом механизме;
  • циркуляция двух главных осмотически активных соединений — натрия хлорида и мочевины. Эти вещества вносят основной вклад в создание гиперосмотичности интерстиция мозгового вещества почек. Их циркуляция зависит от избирательной проницаемости мембраны восходящего колена петли нсфрона для электролитов (но не для воды), а также регулируемой АДГ проницаемости стенок мозговых собирательных протоков для воды и мочевины. Натрия хлорид циркулирует в петле нефрона (в восходящем колене ионы активно реабсорбируются в интерстиций мозгового вещества, а из него согласно законам диффузии поступают в нисходящее колено и снова поднимаются в восходящее колено и т.д.). Мочевина циркулирует в системе собирательный проток мозгового вещества — интерстиций мозгового вещества -тонкая часть петли Генле — собирательный проток мозгового вещества;
  • пассивная поворотно-противоточная система прямых кровеносных сосудов мозгового вещества почек берег начало от выносящих сосудов юкстамедуллярных нефронов и идет параллельно петле Генле. Кровь движется по нисходящему прямому колену капилляра в область с возрастающей осмолярностью, а затем после поворота на 180° — в обратном направлении. При этом ионы и мочевина, а также вода (в противоположном ионам и мочевине направлении) совершают челночные перемещения между нисходящими и восходящими частями прямых капилляров, что обеспечивает поддержание высокой осмоляльности мозгового вещества почки. Этому способствует также низкая объемная скорость кровотока через прямые капилляры.

Из петли Генле моча попадает в дистальный извитой каналец, далее — в соединительный каналец, затем — в собирательную трубочку и собирательный проток коркового вещества почек. Все указанные структуры расположены в корковом веществе почки.

В дистальных и соединительных канальцах нефрона и собирательных трубочках реабсорбция ионов Na+ и воды зависит от состояния водно-электролитного баланса организма и находится под контролем антидиуретического гормона, альдостерона, натрийуретического пептида.

Первая половина дистального канальца является продолжением толстого сегмента восходящей части петли Генле и сохраняет ее свойства — проницаемость для воды и мочевины практически равна нулю, но здесь активно реабсорбируются ионы Na+ и СI- (5% от объема их фильтрации в клубочках) путем симпорта с помощью Na+/CI- котранспортера. Моча в ней становится еще более разбавленной (гипоосмотичной).

По этой причине первую половину дистального канальца, как и восходящую часть петли нефрона, относят к разводящему мочу сегменту.

Вторая половина дистального канальца, соединительный каналец, собирательные трубочки и протоки коркового вещества имеют схожее строение и схожие функциональные характеристики. Среди клеток их стенок выделяют два основных типа — главные и вставочные клетки. Главные клетки реабсорбируют ионы Na+ и воду и секретируют в просвет канальца ионы К+. Проницаемость главных клеток для воды (почти полностью) регулируется АДГ. Этот механизм предоставляет организму возможность управлять объемом выделенной мочи и ее осмолярностыо. Здесь начинается концентрирование вторичной мочи — от гипотоничной до изотоничной (). Вставочные клетки реабсорбируют ионы К+, карбонаты и секретируют в просвет ионы Н+. Секреция протонов идет первично-активно за счет работы Н+ транспортирующих АТФаз против значительного градиента концентрации, превышающего 1000:1. Вставочные клетки играют ключевую роль в регуляции кислотно-основного равновесия в организме. Оба типа клеток практически непроницаемы для мочевины. Поэтому мочевина остается в моче в той же концентрации от начала толстой части восходящего колена петли Генле до собирательных протоков мозгового вещества почки.

Собирательные протоки мозгового вещества почки представляют собой отдел, в котором состав мочи формируется окончательно. Клетки этого отдела играют чрезвычайно важную роль в определении содержания воды и растворенных веществ в выделяемой (конечной) моче. Здесь реабсорбируется до 8% всей профильтровавшейся воды и только 1% ионов Na+ и СI-, и реабсорбция воды играет главную роль в концентрировании конечной мочи. В отличие от вышележащих отделов нефрона стенки собирательных протоков, располагающиеся в мозговом веществе почки, проницаемы для мочевины. Реабсорбция мочевины способствует поддержанию высокой осмолярности интерстиция глубоких слоев мозгового вещества почки и формированию концентрированной мочи. Проницаемость собирательных протоков для мочевины и воды регулируется АДГ, для ионов Na+ и СI- альдостероном. Клетки собирательных протоков способны реабсорбировать бикарбонаты и секретировать протоны, преодолевая высокий градиент концентрации.

Методы исследования экскреторной функции ночек

Определение почечного клиренса для разных веществ позволяет исследовать интенсивность протекания всех трех процессов (фильтрации, реабсорбции и секреции), определяющих выделительную функцию почек. Почечный клиренс вещества — это объем плазмы крови (мл), который с помощью почек освобождается от вещества за единицу времени (мин). Клиренс описывается формулой

К в * ПК в = М в * О м,

где К в — клиренс вещества; ПК В — концентрация вещества в плазме крови; М в — концентрация вещества в моче; О м — объем выделенной мочи.

Если вещество свободно фильтруется, но не реабсорбируется и не секретируется, тогда интенсивность его выделения с мочой (М в. О м) будет равна скорости фильтрации вещества в клубочках (СКФ. ПК в). Отсюда можно вычислить путем определения клиренса вещества:

СКФ = М в. О м /ПК в

Таким веществом, удовлетворяющим перечисленным выше критериям, является инулин, клиренс которого составляет в среднем у мужчин 125 мл/мин, у женщин 110 мл/мин. Значит, количество плазмы крови, проходящей через сосуды почек и профильтрованной в клубочках для доставки такого количества инулина в конечную мочу, должно составить 125 мл у мужчин и 110 мл у женщин. Таким образом, объем образования первичной мочи составляет у мужчин 180 л/сут (125 мл/мин. 60 мин. 24 ч), у женщин 150 л/сут (110 мл/мин. 60 мин. 24 ч).

Учитывая, что полисахарид инулин отсутствует в организме человека и его требуется вводить внутривенно, в клинике для определения СКФ чаще используется другое вещество — креатинин.

Определив клиренс других веществ и сравнив его с клиренсом инулина, можно оценить процессы реабсорбции и секреции этих веществ в почечных канальцах. Если клиренсы вещества и инулина совпадают, то данное вещество выделяется только с помощью фильтрации; если клиренс вещества больше, чем у инулина, то вещество дополнительно секретируется в просвет канальцев; если клиренс вещества меньше, чем у инулина, то оно, по-видимому, частично реабсорбируется. Зная интенсивность выделения вещества с мочой (М в. О м), можно рассчитать интенсивность процессов реабсорбции (реабсорбция = Фильтрация — Выделение = СКФ. ПК в — М в. О м) и секреции (Секреция = Выделение — Фильтрация = М в. О м — СКФ. ПК).

