Звездчатые клетки печени развиваются из. Фундаментальные исследования. О лечении патологии органа

Intercellular communication might be realized by paracrine secretion and direct cell-to-cell contacts. It is known that hepatic perisinusoidal cells (HPC) establish regional stem cells niche and determine their differentiation. At the same time HPC remain poorly characterized on molecular and cellular level.

The aim of project was to study interactions between rat hepatic perisinusoidal cells and various stem cells such as mononuclear cell fraction of human umbilical cord blood (UCB-MC) and rat bone-marrow derived multipotential mesenchymal stromal cells (BM-MMSC).

Materials and methods. Rat BM-MSC and HPC, human UCB-MC cells were derived using standard techniques. To study HPC paracrine regulation we co-cultured UCB-MC or BM-MMSC cells with HPC using Boyden chambers and conditioned HPC cells media. Differentially labeled cells were co-cultured and their interactions were observed by phase-contrast fluorescent microscopy and immunocytochemistry.

Results. During the first week of cultivation there was autofluorescence of vitamin A because of fat-storing ability of PHC. BM-MMSC demonstrated high viability in all co-culture models. After 2 day incubation in conditioned media co-culture of BM-MMSC with HPC we observed changes in morphology of MMSC - they decreased in size and their sprouts became shorter. The expression of α-Smooth Muscle Actin and desmin was similar to myofibroblast - an intermediate form of Ito cells culture in vitro. These changes could be due to paracrine stimulation by HPC. The most profound effect of HPC on UCB-MC cells was observed in contact co-culture, thereby it is important for UCB-MC cells to create direct cell-to-cell contacts for maintaining their viability. We did not observe any cell fusion between HPC /UCB and HPC /BM-MMSC cells in co-cultures. In our further experiments we plan to study growth factors produced by HPC for hepatic differentiation of stem cells.

Введение.

Особый интерес среди многообразия клеток печени представляют перисинусоидальные клетки печени (клетки Ито) . Благодаря секреции факторов роста и компонентов межклеточного матрикса они создают микроокружение гепатоцитов, а в ряде научных исследований была показана способность звездчатых клеток печени к формированию микроокружения для прогениторных клеток (в том числе, гемопоэтических) и влиять на их дифференцировку в гепатоциты. Межклеточные взаимодействия этих популяций клеток могут осуществляться путем паракринной секреции факторов роста или непосредственных межклеточных контактов, однако молекулярные и клеточные основы этих процессов остаются до конца неизученными.

Цель исследования.

Изучение механизмов взаимодействия клеток Ито с гемопоэтическими (ГСК) и мезенхимальными (ММСК) стволовыми клетками в условиях in vitro.

Материалы и методы.

Клетки Ито печени крыс выделены двумя различными ферментативными методами. Одновременно из костного мозга крыс получены стромальные ММСК. Мононуклеарная фракция гемопоэтических стволовых клеток выделена из пуповинной крови человека. Паракринные влияния клеток Ито были исследованы при культивировании ММСК и ГСК в среде, в которой росли клетки Ито, и при совместном культивировании клеток, разделённых полупроницаемой мембраной. Влияние межклеточных контактов было изучено при совместном ко-культивировании клеток. Для лучшей визуализации каждая популяция была мечена индивидуальной флуоресцентной меткой. Морфологию клеток оценивали методами фазово-контрастной и флуоресцентной микроскопии. Фенотипические признаки культивируемых клеток изучали методами иммуноцитохимического анализа.

Результаты.

В течение недели после выделения перисинусоидальных клеток нами отмечена способность их к аутофлюоресценции благодаря жиронакапливающей способности. Далее клетки перешли в промежуточную фазу своего роста и приобрели звёздчатую форму. На начальных этапах ко-культивирования клеток Ито с ММСК костного мозга крысы жизнеспособность ММСК сохранялась во всех вариантах культивирования. На вторые сутки при культивировании ММСК в культуральной среде клеток Ито происходило изменение морфологии ММСК - они уменьшались в размерах, отростки укорачивались. Экспрессия альфа-гладкомышечного актина и десмина в ММСК увеличивалась, что свидетельствовало об их фенотипическом сходстве с миофибробластами - промежуточной стадией роста активированных клеток Ито in vitro. Полученные нами данные свидетельствуют о влиянии паракринных факторов, выделяемых клетками Ито, на свойства ММСК в культуре.

На основании ко-культивирования кроветворных стволовых клеток с клетками Ито показано, что гемопоэтические стволовые клетки сохраняют жизнеспособность только при контактном ко-культивировании с клетками Ито. По данным флуоресцентного анализа смешанных культур феномен слияния клеток разных популяций выявлен не был.

Выводы. Для сохранения жизнеспособности кроветворных стволовых клеток решающим фактором является наличие непосредственных межклеточных контактов с клетками Ито. Паракринная регуляция была отмечена только при культивировании ММСК в питательной среде, в которой росли клетки Ито. Изучение влияния конкретных факторов, вырабатываемых клетками Ито, на дифференцировку ГСК и ММСК в культуре клеток планируется провести в следующих исследованиях.

