Отличительные особенности кровеносных капилляров. Капилляры: непрерывные, фенестрированные, синусоидные. Развитие кровеносных сосудов

ЧАСТНАЯ ГИСТОЛОГИЯ.

Сердечно – сосудистая система.

Система включает в себя сердце, артериальные и венозные сосуды и лимфатические сосуды. Система закладывается на 3 неделе эмбриогенеза. Сосуды закладываются из мезенхимы. По диаметру сосуды подразделяются на

Крупные

Средние

Мелкие.

В стенке сосудов выделяют внутреннюю, наружную и среднюю оболочки.

Артерии по строению подразделяются на

1. Артерии эластического типа

2. Артерии мышечно-эластического (смешанного) типа.

3. Артерии мышечного типа.

К артериям эластического типа относятся крупные сосуды, такие как аорта и легочная артерия. У них толстая развитая стенка.

ü Внутренняя оболочка содержит эндотелий-слой, который представлен плоскими эндотелиальными клетками на базальной мембране. Он создает условия для тока крови. Далее располагается подэндотелиальный слой из рыхлой соединительной ткани. Следующий слой--плетение тонких эластических волокон. Кровеносных сосудов нет. Внутренняя оболочка питается диффузно из крови.

ü Средняя оболочка мощная, широкая, занимает основной объем. Она содержит толстые эластичные окончатые мембраны (40-50). Они построены из эластических волокон и соединены между собой такими же волокнами. Они занимают основной объем оболочки, в их окнах косо располагаются отдельные гладкомышечные клетки. Строение стенки сосуда определяется гемодинамическими условиями, из которых важнейшими являются скорость кровотока и уровень кровяного давления. Стенка крупных сосудов хорошо растяжима, так как здесь высока скорость кровотока (0.5-1 м/с) и давление (150 мм. рт. ст.), поэтому она хорошо возвращается в исходное состояние.

ü Наружная оболочка построена из рыхлой волокнистой соединительной ткани, причем она более плотная во внутреннем слое наружной оболочки. В наружной и средней оболочках имеются свои собственные сосуды.

К артериям мышечно-эластического типа относятся подключичная и сонная артерии.

У их во внутренней оболочке сплетения мышечных волокон замещаются внутренней эластической мембраной. Эта мембрана толще окончатых.

В средней оболочке уменьшается количество окончатых мембран (на 50%), но возрастает объем гладкомышечных клеток, то есть снижаются эластические свойства-способность стенки растягиваться, но возрастает сократительная способность стенки.

Наружная оболочка такая же по строению, как и у крупных сосудов.

Артерии мышечного типа преобладают в организме среди артерий. Они составляют основной объем кровеносных сосудов.

Их внутренняя оболочка гофрированная, содержит эндотелий. Подэндотелиальный слой из рыхлой соединительной ткани хорошо развит. Имеется мощная эластическая мембрана.

Средняя оболочка содержит эластические волокна в виде дуг, концы которых прикрепляются к внутренней и наружной эластическим мембранам. А их центральные отделы как бы сцепляются. Эластические волокна и мембраны формируют единый связанный эластический каркас, который занимает небольшой объем. В петлях этих волокон идут пучки гладкомышечных клеток. Они резко преобладают и идут циркулярно и по спирали. То есть усиливается сократительная способность стенки сосуда. При сокращении этой оболочки участок сосуда укорачивается, сужается и спиралевидно закручивается.

Наружная оболочка содержит наружную эластическую мембрану. Она не такая извитая и тоньше, чем внутренняя, но также построена из эластических волокон, а по периферии располагается рыхлая соединительная ткань.

Наиболее мелкими сосудами мышечного типа являются артериолы.

В них сохраняются три более тонкие оболочки.

Во внутренней оболочке содержится эндотелий, подэндотелиальный слой и очень тонкая внутренняя эластическая мембрана.

В средней оболочке гладкомышечные клетки идут циркулярно и спиралевидно, причем клетки располагаются в 1-2 ряда.

В наружной оболочке отсутствует наружная эластическая мембрана.

Артериолы распадаются на более мелкие гемокапилляры. Они располагаются или в виде петель, или в виде клубочков, а чаще всего образуют сети. Наиболее плотно гемокапилляры располагаются в интенсивно функционирующих органах и тканях-скелетные мышечные волокна, сердечная мышечная ткань. Диаметр капилляров неодинаков-от 4 до 7 мкм . Это, например, сосуды в мышечной ткани и вещества мозга. Их величина соответствует диаметру эритроцита. Капилляры диаметром 7-11 мкм встречаются в слизистых оболочках и коже. Синусоидные капилляры (20-30 мкм) имеются в кроветворных органах и лакунарные -в полых органах.

Стенка гемокапилляра очень тонкая. Включает базальную мембрану, которая регулирует проницаемость капилляра. Базальная мембрана участками расщепляется, и в расщепленных участках располагаются клетки перициты . Это отростчатые клетки, они регулируют просвет капилляра. Изнутри на мембране располагаются плоские эндотелиальные клетки. Снаружи от кровеносного капилляра лежит рыхлая неоформленная соединительная ткань, в ней располагаются тканевые базофилы (тучные клетки) и адвентициальные клетки, которые участвуют в регенерации капилляров. Гемокапилляры выполняют транспортную функцию, но ведущей является трофическая=обменная функция. Кислород легко проходит сквозь стенки капилляров в окружающие ткани, а продукты обмена обратно. Реализации транспортной функции помогает медленный ток крови, невысокое кровяное давление, тонкая стенка капилляра и рыхлая соединительная ткань, расположенная вокруг.

