Закон Паскаля: формула и применение. Закон Паскаля: формула, формулировка и применение Закон о давлении газа

Давление на поверхность жидкости, произведенное внешними силами, передается жидкостью одинаково во всех направлениях.

Природа давления жидкости, газа и твердого тела отличается. Хотя у давлений жидкости и газа различная природа, у их давлений есть один одинаковый эффект, отличающий их от твердых тел. Этот эффект, а точнее физическое явление, описывает закон Паскаля .

Закон Паскаля Производимое внешними силами давление в какое-то место жидкости или газа, передается по жидкости или газу без изменения в любую точку.

Закон Паскаля был открыт французским учёным Б. Паскалем в 1653 г., этот закон подтверждается различными опытами.

Давление это физическая величина, равная модулю силы F , действующей перпендикулярно поверхности, которая приходится на единицу площади S этой поверхности.

Формула закона Паскаля Закон Паскаля описывается формулой давления:

\(p = \dfrac{F}{S} \)

где p – это давление (Па), F – приложенная сила (Н), S – площадь поверхности (м 2).

Давление – скалярная величина Важно понимать, что давление – величина скалярная, то есть у нее нет направления.

Способы уменьшения и увеличения давления:

Для того, чтобы увеличить давление, необходимо увеличить приложенную силу и/или уменьшить площадь ее приложения.

И наоборот, для уменьшения давления, необходимо уменьшить приложенную силу и/или увеличить площадь ее приложения.

Различают следующие виды давлений:

  • атмосферное (барометрическое)
  • абсолютное
  • избыточное (манометрическое)

Давление газов зависит:

  • от массы газа - чем больше газа в сосуде, тем больше давление;
  • от объема сосуда - чем меньше объем с газом определенной массы, тем больше давление;
  • от температуры - с ростом температуры увеличивается скорость движения молекул, которые интенсивнее взаимодействуют и сталкиваются со стенками сосуда, поэтому и давление возрастает.

Жидкости и газы передают по всем направлениям не только оказываемое на них давление, но и то давление, которое существует внутри них благодаря весу собственных частей. Верхние слои давят на средние, а средние - на нижние, нижние - на дно.

Внутри жидкости существует давление. На одном и том же уровне оно одинаково по всем направлениям. С глубиной давление увеличивается.

Закон Паскаля означает, что если, например, надавить на газ с силой в 10 Н , и площадь этого давления будет 10 см2 (т. е. (0,1 * 0,1) м2 = 0,01 м2 ), то давление в месте приложения силы увеличится на p = F/S = 10 Н / 0,01 м2 = 1000 Па , и на эту величину увеличится давление во всех местах газа. То есть давление передастся без изменений в любую точку газа.

То же самое характерно для жидкостей. А вот для твердых тел - нет. Это связано с тем, что молекулы жидкости и газа подвижны, а в твердых телах, хотя и могут колебаться, но остаются на своем месте. В газах и жидкостях молекулы перемещаются из области с более высоким давлением в область с более низким, таким образом давление во всем объеме быстро выравнивается.

В отличие от твердых тел жидкости и газы в состоянии равновесия не обладают упругостью формы. Они обладают только объемной упругостью. В состоянии равновесия напряжение в жидкости и газе всегда нормально к площадке, на которую оно действует. Касательные напряжения вызывают только изменения формы эле­ментарных объемов тела (сдвиги), но не величину самих объемов. Для таких деформаций в жидкостях и газах усилий не требуется, а потому в этих средах при равновесии касательные напряжения не возникают.

закон сообщающихся сосудов в сообщающихся сосудах, заполненных однородной жидкостью, давление во всех точках жидкости, расположенных в одной горизонтальной плоскости, одинаково независимо от формы сосудов.