С помощью клиренса некоторых веществ можно оценивать величину почечного плазмотока и кровотока. Для этого используют вещества, которые высвобождаются в мочу путем фильтрации и секреции и при этом не реабсорбируются. Клиренс таких веществ теоретически будет равен общему плазма- току в почке. Подобных веществ практически нет, тем не менее от некоторых веществ кровь очищается при одном прохождении через ночки почти на 90%. Одним из таких естественных веществ является парааминогиппуровая кислота, клиренс которой составляет 585 мл/мин, что позволяет оценить величину почечного плазмотока в 650 мл/мин (585: 0,9) с учетом коэффициента ее извлечения из крови 90%. При гематокрите, равном 45%, и почечном плазмотоке 650 мл/мин, кровоток в обеих почках составит 1182 мл/мин, т.е. 650 / (1-0,45).

Регуляция канальцевой реабсорбции и секреции

Регуляция канальцевой реабсорбции и секреции осуществляется, главным образом, в дистальных отделах нефрона с помощью гуморальных механизмов, т.е. находится под контролем различных гормонов.

Проксимальная реабсорбция в отличие процессов переноса веществ в дистальных канальцах и собирательных трубочках не подвергается такому тщательному контролю со стороны организма, поэтому ее часто называют облигатной реабсорбцией. В настоящее время установлено, что интенсивность облигатной реабсорбции может изменяться под влиянием некоторых нервных и гуморальных воздействий. Так, возбуждение симпатической нервной системы ведет к увеличению реабсорбции ионов Na + , фосфатов, глюкозы, воды клетками эпителия проксимальных канальцев нефрона. Ангиотензин-Н также способен вызывать увеличение скорости проксимальной реабсорбции ионов Na + .

Интенсивность проксимальной реабсорбции зависит от величины клубочковой фильтрации и возрастает с увеличением скорости клубочковой фильтрации, что носит название клубочково-канальцевое равновесие. Механизмы сохранения этого равновесия до конца не изучены, однако известно, что они относятся к внутрипочечным регуляторным механизмам и их осуществление не требует дополнительных нервных и гуморальных влияний со стороны организма.

В дистальных канальцах и собирательных трубочках почки осуществляется, главным образом, реабсорбция воды и ионов, выраженность которой зависит от водно-электролитного баланса организма. Дистальная реабсорбция воды и ионов называется факультативной и контролируется антидиуретическим гормоном, альдостероном, Предсердным натрийуретическим гормоном.

Образование антидиуретического гормона (вазопрессина) в гипоталамусе и выброс его в кровь из гипофиза увеличивается при уменьшении содержания воды в организме (дегидратации), снижении артериального давления крови (гипотензии), а также при повышении осмотического давления крови (гиперосмии). Этот гормон действует на эпителий дистальных канальцев и собирательных трубочек почки и вызывает повышение его проницаемости для воды вследствие формирования в цитоплазме эпителиальных клеток особых белков (аквапоринов), которые встраиваются в мембраны и формируют каналы для тока воды. Под влиянием антидиуретичсского гормона происходит увеличение реабсорбции воды, снижение диуреза и повышение концентрации образующейся мочи. Таким образом, антидиуретический гормон способствует сохранению воды в организме.

При снижении выработки антидиуретического гормона (травма, опухоль гипоталамуса) образуется большое количество гипотоничной мочи (несахарный диабет); потеря жидкости с мочой может привести к обезвоживанию организма.

Альдостерон вырабатывается в клубочковой зоне коры надпочечников, действует на эпителиальные клетки дистальных отделов нефрона и собирательных трубочек, вызывает увеличение реабсорбции ионов Na+, воды и повышение секреции ионов К+ (или ионов Н+ при их избыточном содержании в организме). Альдостерон является частью ренин-ангиотензии-альдостероновой системы (функции которой рассмотрены ранее).

Предсердный натрийуретический гормон образуется миоцитами предсердий при их растяжении избыточным объемом крови, то есть при гиперволемии. Под влиянием этого гормона происходит увеличение клубочковой фильтрации и уменьшение реабсорбции ионов Na + и воды в дистальных отделах нефрона, вследствие чего происходит усиление процесса мочеобразования и выведение из организма избытка воды. Кроме того, этот гормон снижает продукцию ренина и альдостерона, что дополнительно тормозит дистальную реабсорбцию ионов Na + и воды.

Регуляция работы почек, как важного органа, поддерживающего гомеостаз, осуществляется нервным, гуморальным путем и саморегуляцией. Почки обильно снабжены волокнами симпатической нервной системы и парасимпатической (окончания блуждающего нерва). При раздражении симпатических нервов уменьшается количество притекающей к почкам крови, давление в клубочках падает, в результате мочеобразование уменьшается. Резко уменьшается образование мочи при болевых раздражениях из-за резкого сужения сосудов. Раздражение блуждающего нерва приводит к усилению мочеобразования. Однако даже при полном пересечении всех нервов, подходящих к почке, она продолжает работать почти нормально, что свидетельствует о высокой способности почки к саморегуляции. Саморегуляция осуществляется выработкой самой почкой биологически активных веществ: ренина, эритропоэтина, простагландмиов. Эти вещества регулируют кровоток в почках, процессы фильтрации и всасывания.

Гуморальная регуляция работы почек осуществляется рядом гормонов:

Вазопрессин (антидиуретическийтормон), вырабатываемый гипоталамусом, усиливает обратное всасывание воды в канальцах нефронов

Альдосгерон - гормон коры надпочечников - усиливает всасывание ионов Na+ и К+

Тироксин - гормон щитовидной железы - усиливает мочеобразование

Адреналин - гормон надпочечников - вызывает уменьшение мочеобразования.

Мочеобразование регулируется нервными и рефлекторными механизмами. Почки иннервируются симпатическими и парасимпатическими волокнами, отходящими от спинного и продолговатого мозга. Рефлекторное влияние на функцию почек осуществляется также гипоталамической областью и корой головного мозга. Влияние нервной системы на моче-образование доказывается следующими опытами: если вызывать болевое раздражение у животных, то образование мочи уменьшается вплоть до полного прекращения ее выделения. Причем, может наблю­даться условнорефлекторная анурия. При растяжении одного мочеточника также наблюдается торможение образования мочи в обоих почках. Далее было показано, что задержку мочеиспускания можно получить при раздражении хеморецепторов синокаротидных сосудистых зон. Укол в дно четвертого желудочка, в зрительный или серый бугры вызывают усиление мочеобразования. По-видимому, все эти влияния должны быть отнесены к типу защитных рефлексов, имеющих небольшое значение в жизнедеятельности организма.