Шафигуллина А.К., Трондин А.А., Шайхутдинова А.Р., Калигин М.С., Газизов И.М., Ризванов А.А., Гумерова А.А., Киясов А.П.
ГОУ ВПО «Казанский Государственный Медицинский Университет Федерального агентства по здравоохранению и социальному развитию»

1

Проведен ультраструктурный, иммуногистохимический и морфометрический анализ популяции звездчатых клеток печени в динамике развития фиброза и цирроза инфекционно-вирусного генеза. Выявлена фиброгенная активация звездчатых клеток печени, которая характеризуется редукцией липидных капель и синхронной экспрессией фибробластоподобных характеристик – позитивной иммуногистохимической реакцией на гладкомышечный α-актин, гиперплазией гранулярной цитоплазматической сети и перицеллюлярным формированием многочисленных коллагеновых фибрилл. Показано, что, несмотря на прогрессирующее уменьшение численной плотности липидосодержащих звездчатых клеток при развитии фиброза, сохраняется необходимость поддержания функции депонирования ретиноидов – при циррозе печени в фиброзных септах и внутри долек обнаружены липидосодержащие звездчатые клетки. Сделано заключение, что звездчатые клетки печени – полиморфная гетерогенная популяция с широким спектром функциональной активности.

фиброгенез

звездчатые клетки печени

ультраструктура

иммуногистохимия

1. Balabaud C., Bioulac-Sage P., Desmouliere A. The role of hepatic stellate cells in liver regeneration // J. Hepatol. – 2004. – Vol. 40. – P. 1023–1026.

2. Brandao D.F., Ramalho L.N.Z., Ramalho F.S. Liver cirrhosis and hepatic stellate cells // Acta Cirúrgica Brasileira. – 2006. – Vol. 21. – P. 54–57.

3. Desmet V.J., Gerber M., Hoofnagle J.H. Classification of chronic hepatitis: Diagnosis, grading and staging // Hepatology. – 1994. – Vol. 19. – P. 1523–1520.

4. Gabele E., Brenner D.A., Rippe R.A. Liver fibrosis: Signals leading to the amplification of the fibrogenic hepatic stellate cell // Front. Biosc. – 2003. – Vol. 8. – P. 69–77.

5. Geerts A. On the origin of stellate cells: mesodermal, endodermal or neuro-ectodermal? // J. Hepatol. – 2004. – Vol. 40. – P. 331–334.

6. Gutierrez-Ruiz M.C., Gomez-Quiroz L.E. Liver fibrosis: searching for cell model answers // Liver Intern. – 2007. – Vol. 10. – P. 434–439.

7. Kisseleva T., Brenner D.A. Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis // J. Gastroenterol. Hepatol. – 2007. – Vol. 22. – P. S73–S78.

8. Ryder S.D. Progression of hepatic fibrosis in patients with hepatitis C: a prospective repeat liver biopsy study // Gut. – 2004. – Vol. 53. – P. 451–455.

9. Schuppan D., Afdhal N.H. Liver cirrhosis // Lancet. – 2008. – Vol. 371. – P. 838–851.

10. Senoo H. Structure and function of hepatic stellate cells // Med. Electron. Microsc. – 2004. – Vol. 37. – P. 3–15.

Звездчатые клетки печени (липоциты, клетки Ито, жиронакапливающие клетки печени) локализуются в пространствах Диссе между гепатоцитами и эндотелиальной выстилкой синусоидов и играют ведущую роль в регуляции гомеостаза ретиноидов, депонируя до 80 % витамина А . Пространство Диссе является зоной наибольшей функциональной ответственности, обеспечивая транссинусоидальный обмен. С помощью экспериментальных моделей и в культуре клеток продемонстрировано, что звездчатые клетки печени дифференцируются по крупным цитоплазматическим липидным каплям, содержащим витамин А; этот фенотип интерпретирован как «покоящийся».

Все большее значение придается роли звездчатых клеток в развитии фиброза и цирроза печени. При получении фиброгенных стимулов «покоящиеся» звездчатые клетки «трансдифференцируются», приобретая миофибробластоподобный фенотип, и начинают продуцировать коллаген, протеогликаны и другие компоненты экстрацеллюлярного матрикса . Фиброз на уровне центральных вен, синусоидов или портальных сосудов лимитирует нормальную гемодинамику печени, что приводит к сокращению метаболически эффективной паренхимы, в дальнейшем - портальной гипертензии и порто-системному шунтированию. Накопление соединительной ткани в пространствах Диссе нарушает нормальный метаболический трафик между кровью и гепатоцитами, препятствуя клиренсу циркулирующих макромолекул, изменяя межклеточные взаимодействия и приводя к дисфункции клеток печени .

Существуют противоречивые мнения относительно того, способны ли активированные звездчатые клетки возвращаться к покоящемуся фенотипу. Получены данные о том, что фиброгенные звездчатые клетки печени могут частично нивелировать процесс активации, например, при воздействии ретиноидов или при взаимодействии с компонентами экстрацеллюлярного матрикса, в том числе с фибриллярным коллагеном I типа или компонентами базальной мембраны . Решение этого вопроса лежит в основе проблемы обратимости фиброза и разработки терапевтических подходов к лечению цирроза печени.