Капилляры сливаются в венулы . С них начинается венозная система капилляров. Стенка их имеет такое же строение, как и у капилляров, но диаметр в несколько раз больше. Артериолы, капилляры и венулы составляют микроциркуляторное русло, которое выполняет обменную функцию и располагается внутри органа.

Венулы сливаются в вены . В стенке вены выделяют 3 оболочки-внутреннюю, среднюю и наружную, но отличаются вены содержанием гладкомышечных элементов соединительной ткани.

Выделяют вены безмышечного типа . Они имеют только внутреннюю оболочку, которая содержит эндотелий, подэндотелиальный слой, соединительную ткань, которая переходит в строму органа. Эти вены располагаются в твердой мозговой оболочке, селезенке, костях. В них легко депонируется кровь.

Различают вены мышечного типа со слаборазвитыми мышечными элементами . Они располагаются в области головы, шеи, туловища. В них имеются 3 оболочки. Во внутренней содержится эндотелий, подэндотелиальный слой. Средняя оболочка тонкая, развита слабо, содержит отдельные циркулярно расположенные пучки гладкомышечных клеток. Наружная оболочка состоит из рыхлой соединительной ткани.

Вены со среднеразвитыми мышечными элементами располагаются в средней части туловища и в верхних конечностях. У них во внутренней и наружной оболочках появляются продольно расположенные пучки гладкомышечных клеток. В средней оболочке увеличивается толщина циркулярно расположенных мышечных клеток.

Вены с сильно развитыми мышечными элементами находятся в нижней части туловища и в нижних конечностях. В них внутренняя оболочка образует складки-клапаны. Во внутренней и наружной оболочках имеются продольные пучки гладкомышечных клеток, а средняя оболочка представлена сплошным циркулярным слоем гладкомышечных клеток.

В венах мышечного типа, в отличие от артерий, гладкая внутренняя поверхность имеет клапаны, отсутствуют наружная и внутренняя эластические мембраны, имеются продольные пучки гладкомышечных клеток, средняя оболочка тоньше, гладкомышечные клетки располагаются в ней циркулярно.

Регенерация.

Очень хорошо регенерируют гемокапилляры. С увеличением диаметра сосудов, способность к регенерации ухудшается.

Гистофизиология сердца.

Различают 3 оболочки-эндокард, миокард, перикард. Эндокард развивается из мезенхимы, миокард-из мезодермы, соединительно-тканная пластинка эпикарда-из мезенхимы, мезотелий (перикард)-из мезодермы. Закладывается на 4 неделе эмбриогенеза.

Эндокард -относительно тонкий. Содержит эндотелий, подэндотелиальный слой из рыхлой соединительной ткани. Мышечно-эластический слой тонкий, он образован отдельными гладкомышечными клетками, оплетенными эластическими волокнами. Также есть наружный соединительно-тканный слой. Питается эндокард диффузно.

Основную массу стенки составляет миокард , который представлен сердечной мышечной тканью, структурно-функциональной единицей, которой являются сократительный кардиомиоциты. Они образуют сердечные мышечные волокна и за счет отростков-анастомозов они связаны с соседними параллельными мышечными волокнами и образуют трехмерную сеть мышечных волокон. Мышечные волокна идут в нескольких направлениях. Между ними располагаются тонкие прослойки из рыхлой соединительной ткани с высокой плотностью гемокапилляров.

В миокарде на границе с эндокардом располагаются волокна проводящей системы сердца, которая регулирует сократительную активность миокарда. Она построена из проводящих кардиомиоцитов.

Основным механизмом регенерации миокарда является внутриклеточная регенерация, которая приводит к компенсаторной гипертрофии клеток и компенсации функции погибших кардиомиоцитов. На месте погибших кардиомиоцитов образуется соединительно-тканный рубец.

Эпикард . Его основной составляющей является пластинка из рыхлой соединительной ткани, которая с поверхности покрыта мезотелием. Он выделяет слизистый секрет. За счет этого идет свободное скольжение между наружным и внутренним листками перикарда при сокращении и расслаблении сердечной мышцы.

Лимфатическая система.

Лимфатические сосуды имеют такое же строение, как и кровеносные, однако, лимфатические капилляры имеют особенности строения. Они начинают слепо, они шире, чем кровеносные, в их стенке более слабо развита базальная мембрана. Между эндотелиальными клетками имеются щели, а снаружи находится рыхлая соединительная ткань. Ее тканевая жидкость, насыщенная токсинами, липидами и форменными элементами крови (в основном лимфоцитами) через щели проникает в просвет лимфатических капилляров и образует лимфу, которая далее попадает в систему кровотока.

Основная функция-детоксикационная.

Система крови.

В нее входят кровь и кроветворные органы. Они развиваются из мезенхимы, которая образуется на 3 неделе эмбриогенеза в основном из мезодермы, в небольшом количестве из эктодермы и представлена отростчатыми клетками, которые располагаются между зародышевыми листками. В эмбриогенезе из мезенхимы образуются все разновидности соединительной ткани, включая кровь, лимфу и гладкую мышечную ткань. После рождения мезенхимы нет, она трансформируется в производные, но в них сохраняется большое количество стволовых клеток, то есть эти ткани обладают высокой способностью к регенерации путем пролиферации и дифференцировки клеток.