Гораздо большее значение имеет влияние на почки, поддерживающие постоянство внутренней среды. К ним относятся осморегулирующие рефлексы, обеспечивающие постоянство концентрации ионного состава и других активных веществ, а также регулирующие общий объем внеклеточной воды. Несомненно, что эти важнейшие регуляции осуществляются по типу рефлексов. Исследования показывают, что при полной денервации почек нарушение их деятельности наступает лишь на первое время после операции: через 1-2 дня функция денервированных почек восстанавливается. Следовательно, функция почек существенно не зависит от нервной системы. На это указывают также и опыты с пересадкой no-чек: если почку пересадить в другую область организма, то выделительная функция ее не нарушается.

Однако, опыты с пересадкой почек не означают, что нервная система не влияет на их функции. Так, нормальные почки на введение салициловых препаратов отвечают выделением мочевой кислоты, а де-нервированные почки исключают эту реакцию. Или достаточно охладить животное, у которого денервирована одна почка, то наблюдается длительное уве-личение выделения мочи (полиурия).

Нервная система действует на почки двояко. Во-первых на кровеносные сосуды, во-вторых, на всасывающую способность клеток почечных канальцев. Так если раздражать симпатические нервы, иннервирующие почки, то образование количества мочи уменьшается. Это происходит потому, что суживаются приносящие сосуды, давление в них падает и образование мочи уменьшается. Если же суживаются выносящие сосуды, то давление в приносящих сосу-дах клубочка увеличивается и мочеобразование возрастает. На этом основан мочегонный эффект кофеина. Непосредственное влияние нервной системы на обратный транспорт канальцевого эпителия проявля-ется при раздражении симпатических волокон, когда наблюдается увеличение реабсорбции воды в канальцах. Дальнейшие наблюдения показали, что денервированная почка не только сохраняет свою способность в мочеобразовании, но и по-прежнему реагирует на все экстеро- и интерораздражители. Сохраняются также и условные рефлексы, выработанные на животных до операции.

Указанные опыты свидетельствуют о том, что регулирующие влияние ЦНС могут осуществляться на почку не только нервным путем, но и гуморально, особенно через железы внутренней секреции. Доказано, что на функцию почек оказывают влияние гормоны гипоталамуса, надпочечников и щитовидной железы. Наиболее изученными являются действия гипоталамуса, который выделяет гормон вазопрессин. В отсутствии этого гормона совершенно пре­кращается обратное всасывание воды в канальцах. Вазопрессин регулирует обратный транспорт воды в дистальном отделе нефрона. Большое значение в функции почек играют надпочечники, в которых выделяется гормон альдостерон, регулирующий обратный транспорт ионов натрия в канальцевом аппарате почек. Гормоны щитовидной железы (тироксин, трийодтиронин) являются антагонистами гормона вазопрессина.

Особая роль почек заключается в регуляции постоянства состава крови в отношении воды и ионов. В основе этой деятельности лежит осморегулирующий рефлекс. Этот рефлекс проявляется следующим образом: если под влиянием поступления солей увеличивается осмотическое давление крови, то стимулируется синтез вазопрессина и обратный транспорт воды в организме возрастает, за счет чего сохраняется осмотическое давление. Если же в организм по­ступает большое количество воды, то синтез вазопрессина уменьшается и обратное всасывание воды тормозится, в результате чего сохраняется также осмотическое давление.

Аналогичным образом действует гормон альдостерон. Так если в организм поступает большое количество солей, то выработка альдостерона угнетается и обратное всасывание натрия уменьшается, при этом сохраняется постоянство осмотического давления. Если же в организм поступает большое количество воды, то синтез этого гормона возрастает, что сопровождается увеличением обратного транспорта натрия в кровь, что также поддерживает осмотиче­ский гомеостаз.

Образовавшаяся в почках моча по мочеточникам поступает в мочевой пузырь. Выведение мочи из мочевого пузыря происходит периодически, в то время как образование мочи идет непрерывно. Как только моча из лоханки почек поступает в мочеточники, начинается их волнообразные сокращения с чистотой 2-5 волн за одну минуту. Волна сокращения распространяется по мочеточнику со скоростью 2-3 см в секунду. Эти сокращения связаны с автоматическими свойствами гладкой мускулатуры мочеточников. Мочевой пузырь представляет собой полый мышечный орган, служащий резервуаром для скопления мочи. Опорожнение мочевого пузыря происходит периодически по мере его наполнения. У места вывода мочеточника из мочевого пузыря имеется кольцевая мускулатура - мочевой сфинктер, состоящий из гладких мышц. Несколько ниже этого сфинктера в мочеиспускательном канале имеется второй сфинктер, состоящий из поперечно-полосатых мышц. Во время мочеиспускания сфинктеры расслабляются, а мышцы стенки мочевого пузыря сокращаются, в результате чего происходит опорожнение мочевого пузыря.

Первые позывы на опорожнение мочевого пузыря происходят тогда, когда количество мочи достигает 200-300 мл, а давление в нем возрастает до 150-200 мм. вод. столба. Мочеиспускание представляет собой сложнорефлекторный акт, заключающийся в сокращении мышц стенки мочевого пузыря и расслабления сфинктеров. Этот рефлекс возникает под влиянием импульсов, поступающих в спинной мозг от мочевого пузыря к мочевыделительному центру. От этого центра поступает информация к органам мочевыделения, которые и осуществляют выделение мочи из мочевого пузыря. Спинальные мочеотделительные центры находятся под контролем коры головного мозга, поэтому акт мочеиспускания является произвольным, исключая детей определенного возраста.

Мочевыводящий аппарат иннервируется вегетативным отделом нервной системы. Симпатические волокна усиливают волнообразные сокращения мочеточников, но тормозят сокращения стенки мочевого пузыря. При этом тонус сфинктеров повышается. Следовательно, симпатические нервы способствуют наполнению мочевого пузыря. Парасимпатические волокна оказывают противоположное влияние: под влиянием парасимпатических волокон увеличиваются сокращения мышц мочевого пузыря, а сфинктеры расслабляются. Таким образом, парасимпатические влияния способствую опорожнению мочевого пузыря.

Корковый контроль проявляется в задержке или усилении мочеиспускания. В опорожнении мочевого пузыря большое значение имеют мышцы брюшного пресса, при сокращении которых усиливается выделение мочи из мочевого пузыря.

Зрительный анализатор включает в себя - периферическую часть (глазное яблоко), проводящий отдел (зрительные нервы, подкорковые зрительные центры) и корковую часть анализатора (затылочная доля коры больших полушарий).

Основной слой сетчатки глаза - фоторецептор (колбочки и палочки). Они обладают разной чувствительностью к цвету и свету: колбочки слабочувствительны к свету, колбочки - обеспечивают цветное восприятие мира. Палочки - не чувствительны к цвету, но чувствительны к свету (именно они обеспечивают сумеречное зрение – восприятие окружающего мира в черно-белом цвете в условиях слабой освещености).