Цель исследования - провести комплексное изучение структурно-функциональных особенностей звездчатых клеток печени в динамике фиброзных изменений на модели хронической HCV-инфекции.

Материал и методы исследования

Проведено комплексное светооптическое, электронно-микроскопическое и морфометрическое исследование биоптатов печени при хронической HCV-инфекции на различных стадиях фиброзных изменений (100 образцов, разделенных на 4 равные группы по степени выраженности фиброза). Важно отметить, что липидосодержащие звездчатые клетки лучше всего визуализируются на полутонких срезах, фиброгенные звездчатые клетки - только на ультратонких срезах либо с помощью иммуногистохимической визуализации.

Образцы печени фиксировали в охлажденном до 4 °С 4 %-м растворе параформальдегида, приготовленном на фосфатном буфере Миллонига (рН 7,2-7,4); парафиновые срезы окрашивали гематоксилином и эозином в комбинации с реакцией Перлса, по ван Гизону с докраской эластических волокон резорцин-фуксином Вейгерта, ставили ШИК-реакцию. Полутонкие срезы окрашивали реактивом Шиффа и азуром II. Исследование проводили в универсальном микроскопе Leica DM 4000B (Германия). Микрофотографии получали с использованием цифровой фотокамеры Leica DFC 320 и компьютерной программы Leica QWin. Ультратонкие срезы, контрастированные уранилацетатом и цитратом свинца, исследовали в электронном микроскопе «JEM 1010» при ускоряющем напряжении 80 кВт.

Стадию фиброза печени определяли по 4-балльной шкале, начиная от портального фиброза (I стадия) до цирроза с образованием порто-центральных васкуляризованных септ и нодулярной трансформацией паренхимы . Звездчатые клетки печени и другие матрикс-продуцирующие клеточные элементы выявляли в динамике развития фиброза по экспрессии гладкомышечного α-актина.

Экспрессию гладкомышечного α-актина в матрикс-продуцирующих клетках печени тестировали с помощью двухшагового непрямого иммунопероксидазного метода со стрептавидин-биотиновой системой визуализации продуктов реакции с негативным контролем. В качестве первичных антител использовали мышиные моноклональные антитела к гладкомышечному α-актину (NovoCastra Lab. Ltd, Великобритания) в разведении 1:25; в качестве вторичных антител - универсальные биотинилированные антитела. Продукты иммуногистохимической реакции визуализировали с помощью диаминобензидина, затем срезы докрашивали гематоксилином Майера. Численную плотность липидосодержащих звездчатых клеток оценивали на полутонких срезах в единице поля зрения, равной 38000 мкм2. При статистической обработке данных применяли критерий Стьюдента; различия сравниваемых параметров считали значимыми, если вероятность ошибки P была меньше 0,05.

Результаты исследования и их обсуждение

При минимальных фиброзных изменениях печени пациентов с хроническим гепатитом С обнаруживается, как правило, достаточно большое количество звездчатых клеток, которые хорошо видны лишь на полутонких и ультратонких срезах и дифференцируются в пространствах Диссе по наличию в цитоплазме крупных липидных капель. Превращение звездчатых клеток из «покоящихся», содержащих ретиноиды, в фиброгенные сопровождается постепенным уменьшением числа липидных капель. В связи с этим истинное количество звездчатых клеток можно определить, используя комплексное электронно-микроскопическое и иммуногистохимическое исследование.

На начальных стадиях фиброза (0, I) при хроническом гепатите С при изучении полутонких срезов популяция звездчатых клеток печени отличалась выраженным полиморфизмом - резко варьировали размеры, форма, количество липидных капель и их тинкториальные свойства: обращали на себя внимание различия в осмиофильности липидосодержащего материала в разных клетках. Численная плотность звездчатых клеток печени, визуализируемых в препаратах по наличию цитоплазматических липидных капель, составляла 5,01 ± 0,18 на единицу поля зрения.

Особенности ультраструктуры звездчатых клеток связаны с гетерогенностью электронной плотности липидных капель не только в пределах одной клетки, но и между разными липоцитами: на фоне электронно-прозрачного липидного субстрата выделялся более осмиофильный маргинальный ободок; кроме того, резко полиморфны ядра, варьировалась длина цитоплазматических отростков. Среди ультраструктурных особенностей липидосодержащих звездчатых клеток, наряду с присутствием липидных капель, можно отметить очень малое количество цитоплазматического матрикса, бедного мембранными органеллами, в том числе митохондриями, в связи с чем, по-видимому, данный фенотип липоцитов называют «покоящимся» или «пассивным» .

На стадиях фиброза II и III ультраструктура большинства звездчатых клеток приобретала так называемый смешанный, или переходный, фенотип - одновременное присутствие морфологических признаков и липидосодержащей и фибробластоподобной клетки. В таких липоцитах ядра имели глубокие инвагинации нуклеолеммы, более крупное ядрышко, увеличенный объем цитоплазмы, сохраняющей липидные капли. Одновременно резко возрастало количество митохондрий, свободных рибосом, полисом и канальцев гранулярной цитоплазматической сети. Как правило, имелся мембранный контакт липидных капель и митохондрий, свидетельствующий об «утилизации» липидов. Во многих клетках деградация липидных капель осуществлялась путем формирования аутофагосом, затем элиминирующихся путем экзоцитоза. В некоторых случаях отмечалась пролиферация звездчатых клеток смешанного фенотипа.