При этом поверхности жидкости в сообщающихся сосудах устанавливаются на одном уровне

Давление, которое появляется в жидкости из-за поля тяжести, называется гидростатическим . В жидкости на глубине \(H \) , считая от поверхности жидкости, гидростатическое давление равно \(p=\rho g H \) . Полное давление в жидкости складывается из давления на поверхности жидкости (обычно это атмосферное давление) и гидростатического.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Закон Паскаля» ТЕМА УРОКА «Передача давления жидкостями и газами.

Цель урока: Сформулировать закон Паскаля. Опытным путем доказать передачу давления жидкостей и газов во все стороны.

Новые понятия Закон Паскаля, гидростатическое давление, формула гидростатического давления.

Давайте вспомним: От чего зависит давление твердых тел на поверхность? Давление твердых тел на поверхность зависит от силы давления и площади опоры

Тест по теме «Давление твердых тел» 1. Какую физическую величину определяют по формуле р = F/ s С) работу; У) давление; Е) скорость; О) путь. 2. Какая из перечисленных единиц является основной единицей измерения давления? И) Ватт (Вт); В) Джоуль (Дж); В) Ньютон (Н); Р) Паскаль (Па) 3. Имеются два кирпича одинаковой массы и размеров 1 2 Какой из кирпичей оказывает меньшее давление? А) 1; С) 2; Ж) давление одинаково.

Правильный ответ к тесту Вопрос 1 2 3 Ответ У Р А

Давление твердого тела на поверхность Паскаль 1 Па = 1 Н / м ²

Экспериментальное задание 1 . Надуйте воздушный шарик. Почему шарик увеличивает свой объем?

Вывод: Давление газа на стенки шарика вызывается ударами молекул газа и направлено во все стороны одинаково.

Почему воздушные шарики и мыльные пузыри круглые? Давление газа на стенки сосуда (и на помещенное в газ тело) вызывается ударами молекул газа.

Газ давит на стенки по всем направлениям одинаково!

От чего зависит давление газа Поставим эксперимент. Возьмём два шприца и два воздушных шарика. Наполним один шприц воздухом, другой гелием. Надуем шарики с помощью данных шприцев.

От чего зависит давление газа воздух гелий ρ = 1,29 кг/м³ ρ = 0,18 кг/м³

Данный эксперимент подтверждает, что давление газа зависит от его плотности: объём газа в шариках одинаковый, но плотность воздуха больше и шарик с воздухом раздувается больше, потому что давление тоже увеличивается.

Величина давления газа зависит от количества и силы ударов молекул на единицу поверхности

От температуры От концентрации (числа частиц в единице объема) Давление газа зависит от…

Опыт с шаром Паскаля

Закон Паскаля Давление, производимое на жидкость или газ, передается без изменения в каждую точку объема жидкости или газа.

Блез Паскаль (1623-1662) – французский ученый, философ. Он открыл и исследовал ряд важных свойств жидкостей и газов, интересными и убедительными опытами подтвердил существование атмосферного давления.

Экспериментальное задание 2 НЕТ! Жидкости несжимаемы: надавливаем на одну часть жидкости, это давление передается всем другим частям. Удалось ли сжать воду?

Немного поговорим: Чем отличаются твердые тела от жидкостей и газов с точки зрений физики? ОТВЕТ: Расположением молекул 2. Какова особенность поведения молекул газа и жидкости? ОТВЕТ: Подвижность 3. Чем создается давление газа или жидкости? ОТВЕТ: Ударами молекул газа или жидкости о стенки сосуда. 4. Как газ или жидкость давит на стенки сосуда? ОТВЕТ: по всем направлениям одинаково

1. Мы надуваем мыльные пузыри. Почему они приобретают форму шара? 2. Почему взрыв снаряда под водой губителен для живущих в воде организмов? 3. Почему у глубоководных рыб при вытаскивании их на поверхность плавательный пузырь торчит изо рта?