Теория восприятия света. Когда лучи света попадают на сетчатку, в ней происходит ряд химических превращений, связанных с образованием зрительных пигментов: родопсина (содержится в палочках) и иодопсина (содержится в колбочках). В результате энергия света превращается в электрические сигналы - импульсы. Так, родопсин под влиянием света претерпевает ряд химических изменений - превращается в ретинол (альдегид витамина А) и белковый остаток - опсин. Затем под влиянием фермента (редуктазы) альдегид переходит в витамин А, который поступает в пигментный слой. В темноте происходит обратная реакция - витамин А восстанавливается до альдегида и происходит ресинтез родопсина.

Процесс цветного зрения связан с колбочками. Химические преобразования иодопсина и др. пигментов под действием света разной длины волн вызывает ряд электрофизических реакций связанных с восприятием цвета.

В темноте наблюдается явление - темновая адаптация (вначале колбочки, затем - палочки), что связано с восстановлением витамина А.

Цветное зрение. Наиболее принята теория трехцветного зрения. В колбочках различают до 400-800 дисков. Верхняя часть дисков воспринимает оранжевый цвет (длина волны 555 -570 нм); средняя - зеленый (длина волны 525-535 нм); нижняя - фиолетовый (длина волны 445-450 нм). Это основные цвета. Их смешивание дает все остальные цвета.

Слуховой анализатор воспринимает колебания воздуха и трансформирует механическую энергию этих колебаний в импульсы, которые в коре головного мозга воспринимаются как звуковые ощущения.

Воспринимающая часть слухового анализатора включает - наружное, среднее и внутреннее ухо (рис. 11.8.)- Наружное ухо представлена ушной раковиной (звукоуловитель) и наружным слуховым проходом, длина которого составляет 21- 27 мм, а диаметр 6-8 мм. Наружное и среднее ухо разделяет барабанная перепонка - мало податливая и слабо растягиваюшаяся мембрана.

Среднее ухо состоит из цепи соединенных между собой косточек: молоточек, наковальня и стремечко. Рукоятка молоточка прикрепляется к барабанной перепонке, основание стремечка - к овальному окну. Это своеобразный усилитель который в 20 раз усиливает колебания. В среднем ухе, кроме того, имеется две маленькие мышцы, прикрепляющиеся к косточкам. Сокращение этих мышц приводит к уменьшению колебаний. Давление в среднем ухе выравнивается за счет евстахиевой трубы, которая открывается в ротовую полость.

Внутреннее ухо соединено со средним при помощи овального окна, к которому прикрепляется стремечко. Во внутреннем ухе находится рецепторный аппарат двух анализаторов - воспринимающего и слухового (рис. 11.9.). Рецепторный аппарат слуха представлен улиткой. Улитка, длиной 35 мм и имеющая 2,5 завитка, состоит из костной и перепончатой части. Костная часть разделена двумя мембранами: основной и вестибулярной (рейснеровой) на три канала (верхний - вестибулярный, нижний - тимпанический, средний - барабанный). Средняя часть, называется улиточный ход (перепончатый). У верхушки - верхние и нижние каналы связаны геликотремой. Верхние и нижние каналы улитки заполнены перилимфой, средние - эндолимфой. Перилимфа по ионному составу напоминает плазму, эндолимфа - внутриклеточную жидкость (в 100 раз больше ионов К и в 10 раз ионов Na). Основная мембрана состоит из слабо натянутых эластических волокон, поэтому может колебаться. На основной мембране - в среднем канале расположены звуковоспринимающие рецепторы - кортиев орган (4 ряда волосковых клеток - 1 внутренний (3,5 тыс. клеток) и 3 наружных - 25-30 тыс. клеток). Сверху - тектореальная мембрана. Механизмы проведения звуковых колебаний. Звуковые волны пройдя через наружный слуховой проход колеблют барабанную перепонку, последняя приводит в движение косточки и мембрану овального окна. Колеблется перилимфа и к вершине колебания затухают. Колебания перилимфы передаются на вестибулярную мембрану, а последняя начинает ко-лебать эндолимфу и основную мембрану.

В улитке регистрируется: 1) Суммарный потенци-ал (между кортиевым органом и средним каналом - 150 мВ). Он не связан с проведением звуковых коле-баний. Он обусловлен уравнем окислительно-восстановительных процессов. 2) Потенциал действия слухового нерва. В физиологии также известен и третий - микрофонный - эффект заключающий в ледующем: если в улитку ввести электроды и соеди-нить с микрофоном, предварительно усилив его, и произносить в ухо кошке различные слова, то мик-рофон воспроизводит эти же слова. Микрофонный эффект генерируется поверхностью волосковых клеток, т. к. деформация волосков приводит к появле-нию разности потенциалов. Однако, этот эффект превосходит энергию вызвавших его звуковых колебаний. Отсюда микрофонный потенциал – непростое преобразование механической энергии в электрическую, а связан с обменными процессами в волосковых клетках. Местом возникновения микрофонного потенциала является область корешков волосков волосковых клеток. Звуковые колебания, действующие на внутреннее ухо, накладывают возникающий микрофонный эффект на эндокохлеарный потенциал.

Суммарный потенциал отличается от микрофонного тем, что отражает не форму звуковой волны, а ее огибающую и возникает при действии на ухо высокочастотных звуков (рис. 11.10). Потенциал действия слухового нерва генерируется езультате электрического возбуждения, возникающего в волосковых клетках в виде микрофонного эффекта и суммарного потенциала.

Между волосковыми клетками и нервными окончаниями имеются синапсы, при этом имеет место и химический и электрический механизмы передачи. Механизм передачи звука различной частоты. В течение длительного времени в физиологии господствовала резонаторная теория Гельмгольца: на основной мембране натянуты струны различной дли-ны, подобно арфе они имеют разную частоту колебаний. При действии звука начинает колебаться та часть мембраны, которая настроена в резонанс данной частоте. Колебания натянутых нитей раздражают соответствующие рецепторы. Однако, эта теория критикуется, т. к. струны не натянуты и их колебания в каждый данный момент включают слишком много волокон мембраны.

Заслуживает внимания теория Бекеше. В улитке имеется явление резонанса, однако, резонирующим субстратом являются не волокна основной мембраны, а столб жидкости определенной длины. По данным Бекеше, чем больше частота звука, тем меньше длина колеблющегося столба жидкости. При действии звуков низкой частоты длина колеблющегося столба жидкости увеличивается, захватывая большую часть основной мембраны, причем колеблются не отдельные волокна, а значительная их часть. Каждой высоте тона соответствует определенное количество рецепторов.

В настоящее время наиболее распространенной теорией восприятия звука разной частоты является "теория места",согласно которой не исключается участие воспринимающих клеток в анализе слуховых сигналов. Предполагается что волосковые клетки, расположенные на различных участках основной мембраны обладают различной лабильностью, что оказывает влияние на звуковые восприятия, т. е. речь идет о настройке волосковых клеток на звуки разной частоты.

Повреждения в различных участках основной мембраны приводит к ослаблению электрических явлений, возникающих при раздражении звуков разной частоты.