Матрикс-продуцирующие звездчатые клетки, наиболее многочисленные на стадии цирроза печени, характеризовались полным отсутствием липидных гранул, отростчатой фибробластоподобной формой, развитым белоксинтезирующим компартментом и формированием в цитоплазме контрактильных фибриллярных структур; перицеллюлярно в пространствах Диссе локализовались многочисленные пучки коллагеновых фибрилл со специфичной поперечной исчерченностью.

В целом, при прогрессировании хронического гепатита С, сопровождающегося внутридольковым перисинусоидальным фиброгенезом, имели место морфологические признаки активации звездчатых клеток печени, превращение их из так называемых «пассивных», накапливающих витамин А, в клетки фиброгенные и пролиферирующие.

На стадии трансформации в цирроз печени происходило значительное уменьшение численной плотности липидосодержащих звездчатых клеток, свидетельствующее об их фиброгенной трансформации. Однако при сформированном циррозе печени в единичных случаях встречались участки паренхимы печени с перисинусоидальными липидосодержащими звездчатыми клетками. Кроме того, в одном образце в перипортальной фиброзной ткани обнаружены многочисленные липоциты, что, вероятно, свидетельствует о важной роли звездчатых клеток в метаболизме ретиноидов в организме даже на стадии цирроза органа. Кроме того, по-видимому, звездчатые клетки имеют ряд других функций, они обнаружены и во внепеченочных органах, таких как поджелудочная железа, легкие, почки и кишечник, и существует мнение о том, что печеночные и внепеченочные звездчатые клетки формируют диссеминированную систему звездчатых клеток организма, аналогично APUD-системе . Например, несмотря на ассоциацию фиброгенных звездчатых клеток с циррозом печени, их активация может играть благоприятную роль в случаях острого повреждения, потому что в результате формируется соответствующий стромальный контур для регенерации паренхиматозных клеток.

Степень выраженности перигепатоцеллюлярного фиброза при хронической HCV-инфекции, по данным морфометрического анализа, имела достоверную обратную корреляцию с численной плотностью липидосодержащих звездчатых клеток - на стадии фиброза III и при циррозе органа она составляла 0,20 ± 0,03 в единице поля зрения, что достоверно меньше (р < 0,05), чем на стадиях фиброза 0 - I (5,01 ± 0,18) и II (2,02 ± 0,04).

Фиброгенная активность матрикс-продуцирующих клеток печени тестирована нами с помощью иммуногистохимического исследования по экспрессии гладкомышечного альфа-актина. Продукты иммуногистохимической реакции различной интенсивности обнаруживались в цитоплазме активированных звездчатых клеток, локализующихся внутри печеночных долек. Особенно значительная экспрессия гладкомышечного α-актина отмечалась в цитоплазме фибробластов и миофибробластов портальных зон, гладкомышечных клетках сосудов и миофибробластах вокруг центральных вен.

Большинство данных о клеточных механизмах фиброгенеза получено в исследованиях, выполненных на звездчатых клетках печени, однако очевидно, что различные матрикс-продуцирующие клетки (каждая с определенной локализацией, иммуногистохимическим и ультраструктурным фенотипом) вносят свой вклад в развитие фиброза печени . Они включают в себя фибробласты и миофибробласты портальных трактов, гладкомышечные клетки сосудов и миофибробласты вокруг центральных вен, активизирующиеся в условиях хронического повреждения печени.

Заключение

Продемонстрирована роль звездчатых клеток печени в развитии фиброза органа при хроническом гепатите С. При прогрессировании фиброза значимо уменьшается численная плотность липидосодержащих звездчатых клеток, при этом часть популяции сохраняет так называемый «покоящийся» фенотип для осуществления метаболической функции. «Миофибробластоподобные» звездчатые клетки печени в состоянии фиброгенной активации характеризуются следующими структурно-функциональными особенностями: уменьшением числа и последующим исчезновением липидных капель, гиперплазией гранулярной цитоплазматической сети и митохондрий, очаговой пролиферацией, иммуногистохимической экспрессией фибробластоподобных характеристик, в том числе гладкомышечного α-актина, и формированием перицеллюлярных коллагеновых фибрилл в пространствах Диссе.

Таким образом, звездчатые клетки печени представляют собой не статичную, а динамичную популяцию, принимающую непосредственное участие в ремоделировании внутридолькового перигепатоцеллюлярного матрикса.

Рецензенты:

Вавилин В.А., д.м.н., профессор, зав. лабораторией метаболизма лекарств НИИ молекулярной биологии и биофизики Сибирского отделения РАМН, г. Новосибирск;

Кливер Е.Э., д.м.н., ведущий научный сотрудник лаборатории патоморфологии и электронной микроскопии Новосибирского НИИ патологии кровообращения имени академика Е.Н. Мешалкина Минздравсоцразвития РФ, г. Новосибирск.