Проверим себя! Злобный джин, находящийся в газообразном состоянии внутри закупоренной бутылки, оказывает сильное давление на её стенки, дно и пробку. Чем же джин лупит во все стороны, если в газообразном состоянии не имеет ни рук, ни ног? Какой закон разрешает ему это делать? Ответ: Молекулы, закон Паскаля. 2. Для космонавтов пищу изготавливают в полужидком виде и помещают в тюбики с эластичными стенками. Что помогает космонавтам выдавливать пищу из тюбиков? Ответ: Закон Паскаля 3 . Как проще удалить вмятину с мячика для настольного тенниса? Ответ: Нагреть, например, бросить в горячую воду.

Подводим итоги урока: Давайте вспомним, что сегодня делали на уроке, что узнали? Как передают давления жидкости и газы? Какой закон объясняет передачу давления жидкостями и газами? Как читается закон Паскаля? В КАКИХ ТЕХНИЧЕСКИХ УСТРОЙСТВАХ ИСПОЛЬЗУЕТСЯ ЗАКОН ПАСКАЛЯ? Посмотрим? ==>

Закон Паскаля положен в основу устройства многих механизмов. Смотри рисунки запоминай! Гидравлические прессы

2. Гидравлические подъемники Назначение подвижного цилиндра - увеличение высоты подъема поршня. Для опускания груза открывают кран.

3. Заправочные агрегаты Заправочный агрегат для снабжения тракторов горючим действует так: компрессор нагнетает воздух в герметически закрытый бак с горючим, которое по шлангу поступает в бак трактора.

4. Опрыскиватели В опрыскивателях, используемых для борьбы с сельскохозяйственными вредителями, давление нагнетаемого в сосуд воздуха на раствор яда - 500 000 Н/м2. Жидкость распыляется при открытом кране.

5. Системы водоснабжения Пневматическая система водоснабжения. Насос подает в бак воду, сжимающую воздушную подушку, и отключается при достижении давления воздуха 400 000 Н/м2. Вода по трубам поднимается в помещения. При понижении давления воздуха вновь включается насос.

6. Водометы Струя воды, выбрасываемая водометом под давлением 1 000 000 000 Н/м2, пробивает отверстия в металлических болванках, дробит породу в шахтах. Гидропушками оснащена и современная противопожарная техника.

7. При прокладке трубопроводов Давление воздуха "раздувает" трубы, изготовленные в виде плоских металлических стальных лент, сваренных по кромкам. Это значительно упрощает прокладку трубопроводов различного назначения.

8. Пневматические трубопроводы Давление в 10 000 - 30 000 Н/м2 работает в пневмоконтейнерных трубопроводах. Скорость составов в них достигает 45км/час.

Проверочная работа 5

Сравнение давления твердых тел, газов и жидкостей Вопросы для сравнения Твердые тела Газы Жидкости Причина давления От чего зависит В каком направлении передается Расчетная формула

Домашнее задание: Доделать таблицу §36, ответить на вопросы. Упражнение 14 на стр. 88. Задачи №1,2. Экспериментальное задание: На боковой стенке высокой банки из-под кофе пробейте гвоздем отверстия на высотах 3см, 6см, 9см. поместите банку в раковину под водопроводный кран, открытый так, чтобы объем воды поступающий в банку и вытекающий из неё был одинаков. Проследите за струйками воды, вытекающими из отверстий банки, и сделайте вывод.

Лист самоанализа (нужное подчеркнуть) Чувствую вдохновение, подавленность. Интересно, неинтересно. Не устал(ла), устал(ла). Доволен(довольна), недоволен(недовольна). Вызвало затруднения(перечислить)……

Новые знания мы сегодня получали в соответствии с методом научного познания: наблюдения => гипотеза => эксперимент => вывод. Вы молодцы!

Спасибо за работу!


Рассмотрим жидкость, которая находится в сосуде под поршнем (рис. 1), когда силы , действующие на свободную поверхность жидкости, значительно больше веса жидкости или жидкость находится в невесомости, т. е. можно считать, что на жидкость действуют только поверхностные силы, и весом жидкости можно пренебречь. Выделим мысленно какой-то малый цилиндрический произвольно ориентированный объем жидкости. На основания этого объема жидкости действуют силы давления и остальной жидкости, на боковую поверхность - силы давления и . Условие равновесия выделенного в жидкости малого объема:

В проекции на ось Ox :

т.е. давление во всех точках невесомой неподвижной жидкости одинаково.