Функции крови.

1. Транспортная. Через кровь реализуется дыхательная, трофическая, выделительная функция.

2. Защитная функция.

3. Гомеостатическая функция-поддержание постоянства среды организма.

Кровь-это жидкая ткань и орган одновременно (5-6 литров). Ее межклеточное вещество жидкое, имеет специальное название-плазма. Плазма занимает 50-60% от общего объема крови. Остальное-это форменные элементы крови.

Плазма. В плазме преобладает вода (90-93%), остальные 7-10% (так называемый сухой остаток) представлен белками (6-8.5%). Это фибриноген, глобулин, альбумин.

Среди форменных элементов крови выделяют эритроциты, лейкоциты и тромбоциты.

Эритроциты доминируют в количественном отношении. У мужчин 4-5.5 · 10 12 в литре. У женщин 4-5 · 10 12 в литре.

Эритроциты-это безъядерные клетки. 80% от общего числа составляют дискоциты, 20%--эритроциты другой формы (шиповидные, шаровидные). 75% эритроцитов в диаметре достигают 7-8 мкм. Это нормоциты. Из оставшихся 12.5%--микроциты, остальные 12.5%--макроциты.

Среди эритроцитов встречаются ретикулоциты. Их количество составляет 2-12 % . В своей цитоплазме они содержат остатки органелл в виде сетки. Увеличение количества ретикулоцитов происходит при раздражении красного костного мозга.

В эритроцитах отсутствуют органеллы, и они содержат гемоглобин, который обладает высоким сродством к кислороду и углекислому газу.

Основная функция -транспортная=дыхательная. Они переносят кислород к тканям и углекислый газ в обратном направлении. На своей поверхности они транспортируют антитела, белки, антигены, лекарственные препараты.

Эритроциты образуются в красном костном мозге, циркулируют и функционируют в крови (4 месяца), а погибают в селезенке.

Лейкоциты (белые кровяные тельца). Их количество 4-9 · 10 9 в литре крови. Лейкоциты подразделяют на 2 группы.

1. Зернистые лейкоциты или гранулоциты. Они содержат сегментированное ядро, в цитоплазме имеется специфическая зернистость, которая воспринимается разными красителями. По этому признаку лейкоциты делятся на нейтрофильные лейкоциты, эозинофильные лейкоциты и базофильные лейкоциты.

2. Незернистые лейкоциты или агранулоциты. К ним относятся лимфоциты, иммунноциты. У них в цитоплазме отсутствует специфическая зернистость, ядро округлое, шаровидной формы. Они подвижны, способны проходить через стенку гемокапилляров, двигаться в тканях. Движение происходит по принципу хемотаксиса.

Жизненный цикл всех лейкоцитов содержит фазу образования и созревания (в органах кроветворения). Затем они выходят в кровь и циркулируют . Это кратковременная фаза. В тканевую фазу лейкоциты выходят в рыхлую соединительную ткань, там они активируются и выполняют свои функции и там же погибают.

Зернистые лейкоциты.

Нейтрофильные лейкоциты или нейтрофилы составляют 50-75% от общего числа. Диаметр 10-15 мкм. Для окраски клеток крови используют азур-эозин или так называемый метод Романовского-Гинза. В своей цитоплазме нейтрофилы содержат мелкую нитевидную обильную нейтрофильную зернистость. Здесь содержатся бактерицидные вещества.

Нейтрофилы по степени зрелости и по строению ядра разделяются на сегментоядерные (45-70% от общего количества). Это зрелые нейтрофилы. Их ядро содержит 3-4 сегмента, соединенных тонкими хроматиновыми нитями. По функции это микрофаги. Они фагоцитируют токсические вещества и микроорганизмы. Их фагоцитирующая активность составляет 70-99%, а фагоцитарный индекс составляет 12-25.

Помимо сегментоядерных, выделяют палочкоядерные нейтрофилы-более молодые клетки с S -образным ядром.

Еще выделяют юные нейтрофилы. Они составляют 0-0.5%. Это функционально активные клетки, имеют изогнутое бобовидное ядро.

Количество нейтрофилов выражают термином нейтрофилез. Увеличение количества зрелых форм называют сдвиг вправо, увеличение количества молодых форм-сдвиг влево. Количество нейтрофилов повышается при острых воспалительных заболеваниях. Нейтрофилы образуются в красном костном мозге. Короткий период циркулируют в крови-2-3часа. Переходят на поверхность эпителия. Тканевая фаза длится 2-3 суток.

Эозинофилы . Их значительно меньше, чем нейтрофилов. Их количество составляет 1-5% от общего числа. Диаметр составляет 12-14 мкм. Ядро содержит 2 крупных сегмента. Цитоплазма заполнена крупными эозинофильными гранулами, содержит крупную ацидофильную зернистость. Зерна являются лизосомами. Их содержание возрастает при аллергических состояниях, и они способны фагоцитировать комплексы антиген-антитело.