Работа поступила в редакцию 15.08.2011.

Библиографическая ссылка

Постникова О.А., Непомнящих Д.Л., Айдагулова С.В., Виноградова Е.В., Капустина В.И., Нохрина Ж.В. СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА ЗВЕЗДЧАТЫХ КЛЕТОК ПЕЧЕНИ В ДИНАМИКЕ ФИБРОЗА // Фундаментальные исследования. – 2011. – № 10-2. – С. 359-362;
URL: http://fundamental-research.ru/ru/article/view?id=28817 (дата обращения: 30.01.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Строение эндотелиальных клеток, клеток Купфера и Ито , мы рассмотрим на примере двух рисунков.


На рисунке справа от текста, изображены синусоидные капилляры (СК) печени - внутридольковые капилляры синусоидного типа, увеличивающиеся от входных венул к центральной вене. Печеночные синусоидные капилляры формируют анастомотическую сеть между печеночными пластинками. Выстилка синусоидных капилляров образована эндотелиальными клетками и клетками Купфера.


На рисунке слева от текста, изображена печеночная пластинка (ПП) и два синусоидных капилляра (СК) печени срезаны вертикально и горизонтально, чтобы показать перисинусоидальные клетки Ито (КИ). На рисунке отмечены также срезанные желчные канальцы (ЖК).


Эндотелиальные клетки (ЭК) - сильно уплощенные чешуйчатые клетки с удлиненным маленьким ядром, слаборазвитыми органеллами и большим количеством микропиноцитозных везикул. Цитомембрана испещрена непостоянными отверстиями (О) и фенестрами, часто группирующимися в решетчатые пластинки (РП). Эти отверстия пропускают плазму крови, но не клетки крови, давая ей возможность доступа к гепатоцитам (Г). Эндотелиальные клетки не имеют базальной мембраны и не обладают фагоцитозом. Они соединены друг с другом с помощью небольших соединительных комплексов (не показаны). Вместе с клетками Купфера эндотелиальные клетки формируют внутреннюю границу пространства Диссе (ПД); его наружная граница образована гепатоцитами .


Клетки Купфера (КК) - большие, непостоянные звездчатые клетки внутри печеночных синусоидных капилляров, частично на их бифуркациях.

Отростки клеток Купфера проходят без каких-либо соединительных устройств между эндотелиальными клетками и часто пересекают просвет синусоидов. Клетки Купфера содержат овальное ядро, много митохондрий, хорошо развитый комплекс Гольджи, короткие цистерны гранулярной эндоплазматической сети, множество лизосом (Л), остаточные тела и редкие кольцевые пластинки. Клетки Купфера также включают большие фаголизосомы (ФЛ), которые часто содержат отжившие свой срок эритроциты и инородные вещества. Также могут быть выявлены, особенно при суправитальной окраске, включения гемосидерина или железа.


Поверхность клеток Купфера демонстрирует непостоянные уплощенные цитоплазматические складки, называемые ламеллоподиями (ЛП) - пластинчатыми ножками, а также отростки, называемые филоподиями (Ф), и микроворсины (Мв), покрытые гликокаликсом. Плазмолемма формирует червеобразные тельца (ЧТ) с центрально расположенной плотной линией. Эти структуры могут представлять конденсированный гликокаликс.


Клетки Купфера - это макрофаги, весьма вероятно, формирующие самостоятельный род клеток. Они обычно происходят от других клеток Купфера вследствие митотического деления последних, но могут также происходить из костного мозга . Некоторые авторы полагают, что они являются активизированными эндотелиальными клетками.


Иногда случайное автономное нервное волокно (НВ) проходит через пространство Диссе. В некоторых случаях волокна имеют контакт с гепатоцитами. Края гепатоцитов отграничены межгепатоцитными углублениями (МУ), усеянными микроворсинками.




Это звездчатые клетки, локализованные внутри пространств Диссе (ПД). Ядра их богаты конденсированным хроматином и обычно деформированы большими липидными каплями (ЛК). Последние присутствуют не только в перикарионе, но и в отростках клетки и видимы снаружи как сферические протрузии. Органеллы развиты плохо. Перисинусоидальные клетки демонстрируют слабую эндоцитотическую активность, но не обладают фагосомами. Клетки имеют несколько длинных отростков (О), которые контактируют с соседними гепатоцитами, но не образуют соединительных комплексов.

Отростки охватывают синусоидные капилляры печени и в некоторых случаях проходят через печеночные пластинки, вступая в контакт с соседними печеночными синусоидами. Отростки не постоянны, разветвлены и тонки; они могут быть также уплощенными. Накапливая группы липидных капель, они удлиняются и приобретают вид виноградной кисти.


Считается, что перисинусоидальные клетки Ито - это слабодифференцированные мезенхимные клетки, которые могут рассматриваться как гемопоэтические стволовые клетки, так как они могут в патологических условиях трансформироваться в жировые клетки, активные кровяные стволовые клетки или в фибробласты.