При изменении поверхностной силы будут изменяться величины p 1 и p 2 , но их равенство будет сохраняться. Это впервые установил Б.Паскаль.

Закон Паскаля : жидкость (газ) передает производимое на нее поверх постными силами внешнее давление по всем направлениям без изменения .

Давление, производимое на жидкость или газ, передается не только в направлении действия силы, но и в каждую точку жидкости (газа) благодаря подвижности молекул жидкости (газа).

Данный закон является прямым следствием отсутствия сил трения покоя в жидкостях и газах.

Закон Паскаля неприменим в случае движущейся жидкости (газа), а также в случае, когда жидкость (газ) находится в гравитационном поле; так, известно, что атмосферное и гидростатическое давление уменьшается с высотой

Закон Архимеда : на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа)(называемая силой Архимеда )

F A = ρgV ,

где ρ - плотность жидкости (газа), g - ускорение свободного падения, а V - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

В отсутствии силы тяжести, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами.

Условие плавания тел

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести и силы Архимеда , которые действуют на это тело. Возможны следующие три случая:

Тело тонет;

Тело плавает в жидкости или газе;

Тело всплывает до тех пор, пока не начнет плавать.

Другая формулировка (где - плотность тела, - плотность среды, в которую оно погружено):

· - тело тонет;

· - тело плавает в жидкости или газе;

· - тело всплывает до тех пор, пока не начнет плавать.

Уравнение Бернулли.

Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости: , здесь - плотность жидкости, - скорость потока, - высота, на которой находится рассматриваемый элемент жидкости, - давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, - ускорение свободного падения. Константа в правой части обычно называется напором , или полным давлением, а также интегралом Бернулли . Размерность всех слагаемых - единица энергии, приходящейся на единицу объёма жидкости.

Согласно закону Бернулли полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока. Полное давление состоит из весового (ρgh ), статического (p ) и динамического давлений.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю, то есть таких жидкостей, которые не прилипают к поверхности трубы. На самом деле экспериментально установлено, что скорость жидкости на поверхности твердого тела почти всегда в точности равна нулю (кроме случаев отрыва струй при некоторых редких условиях). Закон Бернулли можно применить к истечению идеальной несжимаемой жидкости через малое отверстие в боковой стенке или дне широкого сосуда.

Для сжимаемого идеального газа , (постоянна вдоль линии тока или линии вихря) где - Адиабатическая постоянная газа, p - давление газа в точке, ρ - плотность газа в точке, v - скорость течения газа, g - ускорение свободного падения, h - высота относительно начала координат. При движении в неоднородном поле gh заменяется на потенциал гравитационного поля.

Давление в Жидкости. Закон Паскаля

В жидкостях частицы подвижны, поэтому они не имеют собственной формы, но обладают собственным объемом, сопротивляются сжатию и растяжению; не сопротивляются деформации сдвига (свойство текучести).

В покоящейся жидкости существует два вида статического давления: гидростатическое и внешнее . Вследствие притяжения к Земле жидкость оказывает давление на дно и стенки сосуда, а также на тела, находящиеся внутри нее. Давление, обусловленное весом столба жидкости, называется гидростатическим. Давление жидкости на разных высотах различно и не зависит от ориентации площадки, на которую оно производится.

Пусть жидкость находится в цилиндрическом сосуде с площадью сечения S; высота столба жидкости h. Тогда

Гидростатическое давление жидкости зависит от плотности р жидкости, от ускорения g свободного падения и от глубины h, на которой находится рассматриваемая точка. Оно не зависит от формы столба жидкости.