Базофильные гранулоциты составляют 0-0,5%. Диаметр 10-12 мкм. Они содержат крупное лопастное ядро, их цитоплазма содержит крупные базофильные гранулы. Эти клетки образуются в красном костном мозге, короткий период циркулируют в крови. Тканевая фаза длительная. Предполагают, что из базофилов крови образуются тканевые базофилы-тучные клетки, поскольку их зерна также содержат гепарин и гистамин. Количество базофилов возрастает в крови при хронических заболеваниях и является неблагоприятным прогностическим признаком. Эозинофилы образуются в красном костном мозге, а функции выполняют в течение 5-7 суток в рыхлой соединительной ткани.

Незернистые лейкоциты.

Лимфоциты составляют 20-35% от всех лейкоцитов. Среди лимфоцитов преобладают малые лимфоциты (диаметр менее 7мкм). У них округлое базофильное ядро, узкий базофильный ободок цитоплазмы и слабо развиты органеллы. Также выделяют средние лимфоциты (7-10мкм) и большие лимфоциты (более 10мкм)-в норме в крови не встречаются, только при лейкозах.

Все лимфоциты по иммунологическим свойствам разделяются на Т-лимфоциты (60-70%), В-лимфоциты (20-30%) и нулевые лимфоциты.

Т-лимфоциты -это тимус-зависимые лимфоциты. Они образуются в тимусе и по своим свойствам подразделяются на Т-лимфоциты-киллеры (они обеспечивают клеточный иммунитет). Они распознают чужеродные клетки, подходят к ним, выделяют цитотоксические вещества, которые разрушают цитолемму чужеродной клетки. В цитолемме появляются дефекты, в которые устремляется жидкость, чужеродная клетка разрушается. Также выделяют Т-лимфоциты-хелперы. Они стимулируют В-лимфоциты, превращая их в плазматические клетки в ответ на антигенный раздражитель, выработку ими антител, которые нейтрализуют антигены, они стимулируют гуморальный иммунитет. Также выделяют Т-лимфоциты-супресоры . Они угнетают гуморальный иммунитет. Еще выделяют Т-лимфоциты-амплификаторы . Они регулируют взаимоотношения среди всех разновидностей Т-лимфоцитов. Также выделяют Т-лимфоциты-памяти . Они запоминают информацию об антигене при первой встрече и при повторной встрече обеспечивают быструю ответную иммунную реакцию. Т-лимфоциты-памяти определяют стойкий иммунитет.

В-лимфоциты образуются в красном костном мозге. Окончательная дифференцировка происходит в лимфатических узелках слизистой оболочки в основном пищеварительного канала. Они обеспечивают гуморальный иммунитет. При поступлении антигена В-лимфоциты трансформируются в плазматические клетки, которые вырабатывают антитела (иммуноглобулины) и последние нейтрализуют антигены. Среди В-лимфоцитов также имеются В-лимфоциты-памяти . В-лимфоциты-это сравнительно короткоживущие клетки.

Т-лимфоциты-памяти и В-лимфоциты-памяти являются рециркулирующимим клетками. Из тканей они попадают в лимфу, из лимфы-в кровь, из крови-в ткань, затем обратно в лимфу и так в течение всей своей жизни. При повторной встрече с антигеном они подвергаются бласт-трансформации, то есть превращаются в лимфобласты, которые пролиферируют и это приводит к быстрому образованию эффекторных лимфоцитов, действие которых направлено на конкретный антиген.

Нулевые лимфоциты -это лимфоциты, не имеющие свойств ни Т-лимфоцитов, ни В-лимфоцитов. Полагают, что среди них циркулируют стволовые клетки крови, натуральные киллеры.

Моноциты -это наиболее крупные клетки, диаметр 18-20 мкм. В них крупное бобовидное резко базофильное ядро и широкая слабо базофильная цитоплазма. Умеренно развиты органеллы, из них лучше развиты лизосомы. Моноциты образуются в красном костном мозге. До нескольких суток циркулируют в крови и в тканях и в органах превращаются в макрофаги, которые имеют специальное название в каждом органе.

Сердечно-сосудистая система.

В сердечно-сосудистую систему входят сердце, кровеносные и лимфатические сосуды. Сердце и сосуды обеспечивают движение крови по организму, с которой доставляются питательные и биологически активные вещества, кислород, тепловая энергия и выводятся продукты метаболизма.

Сердце является основным органом, приводящим в движение кровь. Кровеносные сосуды осуществляют транспортную функцию, регуляцию кровоснабжения органов и обмен веществ между кровью и окружающими тканями.

Сосудистая система представляет собой комплекс трубочек разного диаметра. Деятельность сосудистого аппарата регулируется нервной системой и гормонами. Сосуды не формируют в организме такой густой сети, которая могла бы обеспечивать непосредственную связь с каждой клеткой. Питательные вещества и кислород приносятся к большинству клеток с тканевой жидкостью, в которую они попадают с кровяной плазмой путём просачивания её через стенки капилляров. Эта жидкость уносит от клеток выделяемые ими продукты обмена веществ и, оттекая от тканей, движется сначала между клетками и затем всасывается в лимфатические капилляры. Таким образом, сосудистая система разделяется на две части: кровеносную и лимфатическую.

Кроме того, с сердечно-сосудистой системой связаны кроветворные органы, выполняющие одновременно защитные функции.

Развитие сосудистой системы.