Антиноцицептивная система

Переносимость боли очень индивидуальна. Субъективную оценку боли в значительной мере определяют и обстоятельства, в которых она возникла. Например, спортсмены могут не испытывать сильной боли даже при тяжелых переломах. Раненные в бою легко переносят такие травмы, которые в мирной жизни вызвали бы мучительную боль. Вера, что боль пройдет, дает сильный анальгетический эффект. С другой стороны, многие находят невыносимой даже такую безобидную процедуру, как венепункция. Боль может появиться от одного только ее ожидания - без болевого раздражителя.

Поскольку психологические факторы играют столь важную роль в восприятии боли, должны существовать соответствующие нейронные системы, способные модулировать болевую чувствительность. Таких систем, скорее всего, несколько, но изучена пока только одна. Она включает гипоталамус, а также структуры среднего и продолговатого мозга, которые направляют волокна к ноцицептивным нейронам спинного мозга и влияют на их активность. Эта система подавляет болевую чувствительность и поэтому называется антиноцицептивной системой (рис. 12.4 , Б).

Показано, что антиноцицептивная система опосредует обезболивающее действие наркотических анальгетиков. Нa всех ее структурах обнаружены опиатные рецепторы. Разрушение этих структур уменьшает обезболивающий эффект наркотических анальгетиков - например, морфина. Кроме того, нейроны антиноцицептивной системы выделяют эндогенные опиоиды - энкефалины и бета-эндорфин.

Антиноцицептивная система активируется при длительной боли, тревоге и страхе. Показано, что эндогенные опиоиды выделяются после хирургических операций, а также у больных, которые вместо анальгетиков получают плацебо.

Ноцицептивная система (система восприятия боли)

Ноцицептивная система - комплекс структур периферической и центральной нервной системы - система восприятия боли, отвечающая за определение локализации и характера повреждения ткани.

Кора больших полушарий головного мозга. Кора больших полушарий головного мозга является

наиболее молодым в филогенетическом отношении отделом мозга. Она представляет собой слой серого вещества, толщина которого колеблется от 1,5 до 3 мм. За счет большого количества складок площадь коры головного мозга составляет 1450-1700 кв.см. Кора больших полушарий является высшим интеграгивным центром регуляции процессов, протекающих в организме. Это доказывается характерными нарушениями, которые наблюдаются после декортикации. Такие животные уподобляются животным, находящимся на более низких стадиях эволюции. Причем чем более развито и совершенно животное, тем на большее количество ступеней эволюционного развития оно опускается. Максимальная деградация наблюдается у человека, лишенного коры (врожденно или в результате травмы), что, как правило, несовместимо с жизнью.

Вопрос о локализации функций в коре больших полушарий в связи с этим приобретает большое значение. Какие облает коры ответственны за восприятие ощущений, регуляцию простых и сложных движений? Принимает ли участие кора в механизмах памяти, сна, бодрствования и внимания? Какова роль коры в механизмах сознания и мышления, а также в регуляции функций внутренних органов и многих других процессов?

Первыми получили многие сведения о локализации функций в коре мозга морфологи и клиницисты. Морфологи показали, что цитоархитектоника коры изменяется не только по вертикали, по и по горизонтали. Это значит, что в разных участках коры она имеет специфическое строение. Морфологические особенности с [роения различных отделов коры мозга позволили разделить ее на несколько зон (карта Бродмана - 50 полей).

Клиницисты доказали, что у человека многие участки коры больших полушарий имеют строго локализованные функции. Так, в области третьей левой лобной извилины расположен участок, относящийся в функции речи, в височной доле - центр слуха, в затылочной - зрения. Однако, в силу большой пластичности мозга и за счет перекрытия границ специфических зон в случае повреждения даже больших участков мозга функции этих отделов постепенно могут восстанавливаться.

В настоящее время принято разделять кору на сенсорную, двигательную и ассоциативную.

Все первичные сенсорные области имеют определенные функции. Например, соматические сенсорные зоны, слуховые или зрительные имеют точную пространственную локализацию точек, получающих импульсы от определенных периферических рецепторов. Раздражение разных точек коры вызывает ощущения в разных участках тела. При раздражении моторных корковых зон, где расположены клетки Беца (передняя центральная извилина), возникают двигательные реакции строго определенных мышц тела.

Первичная соматосенсорная кора обеспечивает восприятие только простых ощущений, а анализ всей полноты сенсорного восприятия осуществляется многими отделами мозга в тесном взаимодействии с соматоееисорными зонами (при раздражении таких зон слышим звук, но не слово или музыкальную ((зразу). При разрушении первичных сенсорных зон возникает полная неспособность анализировать поступающую информацию (слепота, глухота и пр.).

По всей границе с первичными сенсорными зонами (на расстоянии 1-5 см) располагаются зоны, называемые вторичными сенсорными зонами. Их разрушение вызывает заметное снижение способности мозга анализировать различные характеристики образов (потеря способности понимать значение слов, интерпретировать зрительные образы и т.п.). Особенно большое значение в этом плане имеет височная доля и угловая извилина. После обширного повреждения этих областей человек слышит и может различать слова, но не способен связать эти слова в законченную мысль, не может понимать их смысла. Электрическое раздражение этих областей у человека, находящегося в сознании, вызывает возникновение сложных мыслей, включая те, которые содержатся в его памяти. Отсюда следует, что у человека сложные образы, фиксированные в памяти, сохраняются в височной доле и угловой извилине.

Функциональная асимметрия мозга. Функции височной доли и угловой извилины, связанные с речью и мышлением, обычно хорошо развиты лишь в одном полушарии, которое получило название доминантного. Предполагается, что в процессе постнатального онтогенеза человека возбуждение в результате проторения преимущественно направляется в одно и то же полушарие, чаще в левое. В результате этого более сильное развитие претерпевает именно левое полушарие, которое и становится доминантным, У 90% людей доминантно левое полушарие, у остальных - или правое, или оба развиты одинаково и эквивалентно. Связанные с доминантной височной долей определенные отделы моторной и соматосенсорной коры, контролирующие произвольные моторные функции, становятся также доминантными, благодаря этому большинство людей - праворуки. Разрушение доминантной зоны у взрослых людей сопровождается сильным нарушением интеллекта и кратковременной памяти. Компенсация возможна лишь частично.

Другим проявлением функциональной асимметрии мозга является то, что левое полушарие ответственно преимущественно за логическое, абстрактное мышление, речь, а правое - связано с образным мышлением, осуществляя высшую нервную деятельность в основном в сфере первой сигнальной системы.

Доминантность полушария

Функциональное значение полушарий различно. Одно из них доминирующее по отношению к определенным функциям. Доминантность полушария обеспечивается: генетической предрасположенностью; неодинаковым кровоснабжением полушарий; воспитанием.

Левое полушарие доминирует в отношении речи, письма, чтения, памяти (особенно зрительной), абстрактного мышления, функции счета, математических способностей.