Глубина h отсчитывается по вертикали от рассматриваемой точки до уровня свободной поверхности жидкости.

В условиях невесомости гидростатическое давление в жидкости отсутствует, так как в этих условиях жидкость становится невесомой. Внешнее давление характеризует сжатие жидкости под действием внешней силы. Оно равно:

Пример внешнего давления: атмосферное давление и давление, создаваемое в гидравлических системах. Французский ученый Блез Паскаль (1623-1662) установил: жидкости и газы передают производимое на них давление одинаково по всем направлениям (закон Паскаля). Для измерения давлений используют манометры .

Их конструкции весьма разнообразны. В качестве примера рассмотрим устройство жидкостного манометра. Он представляет собой U-образную трубку, один конец которой соединяется с резервуаром, в котором измеряют давление. По разности столбов в коленах манометра можно определять давление.

Двойкам нет

Известно, что газ заполняет весь предоставленный ему объем. При этом он давит на дно и стенки сосуда. Это давление обусловлено движением и столкновением молекул газа со стенками сосуда. Давление на все стенки будет одинаковым, поскольку все направления равноправны.

Давление газов зависит:

От массы газа - чем больше газа в сосуде, тем больше давление,
-от объема сосуда - чем меньше объем с газом определенной массы, тем больше давление,
-от температуры - с ростом температуры увеличивается скорость движения молекул, которые интенсивнее взаимодействуют и сталкиваются со стенками сосуда, поэтому и давление возрастает.

Для хранения и перевозки газов их сильно сжимают, от этого их давление сильно возрастает. Поэтому в таких случаях используют специальные, очень прочные стальные баллоны. В таких баллонах, например, сохраняют сжатый воздух на подводных лодках.

Французский физик Блез Паскаль установил закон, который описывает давление жидкостей или газов. Закон Паскаля: давление, действующее на жидкость или газ, передается без изменений в каждую точку жидкости или газа.

В жидкость, как и на все тела на Земле, действует сила тяжести. Поэтому каждый слой жидкости, находящейся в сосуде, своим весом давит на другие слои, и это давление, по закону Паскаля, передается во всех направлениях. То есть внутри жидкости существует давление и на одном и том же уровне он одинаков во всех направлениях. С глубиной давление жидкости возрастает. Так же давление жидкости зависит и от свойств жидкости, т.е. от ее плотности.

Так как давление жидкости увеличивается с глубиной, в обычном легком скафандре водолаз может работать на глубине до 100 метров. На больших глубинах требуется специальная защита. Для исследования на глубине нескольких километров используют батисфере и батискафы, которые выдерживают значительное давление.

xn—-7sbfhivhrke5c.xn--p1ai

Давление в жидкости. Закон Паскаля. Зависимость давления в жидкости от глубины

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы рассмотрим отличие жидких и газообразных тел от твердых тел. Если мы захотим изменить объем жидкости, нам придется прикладывать большое усилие, сравнимое с тем, которое мы прикладываем, изменяя объем твердого тела. Даже чтобы изменить объем газа, необходимо весьма серьезное усилие, например насосы и другие механические устройства. Но если мы захотим изменить форму жидкости или газа и будем делать это достаточно медленно, то никаких усилий нам прикладывать не придется. В этом главное отличие жидкости и газа от твердого тела.