В нормальных условиях клетки Ито вовлечены в аккумуляцию жира и витамина А так же, как и в продукцию внутридольковых ретикулярных и коллагеновых волокон (KB).

Звездчатые клетки

Вверху - схематическое изображение клетки Ито (HSC) по соседству с ближайшими гепатоцитами (PC), ниже синусоидальных эпителиальных клеток печени (EC). S - синусоид печени; KC - клетка Купфера. Внизу слева - клетки Ито в культуре под световым микроскопом. Внизу справа - электронная микроскопия позволяет разглядеть многочисленные жировые вакуоли (L) клеток Ито (HSC), в которых хранятся ретиноиды.

Клетки Ито (синонимы: звёздчатая клетка печени , жирозапасающая клетка , липоцит , англ. Hepatic Stellate Cell, HSC, Cell of Ito, Ito cell ) - перициты , содержащиеся в перисинусоидальном пространстве печёночной дольки, способные функционировать в двух различных состояниях - спокойном и активированном . Активированные клетки Ито играют главную роль в фиброгенезе - формировании рубцовой ткани при повреждениях печени .

В неповрежденной печени, звёздчатые клетки находятся в спокойном состоянии . В таком состоянии клетки имеют несколько выростов, охватывающих синусоидный капилляр . Другой отличительной чертой клеток является присутствие в их цитоплазме запасов витамина А (ретиноида) в форме жировых капель. Спокойные клетки Ито составляют 5-8 % численности всех клеток печени.

Выросты клеток Ито подразделяются на два типа: перисинусоидальные (субэндотелиальные) и интергепатоцеллюлярные . Первые выходят из тела клетки и простираются вдоль поверхости синусоидного капилляра , охватывая его тонкими пальцеобразными ответвлениями. Перисинусоидальные выросты покрыты короткими ворсинками и имеют характерные длинные микровыбросы, простирающиеся еще дальше по поверхности эндотелиальной трубки капилляра. Интергепатоцеллюлярные выросты, преодолев пластинку гепатоцитов и достигнув соседнего синусоида, делятся на несколько перисинусоидальных выростов. Таким образом, клетка Ито в среднем охватывает чуть больше двух соседних синусоидов.

При повреждении печени клетки Ито переходят в активированное состояние . Активированный фенотип характеризуется пролиферацией, хемотаксисом , сокращаемостью, потерей запасов ретиноида и образованием клеток, напоминающих миофибробластные. Активированные звёздчатые клетки печени также демонстрируют повышенное содержание новых генов , таких как α-SMA, хемокины и цитокины . Активация свидетельствует о начале ранней стадии фиброгенеза и предшествует повышенному продуцированию ЕСМ -протеинов. Финальная стадия заживления печени характеризуется усиленным апоптозом активированных клеток Ито, вследствие чего их количество резко сокращается.

Для визуализации клеток Ито при микроскопии применяется окрашивание хлоридом золота . Установлено также, что надёжным маркером для дифференциации этих клеток от других миофибробластов является экпрессия ими белка рилин .

История

Ссылки

  • Янг-О Куеон, Закари Д.Гудмэн, Жуль Л. Диенстаг, Юджин Р.Шифф, Натаниель А.Браун, Элмар Буркхардт, Роберт Скунховен, Дэвид А.Бреннер, Майкл У.Фрайд (2001) Снижение фиброгенеза: иммуногистохимическое исследование парной биопсии клеток печени после проведения терапии ламивудином у пациентов с хроническим гепатитом B . Journal of Haepothology 35; 749-755. - перевод статьи в журнале «Инфекции и антимикробная терапия», Том 04/N 3/2002, на сайте Consilium-Medicum.
  • Popper H: Distribution of vitamin A in tissue as revealed by fluorescence microscopy. Physiol Rev 1944, 24:205-224.

Примечания

Wikimedia Foundation . 2010 .

Смотреть что такое "Звездчатые клетки" в других словарях:

    Клетки - получить на Академике рабочий купон на скидку Галерея Косметики или выгодно клетки купить с бесплатной доставкой на распродаже в Галерея Косметики

    Вверху схематическое изображение клетки Ито (HSC) по соседству с ближайшими гепатоцитами (PC), ниже синусоидальных эпителиальных клеток печени (EC). S синусоид печени; KC клетка Купфера. Внизу слева клетки Ито в культуре под световым микроскопом … Википедия

    НЕРВНЫЕ КЛЕТКИ - НЕРВНЫЕ КЛЕТКИ, основные элементы нервной ткани. Открыты Н. к. Эренбер гом (Ehrenberg) и впервые им описаны в 1833 году. Более подробные данные о Н. к. с указанием на их форму и на существование осевоцилиндрического отростка, а также на… … Большая медицинская энциклопедия

    Крупные нейроны коры мозжечка (См. Мозжечок) (М), аксоны которых выходят за её пределы; описаны в 1837 Я. Э. Пуркине. Через П. к. реализуются командные воздействия коры М на подчинённые ей моторные центры (ядра М и вестибулярные ядра). У… … Большая советская энциклопедия