Правое полушарие: зрительные, тактильные, распознавательные функции, память, восприятие музыки, эмоциональные

12.6.3. Реабсорбция в канальцах

В почках у человека за 1 сут образуется около 180 л ультрафильтрата, объем выделяемой мочи составляет от 1 до 1,5 л, остальная жидкость реабсорбируется в почечных канальцах, В просвет почечного канальца поступают все растворенные в плазме крови низкомолекулярные вещества, а также очень небольшое количество белков. Поэтому основное назначение системы, обеспечивающей обратное всасывание веществ в канальцах, состоит в том, чтобы вернуть в кровь все жизненно важные вещества и в необходимых количествах, а экскретировать конечные продукты обмена веществ, токсические и чужеродные соединения и физиологически ценные вещества, если они имеются в избытке. Важное значение имеет фильтрация в клубочках гормонов и некоторых других физиологически активных веществ, которые в процессе реабсорбции инактивируются, а их компоненты возвращаются в кровь или удаляются из организма.

Различные отделы почечных канальцев отличаются по способности всасывать вещества из просвета нефрона. С помощью анализа жидкости из отдельных частей нефрона были установлены состав, функциональное значение и особенности работы всех отделов канальцев почки. В проксимальном сегменте нефрона из ультрафильтрата в обычных условиях полностью реабсорбируются глюкоза, аминокислоты, витамины, небольшие количества белка, пептиды, ионы Na + , К + , Са 2+ , Mg 2+ , мочевина, вода и многие другие вещества. В последующих отделах нефрона органические вещества не всасываются, в них реабсорбируются только ионы и вода (рис. 12.8).

В проксимальном сегменте нефрона у млекопитающих всасываются около 60-70 % профильтровавшихся ионов Na + и Сl - , более 90 % НСО 3 - , перечисленные выше органические и неорганические вещества, доля которых меньше в общей концентрации веществ, растворенных в плазме крови. Отличительной особенностью реабсорбции в проксимальном канальце является то, что вслед за всасываемыми веществами реабсорбируется вода вследствие высокой осмотической проницаемости стенки этого отдела нефрона. Поэтому жидкость в проксимальном канальце всегда остается практически изоосмотической плазме крови. Всасывание отдельных веществ в канальцах обеспечивается разными способами, их описание поможет понять многообразие молекулярных механизмов реабсорбции в не-фроне.

Клетки эпителия почечных канальцев являются полярными, асимметричными. Их плазматическая мембрана, обращенная в просвет канальца, называется люминальной (от лат. lumen - просвет) или апикальной (от лат. apex - вершина). Ее свойства во многих отношениях иные, чем у плазматических мембран боковых частей и основания клетки, называемых базолатералъными мембранами.

Для понимания физиологических механизмов реабсорбции веществ существенно, что в люминальной мембране локализованы переносчики и ионные каналы для многих веществ, обеспечивающие

прохождение последних через мембрану в клетку. В базолатеральных мембранах содержатся Na, К-АТФаза, Са-АТФаза, переносчики некоторых органических веществ. Это создает условия для всасывания органических и неорганических веществ из клетки в межклеточную жидкость, в конечном счете в сосудистое русло. Наличие в апикальной мембране натриевых каналов, а в базолатеральных мембранах натриевых насосов обеспечивает возможность направленного потока ионов Na + из просвета в клетку канальца и из клетки с помощью насоса в межклеточное вещество. Таким образом, клетка функционально является асимметричной, обеспечивая поток веществ из просвета канальца в кровь.

Для такого процесса имеются структурные и биохимические предпосылки. В базальной части клеток почечных канальцев сосредоточены митохондрии, в которых при клеточном дыхании вырабатывается энергия для работы ионных насосов.

Глюкоза. Ежеминутно в канальцы почек у человека поступает 990 ммоль глюкозы, в 1 сут в почках реабсорбируется около 989,8 ммоль, т.е. моча оказывается практически свободной от глюкозы. Следовательно, всасывание глюкозы происходит против концентрационного градиента, в результате из канальцевой жидкости в кровь реабсорбируется вся глюкоза при нормальной ее концентрации в крови.

При повышении содержания глюкозы в плазме крови с 5 до 10 ммоль/л глюкоза появляется в моче. Это обусловлено тем, что в люминальной мембране клеток проксимального канальца находится ограниченное количество переносчиков глюкозы. Когда они полностью насыщаются глюкозой, достигается ее максимальная ре-абсорбция, а избыток начинает экскретироваться с мочой. Величина максимальной реабсорбции глюкозы имеет важное значение для функциональной оценки реабсорбционной способности клеток проксимальных канальцев (см. рис. 12.7).

Для определения максимальной величины транспорта глюкозы mG) достигают полного насыщения системы ее канальцевого транспорта. С этой целью в кровь вводят глюкозу, повышая ее концентрацию в клубочковом фильтрате до тех пор, пока не будет достигнут порог реабсорбции и глюкоза не начнет в значительных количествах выделяться с мочой. Величину Т mG рассчитывают по разнице между количеством профильтровавшейся в клубочках глюкозы (равно произведению объема клубочкового фильтрата C In на концентрацию глюкозы в плазме крови P G) и выделившейся с мочой (U G - концентрация глюкозы в моче, V - объем выделившейся мочи):

Величина Т mG характеризует полную загрузку системы транспорта глюкозы. У мужчин она равна 2,08 ммоль/мин (375 мг/мин), у женщин - 1,68 ммоль/мин (303 мг/мин) при расчете на 1,73 м 2 поверхности тела.

На примере глюкозы можно рассмотреть мембранные и клеточные механизмы реабсорбции моносахаридов и аминокислот в

почечных канальцах. В апикальной мембране клеток проксимального канальца глюкоза соединяется с переносчиком, который должен одновременно присоединить ион Na + после чего комплекс приобретает способность транспортироваться через мембрану. В результате в цитоплазму клетки поступают и глюкоза, и натрий. Так как мембрана отличается высокой селективностью и односторонней проницаемостью, она не пропускает глюкозу обратно из клетки в просвет канальца. Энергетическим источником для переноса глюкозы через апикальную мембрану служит меньшая концентрация Na + в цитоплазме клетки, удаляемого с помощью Na, К-АТФазы, локализованной в ба-зальной плазматической мембране клетки. Такой процесс получил название вторично-активного транспорта, когда перенос веществ при их всасывании из просвета канальца в кровь происходит против концентрационного градиента, но без затраты на него энергии клетки. Она расходуется на перенос ионов натрия. Первично-активным называют транспорт в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Наиболее ярким примером является транспорт ионов Na + , который осуществляется при участии фермента Na, К-АТФазы, расходующей энергию АТФ. После освобождения от связи с переносчиком глюкоза поступает в цитоплазму, достигает базальной плазматической мембраны и перемещается через нее с помощью механизма облегченной диффузии.