Первые кровеносные сосуды появляются в мезенхиме стенок желточного мешка на 2-й - 3-й неделе эмбриогенеза. Из периферийных клеток кровяных островков образуются плоские клетки эндотелия. Окружающие клетки мезенхимы превращаются в перициты, гладкие мышечные клетки и адвентициальные клетки. В теле зародыша кровеносные капилляры закладываются в виде неправильной формы щелей, заполненных тканевой жидкостью. Стенкой их являются окружающая мезенхима. Когда по сосудам усиливается кровоток, эти клетки становятся эндотелиальными, а из окружающей мезенхимы формируются элементы средней и наружной оболочек. Затем сосуды зародыша начинают сообщаться с сосудами внезародышевых органов. Дальнейшее развитие происходит с началом циркуляции крови под влиянием кровяного давления, скорости кровотока, которые создаются в разных частях тела.

В течение всего постэмбрионального периода жизни сосудистая система обладает большой пластичностью. Наблюдается значительная изменчивость густоты сосудистой сети, так как в зависимости от потребности органа в питательных веществах и кислороде в широких пределах колеблется количество приносимой крови.

В связи с изменением скорости движения крови, кровяного давления стенки сосудов перестраиваются, мелкие сосуды могут превращаться в более крупные с характерными особенностями или наоборот. Одновременно с этим могут образовываться новые сосуды, а старые атрофироваться.

Особенно большие изменения возникают в сосудистой системе при развитии окольного или коллатерального кровообращения. Это наблюдается, когда на пути движения крови встречаются какие-либо препятствия. Формируются новые капилляры и сосуды, а уже существующие превращаются в сосуды большего калибра.

Если у живого животного вырезать участок артерии и на её место вшить вену, то последняя в условиях артериального кровообращения будет перестраиваться и превратится в артерию.

Классификация и общая характеристика сосудов.

В системе кровеносных сосудов различают:

1) Артерии, по которым кровь течет к органам и тканям (богата О 2, кроме легочной артерии);

2) Вены , по которым кровь возвращается в сердце (мало О 2 , кроме легочной вены);

3) Микроциркуляторное русло , обеспечивающее, наряду с транспортной функцией обмен веществ между кровью и тканями. Это русло включает не только гемокапилляры, но и мельчайшие артерии (артериолы), вены (венулы), а также артериоло-венулярные анастомозы.

Гемокапилляры соединяют артериальное звено кровеносной системы с венозным, кроме "чудесных систем", в которых капилляры находятся между двумя одноименными сосудами - артериальными (в почках), или венозными (в печени и гипофизе).

Артериоло-венулярные анастомозы обеспечивают очень быстрый переход крови из артерии в вены. Они представляют собой короткие сосуды, соединяющие мелкие артерии с мелкими венами и способны к быстрому замыканию своего просвета. Поэтому анастомозы играют большую роль в регуляции количества приносимой к органам крови.

Артерии и вены построены по единому плану. Стенки их состоят из трех оболочек: 1)внутренней , построенной из эндотелия и находящимися над ним элементами соединительной ткани; 2) средней -мышечной или мышечно-эластической и 3) наружной - адвентиции, образованной из рыхлой соединительной ткани.

Артерии.

По особенностям строения артерии бывают 3 типов: эластического, мышечного и смешенного (мышечно-эластического). Классификация основана на соотношении количества мышечных клеток и эластических волокон в средней оболочке артерий.

К артериям эластического типа относятся сосуды крупного калибра, такие как аорта и лёгочная артерия, в которые кровь вливается под высоким давлением (120 - 130 мм рт.ст.) и с большой скоростью(0,5 - 1,3 м/с). Эти сосуды выполняют, главным образом, транспортную функцию.

Высокое давление и большая скорость протекающей крови определяют строение стенки сосудов эластического типа; в частности, наличие большого количества эластических элементов (волокон, мембран) позволяет этим сосудам растягиваться при систоле сердца и возвращаться в исходное положение во время диастолы, а также способствует превращению пульсирующего кровотока в постоянный, непрерывный.

Внутренняя оболочка включает эндотелий и подэндотелиальный слой. Эндотелий аорты состоит из клеток, различных по форме и размерам. Иногда клетки достигают 500 мкм в длину и 150 мкм в ширину, чаще они бывают одноядерные, но встречаются и многоядерные (от 2 - 4 до 15 - 30 ядер). Эндотелий выделяет противосвёртывающие вещества крови и свёртывающие, участвует в обмене веществ, выделяет вещества, влияющие на кроветворение.

В их цитоплазме слабо развита эндоплазматическая сеть, но очень много микрофиламентов. Под эндотелием находится базальная мембрана.

Подэндотелиальный слой состоит из рыхлой тонкофибриллярной соединительной ткани, богатой малодифференцированными клетками звёздчатой формы, макрофагами, гладкими миоцитами. В аморфном веществе этого слоя содержится много глюкозамингликанов. При повреждении стенки или патологии (атеросклерозе) в этом слое накапливаются липиды (холестерин и эфиры).

Глубже подэндотелиального слоя, в составе внутренней оболочки, расположено густое сплетение тонких эластических волокон.

Средняя оболочка аорты состоит из большого количества (40-50) эластических окончатых мембран, связанных между собой эластическими волокнами. Между мембранами залегают гладкие мышечные клетки, имеющие косое по отношению к ним направление. Такое строение средней оболочки создаёт высокую эластичность аорты.