    Или Gephyrei класс подтипа червеобразных или Vermidea, типа червей или Vermes. Принадлежащие к этому классу животные исключительно морские формы, которые живут в илу и песке теплых и холодных морей. Класс звездчатых Ч. был установлен Катрфажем… …

    Не следует путать с нейтроном. Пирамидальные ячейки нейронов в коре головного мозга мыши Нейрон (нервная клетка) – это структурно функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре… … Википедия

    Название это применяется как к некоторым пигментным клеткам, так и к частям клеток (как животных, так и растительных), содержащих пигмент. Чаще X. встречаются у растений (см. предыдущую статью Н. Гайдукова), но они описываются также у простейших … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (cellulae flammeae), клетки с пучком ресничек и длинным отростком, замыкающие проксимальную часть канальца протонефридия. Центр, часть «П. к., имеющая многочисл. звездчатые отростки, переходит в полость, в к рую спускается пучок длинных ресничек… …

    Звездчатые эндотелиоциты (reticuloendoteliocyti stellatum), клетки ретикуло эндотелиальной системы, расположенные на внутр. поверхности капилляроподобных сосудов (синусоидов) печени у земноводных, пресмыкающихся, птиц и млекопитающих. Изучены К.… … Биологический энциклопедический словарь

    ПЛÁМЕННЫЕ КЛÉТКИ (cellulae flammeae), клетки с пучком ресничек и длинным отростком, замыкающие проксимальную часть канальца протонефридия. Центр. часть П. к., имеющая многочисл. звездчатые отростки, переходит в полость, в к рую спускается пучок… … Биологический энциклопедический словарь

    - (С. Golgi) звездчатые нейроны зернистого слоя коры мозжечка … Большой медицинский словарь

Основным источником эндотоксина в организме является грамотрицательная флора кишечника. В настоящее время не вызывает сомнений тот факт, что печень является основным органом, осуществляющим клиренс эндотоксина . Эн­ дотоксин захватывается в первую очередь клет­ ками Купфера (КК), взаимодействуя с мембран­ным рецептором CD 14. С рецептором может связываться как сам липополисахарид (ЛПС), так и его комплекс с липид А-связывающим бел­ ком плазмы . Взаимодействие ЛПС с макро­фагами печени запускает каскад реакций, в ос­нове которых лежат выработка и высвобожде­ние цитокинов и других биологически активных медиаторов .

Имеется много публикаций о роли макрофа­ гов печени (КК) в захвате и клиренсе бактери­ального ЛПС, однако взаимодействие эндотелия с другими мезенхимальными клетками, в част­ности, с перисинусоидальными клетками Ито, практически не изучено.

МЕТОДИКА ИССЛЕДОВАНИЯ

Белым крысам-самцам массой 200 г внутрибрюшинно в 1 мл стерильного физиологического раствора вводили высокоочищенный лиофилизированный ЛПС Е. coli штамм 0111 в дозах 0.5, 2.5, 10, 25 и 50 мг/кг. На сроках 0.5, 1, 3, 6, 12, 24, 72 ч и 1 нед под наркозом извлекали внут­ренние органы и помещали их в забуференный 10% формалин. Материал заливали в парафино­вые блоки. Срезы толщиной 5 мкм окрашивали иммуногистохимическим стрептавидин-биотиновым методом антителами к десмину , α - гладко-мышечному актину (А-ГМА) и ядерному антиге­ ну пролиферирующих клеток (PCNA , " Dako "). Десмин использовали в качестве маркера перисинусоидальных клеток Ито, А-ГМА - в качест­ ве маркера миофибробластов , PCNA - проли­ферирующих клеток. Для выявления эндотокси­на в клетках печени использовали очищенные анти- R е-гликолипидные антитела (Институт об­щей и клинической патологии КДО, Москва).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

При дозировке 25 мг/кг и выше через 6 ч после введения ЛПС наблюдали шок со смертельным исходом. Острое воздействие ЛПС на ткань пе­чени вызывало активацию клеток Ито, которая проявлялась увеличением их количества. Число десминположительных клеток увеличивалось с 6 ч после инъекции ЛПС и достигало максимума к 48-72 ч (рис. 1, а, б).

Рис. 1. Срезы печени кры­сы, обработанные LSAB -ме-ченными антителами к десмину (а, б) и α - гладкомышечному актину (в), х400 (а, б), х200 (в).

а - до введения эндотокси­ на, единичные десминположительные клетки Ито в перипортальной зоне; б - 72 ч после введения эндотокси­на: многочисленные десминположительные клетки Ито; в - 120 ч после введения эн­ дотоксина: α - гладкомышечный актин присутствует толь­ ко в гладкомышечных клет­ ках сосудов.

Через 1 нед число десминположительных клеток снижалось, но ос­ тавалось выше контрольных показателей. При этом ни в одном случае мы не наблюдали появления А-ГМА-положительных клеток в синусои­ дах печени. Внутренним положительным контролем при окрашивании антителами к А-ГМА служило выявление гладкомышечных клеток кро­ веносных сосудов портальных трактов, содержа­щих А-ГМА (рис. 1, в). Следовательно, несмотря на увеличение количества клеток Ито, однократ­ ное воздействие Л ПС не приводит к трансформации (трансдифференцировке ) их в миофибробласты .