Белки и аминокислоты . Ультрафильтрация приводит к тому, что в просвет нефрона поступают неэлектролиты и электролиты. В отличие от электролитов, которые, проникнув через апикальную мембрану, в неизменном виде достигают базальной плазматической мембраны и транспортируются в кровь, перенос белка обеспечивается иным механизмом, получившим название пиноцитоз. Молекулы профильтровавшегося белка адсорбируются на поверхностной мембране клетки, мембрана впячивается внутрь клетки с образованием пиноцитозной вакуоли. Эта вакуоль движется в сторону базальной части клетки; в околоядерной области, где локализован пластинчатый комплекс (аппарат Гольджи), они могут сливаться с лизосомами, в которых высока активность ряда протеолитических ферментов. В лизосомах захваченные белки в результате ферментативного гидролиза расщепляются до аминокислот и удаляются в кровь через базальную плазматическую мембрану.

Профильтровавшиеся в клубочках аминокислоты почти полностью реабсорбируются клетками проксимального канальца. В люминальной мембране имеется не менее четырех раздельных механизмов транспорта аминокислот из просвета канальца в кровь: специальные системы реабсорбции для нейтральных, двуосновных, дикарбоксильных аминокислот и иминокислот. Каждая из этих систем обеспечивает всасывание нескольких аминокислот только одной группы. Так, например, система реабсорбции двуосновных аминокислот участвует во всасывании лизина, аргинина, орнитина и, возможно, цистина. При введении в кровь избытка одной из указанных выше аминокислот начинается усиленная экскреция

остальных аминокислот только этой группы. Системы транспорта отдельных групп аминокислот контролируются раздельными генетическими механизмами. Описаны наследственные заболевания, одним из проявлений которых служит увеличенная экскреция определенных групп аминокислот.

Недавно были получены данные, что в почечных канальцах могут реабсорбироваться дипептиды и трипептиды в неизмененном виде. Пептидные гормоны, фильтруемые в почечных клубочках, частично гидролизуются и возвращаются в кровь в виде аминокислот, частично экскретируются с мочой.

Выделение с мочой слабых кислот и оснований зависит от их ультрафильтрации в клубочках, реабсорбции и секреции в проксимальных канальцах, а также от "неионной диффузии", влияние которой особенно сказывается в дистальных канальцах и собирательных трубках. Эти соединения могут существовать в зависимости от рН среды в двух формах: неионизированной и ионизированной. Клеточные мембраны более проницаемы для неионизированных веществ. Многие слабые кислоты с большой скоростью экскретируются с щелочной мочой, а слабые основания, напротив, с кислой. У оснований степень ионизации увеличивается в кислой среде, но уменьшается в щелочной. В неионизированном состоянии эти вещества растворимы в липидах и проникают в клетки, а затем в плазму крови, т.е. реабсорбируются. Если в канальцевой жидкости значение рН сдвинуто в кислую сторону, основания ионизированы и преимущественно экскретируются с мочой. Так, например, никотин является слабым основанием, ионизированным на 50 % при рН 8,1, он в 3-4 раза быстрее экскретируется с кислой мочой (рН около 5), чем при щелочной реакции (рН 7,8). Неионная диффузия влияет на выделение почкой аммония, ряда лекарственных препаратов.

Электролиты. Всасывание профильтровавшихся в клубочках ионов Na + , С1 - и НСО 3 - требует наибольших энерготрат в клетках нефрона. У человека в 1 сут реабсорбируются около 24 330 ммоль натрия, 19 760 ммоль хлора, 4888 ммоль бикарбоната, а выделяется с мочой 90 ммоль натрия, 90 ммоль хлора, менее 2 ммоль бикарбоната. Транспорт натрия является первично-активным, т.е. именно на его перенос расходуется энергия клеточного обмена. Ведущую роль в этом процессе играет Na, К-АТФаза. В проксимальном канальце у млекопитающих реабсорбируется около 2 / 3 профильтровавшегося натрия. Обратное всасывание Na + в этом канальце происходит против небольшого градиента, и его концентрация в канальцевой жидкости остается такой же, как и в плазме крови. В проксимальном канальце реабсорбируются все остальные ионы. Как отмечалось выше, из-за высокой проницаемости стенки этого канальца для воды жидкость в просвете нефрона остается изоосмотичной плазме крови.

Ранее считали, что в проксимальном сегменте нефрона происходит обязательная (облигатная) реабсорбция, т.е. при всех условиях всасывание ионов Na + , Cl - , воды является постоянной величиной. Напротив, в дистальных извитых канальцах и

Мембранные механизмы транспорта Na + в клетках различных отделов нефрона
В базальных мембранах всех типов клеток содержится Na, К + АТФаза, обеспечивающая обмен ионов Na + на ионы К + . В люминальной мембране локализована система котранспорта Na + и глюкозы (G), натриевые каналы, система котранспорта некоторых других ионов; стрелками указаны участки нефрона, где находятся клетки соответствующих типов

собирательных трубках реабсорбция ионов и воды может регулироваться, ее величина меняется в зависимости от функционального состояния организма. Результаты последних исследований указывают на то, что под влиянием импульсов, поступающих по эфферентным нервным волокнам к почке, и при действии физиологически активных веществ (например, одного из натрийуретических гормонов) регулируется реабсорбция натрия и в проксимальном отделе нефрона" Это особенно отчетливо выявляется при увеличении объема внутрисосудистой жидкости, когда уменьшение реабсорбции в проксимальном канальце способствует усилению экскреции ионов и воды, а тем самым восстановлению объема крови.

В результате реабсорбции в проксимальном канальце большинства компонентов ультрафильтрата и воды объем первичной мочи резко уменьшается и в начальный отдел петли Генле у млекопитающих поступает около 1 / 3 профильтровавшейся в клубочках жидкости. В петле Генле всасывается до 25 % натрия, поступившего в нефрон при фильтрации, в дистальном извитом канальце - около 9 %; меньше 1 % натрия реабсорбируется в собирательных трубках или экскретируется с мочой. В конечных отделах канальцев концентрация натрия может снижаться до 1 ммоль/л по сравнению с 140 ммоль/л в клубочковом фильтрате. В дистальном сегменте нефрона и собирательных трубках в отличие от проксимального

сегмента всасывание происходит против высоких концентрационного и электрохимического градиентов.

Клеточные механизмы реабсорбции Na + , как и других ионов, могут существенно отличаться в разных отделах нефрона (рис. 12.9). В клетках проксимального канальца поступление натрия через люминальную мембрану внутрь клетки обеспечивается рядом механизмов. Оно может быть связано с обменом Na + на протоны (Na + /H +), а также с деятельностью натрийзависимых переносчиков аминокислот и глюкозы. В люминальной мембране клеток толстого восходящего отдела петли Генле поступление иона Na + в клетку происходит одновременно с ионом К + и двумя ионами Сl - ; эта система блокируется со стороны просвета канальца фуросемидом. В дистальном извитом канальце ведущее значение имеет прохождение иона Na + по натриевому каналу, специфическим блокатором которого является амилорид. Во всех случаях поступившие внутрь клетки ионы натрия удаляются из нее Na, К-АТФазой, локализованной в базальной плазматической мембране.