Наружная оболочка аорты построена из рыхлой соединительной ткани с большим количеством толстых эластических и коллагеновых волокон, имеющих главным образом продольное направление.

В средней и наружной оболочках аорты, как и вообще в крупных сосудах, проходят питающие сосуды и нервные стволики.

Наружная оболочка предохраняет сосуд от перерастяжения и разрывов.

К артериям мышечного типа относится большинство артерий организма, т. е. среднего и мелкого калибра: артерии тела, конечностей и внутренних органов.

В стенках этих артерий имеется относительно большое количество гладких миоцитов, что обеспечивает дополнительную нагнетательную силу и регулирует приток крови к органам.

В состав внутренней оболочки входят эндотелий, подэндотелиальный слой и внутренняя эластическая мембрана.

Эндотелиальные клетки вытянуты вдоль оси сосуда и имеют извитые границы. За эндотелиальным покровом следует базальная мембрана и подэндотелиальный слой , состоящий из тонких эластических и коллагеновых волокон, преимущественно продольно направленных, а также малодифференцированных соединительно-тканных клеток и аморфного вещества, содержащего гликозаминогликаны. На границе со средней оболочкой лежит внутренняя эластическая мембрана . В

Капилляры - это конечные разветвления кровеносных сосудов в форме эндотелиальных трубочек с весьма просто устроенной оболочкой. Так, внутренняя оболочка состоит только из эндотелия и базальной мембраны; средняя оболочка фактически отсутствует, а наружная оболочка представлена тонким перикапиллярным слоем рыхлой волокнистой соединительной ткани. Капилляры диаметром 3-10 мкм и длиной 200-1000 мкм образуют сильно разветвленную сеть между метартериолами и посткапиллярными венулами .


Капилляры - это места активного и пассивного транспорта различных субстанций, включая кислород и двуоксид углерода. Этот транспорт зависит от разных факторов, среди которых важную роль играет селективная проницаемость эндотелиальных клеток для некоторых специфических молекул.


В зависимости от строения стенок капилляры можно разделить на непрерывные, фенестрированные и синусоидные .


Самая характерная черта непрерывных капилляров - это их целостный (ненарушенный) эндотелий, состоящий из плоских эндотелиальных клеток (Энд), которые соединяются путем плотных контактов, или запирающих зон (33), zonulae occludentes, редко нексусами, а иногда десмосомами. Эндотелиальные клетки удлинены в направлении потока крови. В местах контакта они формируют цитоплазматические створки - краевые складки (КС), которые, возможно, выполняют функцию торможения потока крови около капиллярной стенки. Толщина эндотелиального слоя от 0,1 до 0,8 мкм, исключая область ядра.

Эндотелиальные клетки имеют плоские ядра, которые слегка выступают в просвет капилляра; клеточные органеллы достаточно развиты.


В цитоплазме эндотелиоцитов обнаруживаются несколько актиновых микрофиламентов и многочисленные микровезикулы (MB) диаметром 50-70 нм, которые иногда сливаются и образуют трансэндотелиальные каналы (ТК). Трансэндотелиальная транспортная функция в двух направлениях с помощью микровезикул значительно облегчается наличием микрофиламентов и образованием каналов. Четко видны отверстия (Отв) микровезикул и трансэндотелиальных каналов на внутренней и внешней поверхностях эндотелия.


Неровная, толщиной 20-50 нм базальная мембрана (БМ) располагается под эндотелиальными клетками; на границе с перицитами (Пе) она часто расщепляется на два листка (см. стрелки), которые окружают эти клетки с их отростками (О). Снаружи от базальной мембраны находятся обособленные ретикулярные и коллагеновые микрофибриллы (КМ), а также автономные нервные окончания (НО), соответствующие наружной оболочке.


Непрерывные капилляры обнаружены в бурой жировой ткани (см. рисунок), мышечной ткани, яичках, яичниках, легких, центральной нервной системе (ЦНС), тимусе, лимфатических узлах, костях и костном мозге.



Фенестрированные капилляры характеризуются очень тонким эндотелием, толщиной в среднем 90 нм и перфорированными многочисленными фенестрами (Ф), пли порами, диаметром 50-80 нм. Фенестры обычно закрыты диафрагмами толщиной 4-6 нм. На 1 мкм3 стенки насчитывается около 20-60 таких пор. Они часто группируются в так называемые ситообразные пластинки (СП). Эндотелиальные клетки (Энд) связаны между собой запирающими зонами (zonulae occludentes) и, редко, нексусами. Микровезикулы (Мв) обычно находятся в участках цитоплазмы эндотелиальных клеток, лишенных фенестр.

Эндотелиальные клетки имеют уплощенные, вытянутые околоядерные цитоплазматические зоны, которые слегка выпячиваются в просвет капилляра. Внутренняя структура эндотелиальных клеток идентична внутренней структуре таких же клеток в непрерывных капиллярах. Благодаря наличию в цитоплазме актиновых микрофиламентов эндотелиальные клетки могут сжиматься.


Базальная мембрана (БМ) имеет ту же толщину, что и в непрерывных капиллярах, она окружает наружную поверхность эндотелия. Вокруг фенестрированных капилляров перициты (Пе) встречаются реже, чем в непрерывных капиллярах, однако они также располагаются между двумя листками базальной мембраны (см. стрелки).