Рис. 2. Срезы печени крысы, обработанные LSAB -меченными ан­тителами к PCNA . а - до введения эн­дотоксина: единичные пролиферирующие гепатоциты , х200; б - 72 ч после введения эндотоксина: много­численные пролифе­рирующие гепатоциты ,х400.

Увеличение количества десминположительных клеток начиналось в пределах портальной зоны. С 6 ч до 24 ч после введения ЛПС перисинусоидальные клетки обнаруживались только вокруг портальных трактов, т.е. в 1-й зоне ацинуса . На сроках 48-72 ч, когда наблюдалось мак­ симальное количество десминположительных кле­ ток, они появлялись и в других зонах ацинуса ; тем не менее большая часть клеток Ито распо­лагалась все же перипортально .

Возможно, это связано с тем, что перипор­тально расположенные КК первыми захватывают эндотоксин, поступающий из кишечника по во­ротной вене либо из системного кровотока. Ак­тивированные КК вырабатывают широкий спектр цитокинов , которые, как предполагается, запус­кают активацию клеток Ито и трансдифференцировку их в миофибробласты . Очевидно, именно поэтому первыми на выброс цитокинов реагируют клетки Ито, расположенные вблизи активированных макрофагов печени (в 1-й зоне ацинуса ). Однако в нашем исследовании мы не наблюдали их трансдифференцировки в миофиб­робласты , и это позволяет предположить, что выделяемые КК и гепатоцитами цитокины мо­гут служить фактором, поддерживающим уже начавшийся процесс трансдифференцировки , но они, вероятно, не способны запускать его при однократном воздействии ЛПС на печень.

Усиление пролиферативной активности кле­ток также наблюдалось преимущественно в 1-й зоне ацинуса . Вероятно, это говорит о том, что все (или практически все) процессы, направлен­ные на ауто - и паракринную регуляцию межкле­точных взаимодействий, протекают в перипортальных зонах. Увеличение количества пролиферирующих клеток наблюдали с 24 ч после вве­дения ЛПС; число положительных клеток уве­личивалось вплоть до 72 ч (максимум пролифе­ративной активности, рис. 2, а, б). Пролиферировали как гепатоциты , так и синусоидные клетки. Однако окрашивание на PCNA не дает возможности идентифицировать тип пролифери рующих синусоидных клеток. По данным лите­ратуры, действие эндотоксина приводит к увели­чению количества КК . Полагают, что это про­ исходит как за счет пролиферации макрофагов печени, так и за счет миграции моноцитов издругих органов . Выбрасываемые КК цитоки­ны могут повышать пролиферативную способ­ность клеток Ито. Поэтому логично предполо­жить, что пролиферирующие клетки представле­ны перисинусоидальными клетками Ито. Заре­гистрированное нами увеличение их числа необ­ходимо, по-видимому, для повышения синтеза ростовых факторов и восстановления межкле­точного матрикса в условиях повреждения. Это может быть одним из звеньев компенсаторно-восстановительных реакций печени, поскольку клетки Ито являются основным источником компонентов межклеточного матрикса, фактора стволовых клеток и фактора роста гепатоцитов , которые участвуют в репарации и дифференцировке эпителиальных клеток печени . Отсутст­ вие же трансформации клеток Ито в миофибро­бласты свидетельствует о том, что одного эпизо­да эндотоксиновой агрессии недостаточно для развития фиброза печени.

Таким образом, острое воздействие эндоток­сина вызывает увеличение числа десминположи­тельных клеток Ито, что является косвенным признаком повреждения печени. Количество перисинусоидальных клеток возрастает, видимо, в результате их пролиферации. Однократный эпи­зод эндотоксиновой агрессии вызывает обрати­мую активацию перисинусоидальных клеток Ито и не приводит к их трансдифференцировке в миофибробласты . В связи с этим можно пред­положить, что в механизмах активации и транс­дифференцировки клеток Ито задействованы не только эндотоксин и цитокины , но и какие-то иные факторы межклеточных взаимодействий.

ЛИТЕРАТУРА

1. Маянский Д.Н., Виссе Э., Декер К. // Новые рубежи гепатологии . Новосибирск, 1992.

2. Салахов И.М., Ипатов А.И., Конев Ю.В., Яков­лев М.Ю. // Успехи соврем, биол. 1998. Т. 118, Вып . 1. С. 33-49.

3. Яковлев М.Ю. // Казан. м ед. журн. 1988. № 5. С. 353-358.

4. Freudenberg N ., Piotraschke J ., Galanos C . et al . // Virchows Arch . [ B ]. 1992. Vol . 61. P . 343-349.

5. Gressner A . M . // Hepatogastronterology . 1996. Vol. 43. P. 92-103.

6. Schmidt C, Bladt F., Goedecke S. et al. // Nature. 1995. Vol. 373, N 6516. P. 699-702.

7. Wisse E., Braet F., Luo D. et al. // Toxicol . Pathol . 1996. Vol. 24, N 1. P. 100-111.

Похожие публикации