Таким образом, молекулярные механизмы реабсорбции ионов натрия не одинаковы в разных участках нефрона. Это определяет отличие скорости реабсорбции и способов регуляции переноса натрия.

Электрофизиологические исследования клеток нефрона подтверждают высказанные выше представления о пассивном и активном компонентах системы реабсорбции натрия. При реабсорбции натрий вначале входит в клетку эпителия канальца пассивно по натриевому каналу мембраны, обращенной в сторону просвета канальца; внутренняя часть клетки заряжена отрицательно, и поэтому положительно заряженный Na движется в клетку по градиенту потенциала. Натрий направляется в сторону базальной плазматической мембраны, в которой имеется натриевая помпа, выбрасывающая его в межклеточную жидкость (рис. 12.10).

Регуляция реабсорбции и секреции ионов в почечных канальцах. В регуляции реабсорбции натрия участвуют эфферентные нервные волокна, подходящие к почке, и некоторые гормоны (рис. 12.11). Вазопрессин усиливает всасывание натрия в клетках толстого восходящего отдела петли Генле. Механизм этого эффекта основан на внутриклеточном действии цАМФ. Другим стимулятором реабсорбции натрия является альдостерон, который увеличивает транспорт Na + в клетках дистальных почечных канальцев. Из внеклеточной жидкости этот гормон проникает через базальную плазматическую мембрану в цитоплазму клетки и соединяется с рецептором. Возникший комплекс поступает в ядро, где образуется комплекс альдостерона со стереоспецифичным для него хроматином.

В связывании альдостерона, по-видимому, участвует негистонный хромосомный белок, молекулы альдостерона связываются ядром почечной клетки. В ядре стимулируется транскрипция определенного участка генетического кода, синтезированная мРНК переходит в цитоплазму и активирует образование белков, необходимых для увеличения транспорта Na + .

Транспорт Na + и К + клеткой дистального извитого канальца

Альдостерон стимулирует образование компонентов натриевого насоса (Na, К-АТФазы), ферментов его энергетического обеспечения, а также веществ, облегчающих вход Na + в клетку из просвета канальца. В обычных физиологических условиях одним из факторов, ограничивающих реабсорбцию натрия, является низкая проницаемость апикальной плазматической мембраны. Возрастание числа натриевых каналов мембраны (или времени их открытого состояния) увеличивает вход натрия в клетку и повышает в ней его содержание, что стимулирует активный перенос натрия.

Уменьшение реабсорбции натрия достигается под влиянием так называемого натрийуретического гормона, выработка которого возрастает при увеличении объема циркулирующей крови, повышении объема внеклеточной жидкости в организме. Структура и место секреции этого гормона установлены лишь в последние годы, хотя мысль о его существовании была высказана в конце 50-х гг. Оказалось, что таких факторов несколько: один из них выделяется

1 - натрийуретический гормон, 2 - катехоламины, 3 - глюкортикоиды, 4 - паратгормон, 5 - кальдитонин, 6 - вазопрессин, 7 - альдостерон

в предсердии, другой - в гипоталамической области; ряд натрий-уретических веществ выделен из некоторых других органов. В настоящее время значение каждого из них в реальных процессах регуляции обмена натрия еще не ясно.

Реабсорбция ионов Сl - происходит в некоторых частях не-фрона с помощью иных механизмов, чем реабсорбция Na + , что дает возможность раздельно регулировать выделение натрия и хлора почкой. В начальных частях проксимального отдела нефрона его стенка непроницаема для ионов С1 - ионы Na всасываются вместе с НСО 3 - . В результате концентрация С1 - возрастает со 103 до 140 ммоль/л. В конечных участках проксимального канальца зона межклеточных соединений проницаема для ионов Сl - . Так как концентрация Сl - в канальцевой жидкости стала выше, чем в плазме крови, то С1 - по концентрационному градиенту движется в межклеточную жидкость и кровь. За ионами хлора следуют и ионы натрия.

Механизм реабсорбции ионов хлора в клетках толстого восходящего отдела петли Генле иной. В люминальной мембране имеется своеобразный молекулярный механизм транспорта ионов С1 - , одновременно с которыми всасываются ионы Na + и К + . В дистальном извитом канальце и собирательных трубках активно транспортируются через клетки ионы Na + , за ними по электрохимическому градиенту следуют ионы Сl - .

Различие способов реабсорбции ионов хлора имеет важное значение для понимания многообразия молекулярных механизмов реабсорбции ионов. Особенно следует подчеркнуть, что для этого процесса имеет значение не только отличие свойств ионных каналов и ионных переносчиков в люминальной мембране клеток, но и своеобразие свойств зоны клеточных контактов. В начальных участках нефрона они непроницаемы для неэлектролитов и ионов С1 - , последующие части проксимального канальца обладают высокой проницаемостью для ионов С1 - . В дистальном сегменте нефрона и собирательных трубках зона клеточных контактов очень плохо пропускает растворенные вещества, что обеспечивает возможность их экскреции почкой.

В почечных канальцах реабсорбируются калий, кальций, магний, фосфаты, сульфаты, микроэлементы. Почки являются важнейшим эффекторным органом в системе ионного гомеостаза. Новейшие данные свидетельствуют о существовании в организме систем регуляции баланса каждого из ионов. Для некоторых из ионов уже описаны специфические рецепторы, например натриорецепторы. Появились и первые данные о рефлекторной регуляции транспорта ионов в почечных канальцах, включающей рецепторы, центральные аппараты и эфферентные пути передачи сигнала почке.

Регуляцию реабсорбции ионов Са 2+ в почечных канальцах осуществляет ряд гормонов. При уменьшении концентрации кальция в крови паращитовидные железы выделяют паратгормон, который способствует нормализации уровня Са 2+ в крови за счет увеличения его реабсорбции в почечных канальцах и повышения резорбции

1 - почка, 2 - кишечник, 3 - пища, 4 - печень, 5 - плазма крови, 6 - щитовидная железа, 7 - кость, 8 - паращитовидная железа; пунктирными стрелками обозначено изменение реакции при увеличении или уменьшении концентрации кальция в крови

кости (рис. 12.12). При гиперкальциемии стимулируется выделение в кровь гормона щитовидной железы - тиреокальцитонина, который снижает концентрацию кальция в крови и способствует увеличению его экскреции почкой. Важную роль в регуляции обмена Са 2+ играет активная форма витамина D 3 - 1,25 (OH) 2- D 3 . В почечных канальцах регулируется уровень реабсорбции магния, хлора, сульфатов и других ионов.

Похожие публикации