Ретикулярные и коллагеновые волокна (KB), а также автономные нервные волокна (не показаны) идут вдоль наружной стороны фенестрированных капилляров.


Фенестрированные капилляры обнаруживают преимущественно в почках, сосудистых сплетениях желудочков мозга, синовиальных мембранах, эндокринных железах. Обмен веществ между кровью и тканевой жидкостью значительно облегчается благодаря наличию таких внутриэндотелиальных фенестр.



Эндотелиальные клетки (Энд) синусоидных капилляров характеризуются наличием межклеточных и внутриклеточных отверстий (О) диаметром 0,5-3,0 мкм и фенестр (Ф) диаметром 50-80 нм, которые обычно формируются в форме ситообразных пластинок (СП).

Эндотелиальные клетки соединяются посредством нексусов и запирающих зон, zonulaе occludentes, а также с помощью перекрывающих зон (указано стрелкой).


Ядра эндотелиальных клеток уплощенные; цитоплазма содержит хорошо развитые органеллы, немного микрофиламентов, а в некоторых органах - заметное количество лизосом (Л) и микровезикул (Мв).


Базальная мембрана у этого типа капилляров почти полностью отсутствует, позволяя, таким образом, плазме крови и межклеточной жидкости свободно смешиваться, отсутствует барьер проницаемости.


В редких случаях встречаются перициты; нежные коллагеновые и ретикулярные волокла (РВ) образуют рыхлую сеть вокруг синусоидных капилляров.


Этот тип капилляров найден в печени, селезенке, гипофизе, корковом слое надпочечников. Предполагают, что эндотелиальные клетки синусоидных капилляров печени и костного мозга проявляют фагоцитарную активность.

По структурно-функциональным особенностям различают три типа капилляров: соматический, фенестрированный и синусоидный, или перфорированный.

Наиболее распространенный тип капилляров -соматический . В таких капиллярах сплошная эндотелиальная выстилка и сплошная базальной мембраной. Капилляры соматического типа находятся в мышцах, органах нервной системы, в соединительной ткани, в экзокринных железах.

Второй тип - фенестрированные капилляры. Они характеризуются тонким эндотелием с порами в эндотелиоцитах. Поры затянуты диафрагмой, базальная мембрана непрерывна. Фенестрированные капилляры встречаются в эндокринных органах, в слизистой оболочке кишки, в бурой жировой ткани, в почечном тельце, сосудистом сплетении мозга.

Третий тип - капилляры перфорированного типа , или синусоиды. Это капилляры большого диаметра, с крупными межклеточными и трансцеллюлярными порами (перфорациями). Базальная мембрана прерывистая. Синусоидные капилляры характерны для органов кроветворения, в частности для костного мозга, селезенки, а также для печени.

Венозное звено микроциркуляторного русла: посткапилляры, собирательные венулы и мышечные венулы

Посткапилляры (или посткапиллярные венулы) образуются в результате слияния нескольких капилляров, по своему строению напоминают венозный отдел капилляра, но в стенке этих венул отмечается больше перицитов. В органах иммунной системы имеются посткапилляры с особым высоким эндотелием, которые служат местом выхода лимфоцитов из сосудистого русла. Вместе с капиллярами посткапилляры являются наиболее проницаемыми участками сосудистого русла, реагирующими на такие вещества, как гистамин, серотонин, простагландины и брадикинин, которые вызывают нарушение целостности межклеточных соединений в эндотелии.

Собирательные венулы образуются в результате слияния посткапиллярных венул. В них появляются отдельные гладкие мышечные клетки и более четко выражена наружная оболочка.

Мышечные венулы имеют один-два слоя гладких мышечных клеток в средней оболочке и сравнительно хорошо развитую наружную оболочку.

Венозный отдел микроциркуляторного русла вместе с лимфатическими капиллярами выполняет дренажную функцию, регулируя гематолимфатическое равновесие между кровью и внесосудистой жидкостью, удаляя продукты метаболизма тканей. Через стенки венул, так же как через капилляры, мигрируют лейкоциты. Медленный кровоток и низкое кровяное давление, а также растяжимость этих сосудов создают условия для депонирования крови.

Артериоло-венулярные анастомозы

Артериоловенулярные анастомозы (ABA) - это соединения сосудов, несущих артериальную кровь в вены в обход капиллярного русла. Они обнаружены почти во всех органах. Объем кровотока в анастомозах во много раз больше, чем в капиллярах, скорость кровотока значительно увеличена. ABA отличаются высокой реактивностью и способностью к ритмическим сокращениям.

Классификация . Различают две группы анастомозов: истинные ABA (или шунты), и атипичные ABA (или полушунты). В истинных анастомозах в венозное русло сбрасывается чисто артериальная кровь. В атипичных анастомозах течет смешанная кровь, т.к. в них осуществляется газообмен. Атипичные анастомозы (полушунты) представляют собой короткий, но широкий, капилляр. Поэтому сбрасываемая в венозное русло кровь является не полностью артериальной.

Первая группа - истинных анастомозов может иметь различную внешнюю форму - прямые короткие соустья, петли, ветвящиеся соединения. Истинные АВА подразделяются на две подгруппы: простые и сложные. Сложные АВА снабжены специальными сократительными структурами, регулирующими кровоток. Сюда относят анастомозы с мышечной регуляцией, а также анастомозы т.н. гломусного, или клубочкового, типа, - с особыми эпителиоидными клетками.

ABA, особенно гломусного типа, богато интернированы. ABA принимают участие в регуляции кровенаполнения органов, перераспределении артериальной крови, регуляции местного и общего давления крови, а также в мобилизации депонированной в венулах крови.

1. По диаметру просвета

Узкие (4-7 мкм) находятся в поперечно – полосатых мышцах, легких, нервах.

Широкие (8-12 мкм) находятся в коже, слизистых оболочках.

Синусоидные (до 30 мкм) находятся в органах кроветворения, эндокринных железах, печени.

Лакуны (более 30 мкм) находятся в столбчатой зоне прямой кишки, пещеристых телах полового члена.

2. По строению стенки

Соматические, характеризуются отсутствием фенестр (локальных истончений эндотелия) и отверстий в базальной мембране (перфораций). Располагаются в мозгу, коже, мышцах.

Фенестрированные (висцерального типа), характеризуются наличием фенестр и отсутствием перфораций. Располагаются там, где процессы молекулярного переноса происходят особенно интенсивно: клубочки почек, ворсинки кишечника, железы внутренней секреции).

Перфорированные, характеризуются наличием фенестр в эндотелии и перфораций в базальной мембране. Такое строение облегчает переход через стенку капилляра клеток: синусоидные капилляры печени и органов кроветворения.

Функция капилляров – обмен веществ и газов между просветом капилляров и окружающими тканями, выполняется благодаря следующим факторам:

1. Тонкой стенке капилляров.

2. Медленному току крови.

3. Большой площади соприкосновения с окружающими тканями.

4. Низкому внутрикапиллярному давлению.

Количество капилляров на единицу объема в разных тканях различно, но в каждой ткани есть 50% нефункционирующих капилляров, которые находятся в спавшемся состоянии и через них проходит только плазма крови. При повышении нагрузки на орган они начинают функционировать.

Существует капиллярная сеть, которая заключена между двумя одноименными сосудами (между двумя артериолами в почках или между двумя венулами в портальной системе гипофиза), такие капилляры называются «чудесной сетью».

При слиянии нескольких капилляров образуются посткапиллярные венулы или посткапилляры, диаметром 12 -13 мкм, в стенке которых имеется фенестрированный эндотелий, больше перицитов. При слиянии посткапилляров образуются собирательные венулы , в средней оболочке которых появляются гладкие миоциты, лучше выражена адвентициальная оболочка. Собирательные венулы продолжаются в мышечные венулы , в средней оболочке которых содержится 1-2 слоя гладких миоцитов.

Функция венул:

· Дренажная (поступление из соединительной ткани в просвет венул продуктов обмена).

· Из венул в окружающую ткань мигрируют форменные элементы крови.

В состав микроциркуляторного русла входят артериоло – венулярные анастомозы (АВА) – это сосуды по которым кровь из артериол поступает в венулы минуя капилляры. Их длина до 4 мм, диаметр более 30 мкм. АВА открываются и закрываются 4 – 12 раз в минуту.

АВА классифицируются на истинные (шунты) , по которым течет артериальная кровь, и атипичные (полушунты) по которым сбрасывается смешанная кровь, т.к. при движении по полушунту происходит частичный обмен веществами и газами с окружающими тканями.

Функции истинных анастомозов:

· Регуляция кровотока в капиллярах.

· Артериализация венозной крови.

· Повышение внутривенулярного давления.

Функции атипичных анастомозов:

· Дренажная.

· Частично обменная.

Сердце

Это центральный орган крово- и лимфообращения. Благодаря способности к сокращениям приводит в движение кровь. Стенка сердца состоит из трех оболочек: эндокарда, миокарда и эпикарда.

Развитие сердца

Происходит следующим образом: в краниальном полюсе эмбриона, справа и слева из мезенхимы образуются эндокардиальные трубки. В это же время в висцеральных листках спланхнотома появляются утолщения, которые называются миоэпикардиальными пластинками. В них впячиваются эндокардиальные трубки. Два образовавшихся зачатка сердца постепенно сближаются и сливаются в единую трубку, состоящую из трех оболочек, так появляется однокамерная модель сердца. Затем происходит рост трубки в длину, она приобретает S – образную форму и подразделяется на передний отдел – желудочковый и задний – предсердный. Позже в сердце появляются перегородки и клапаны.

Строение эндокарда

Эндокард – это внутренняя оболочка сердца, которая выстилает предсердия и желудочки, состоит из четырех слоёв и по своему строению напоминает стенку артерии.

I слой – эндотелий, который располагается на базальной мембране.

II слой – подэндотелиальный, представлен рыхлой соединительной тканью. Эти два слоя аналогичны внутренней оболочке артерий.

III слой – мышечно-эластический, состоящий из гладкой мышечной ткани, между клетками которой в виде густой сети располагаются эластические волокна. Этот слой является «эквивалентом» средней оболочки артерий.

IV слой – наружный соединительнотканный, состоящий из рыхлой соединительной ткани. Он аналогичен наружной (адвентициальной) оболочке артерий.

Сосудов в эндокарде нет, поэтому его питание происходит путём диффузии веществ из крови, находящейся в полостях сердца.

За счёт эндокарда сформированы атриовентрикулярные клапаны и клапаны аорты и лёгочной артерии.

Похожие публикации