Давление в жидкости

В чем причина такого эффекта? Дело в том, что при смещении различных слоев жидкости относительно друг друга в ней не возникает никаких сил, связанных с деформацией. Нет сдвигов и деформаций в жидких и газообразных средах, в твердых же телах при попытке сдвинуть один слой против другого возникают значительные силы упругости. Поэтому говорят, что жидкость стремится заполнить нижнюю часть того объема, в котором она помещается. Газ же стремится заполнить весь объем, в который его помещают. Но это в действительности заблуждение, так как, если посмотреть на нашу Землю со стороны, мы увидим, что газ (земная атмосфера) опускается вниз и стремится заполнить некоторую область на поверхности Земли. Верхняя граница этой области достаточно ровная и гладкая, как и поверхность жидкости, заполняющей моря, океаны, озера. Все дело в том, что плотность газа значительно меньше плотности жидкости, поэтому, если бы газ был очень плотным, он точно так же опускался бы вниз и мы видели верхнюю границу атмосферы. В связи с тем, что в жидкости и газе не возникает сдвигов и деформаций – все силы взаимодействуют между различными областями жидкой и газообразной среды, это силы, направленные по нормальной поверхности, разделяющей эти части. Такие силы, направленные всегда по нормальной поверхности, называются силами давления . Если мы разделим величину силы давления на некоторую поверхность на площадь этой поверхности, мы получим плотность силы давления, которую называют просто давление (или иногда добавляют гидростатическое давление), даже в газообразной среде, поскольку с точки зрения давления газообразная среда практически ничем не отличается от жидкой среды.

Закон Паскаля

Свойства распределения давления в жидких и газообразных средах исследовались еще с начала XVII века, первым, кто установил законы распределения давления в жидкой и газообразной средах был французский математик Блез Паскаль.

Величина давления не зависит от направления нормали к той поверхности, на которой оказывается это давление, то есть распределение давления изотропно (одинаково) по всем направлениям.

Этот закон был установлен экспериментально. Предположим, что в некоторой жидкости существует прямоугольная призма, один из катетов которой расположен вертикально, а второй – горизонтально. Давление на вертикальную стенку будет равно Р 2, давление на горизонтальную стенку будет Р 3, давление на произвольную стенку будет Р 1 . Три стороны образуют прямоугольный треугольник, силы давления, действующие на эти стороны, направлены по нормали к этим поверхностям. Поскольку выделенный объем находится в состоянии равновесия, покоя, никуда не движется, следовательно, сумма сил, на него действующих, равна нулю. Сила, действующая по нормали к гипотенузе, пропорциональна площади поверхности, то есть равна давлению, умноженному на площадь поверхности. Силы, действующие на вертикальную и горизонтальную стенки, так же пропорциональны величинам площадей этих поверхностей и так же направлены перпендикулярно. То есть сила, действующая на вертикаль, направлена по горизонтали, а сила, действующая на горизонталь, направлена по вертикали. Эти три силы в сумме равны нулю, следовательно, они образуют треугольник, который полностью подобен данному треугольнику.

Рис. 1. Распределение сил, действующих на предмет

В силу подобия этих треугольников, а они подобны, так как образующие их стороны перпендикулярны друг другу, следует, что коэффициент пропорциональности между площадями сторон этого треугольника должен быть для всех сторон одним и тем же, то есть Р 1 = Р 2 = Р 3.

Таким образом, мы подтверждаем экспериментальный закон Паскаля, утверждающий, что давление направлено в любую сторону и одинаково по величине. Итак, мы установили, что по закону Паскаля давление в данной точке жидкости одинаково по всем направлениям.

Теперь докажем, что давление на одном уровне в жидкости везде одинаково.

Рис. 2. Силы, действующие на стенки цилиндра

Представим, что у нас есть цилиндр, наполненный жидкостью с плотностью ρ , давление на стенки цилиндра соответственно Р 1 и Р 2 , поскольку масса жидкости находится в состоянии покоя, то силы, действующие на стенки цилиндра, будут равны, так как и площади у них равны, то есть Р 1 = Р 2. Вот так мы доказали, что в жидкости на одном уровне давление одно и то же.

Зависимость давления в жидкости от глубины

Рассмотрим жидкость, находящуюся в поле тяжести. Поле тяжести действует на жидкость и пытается ее сжать, но жидкость очень слабо сжимается, так как она не сжимаема и при любом воздействии плотность жидкости всегда одна и та же. В этом серьезное отличие жидкости от газа, поэтому формулы, которые мы рассмотрим, относятся к несжимаемой жидкости и не применимы в газовой среде.

Рис. 3. Предмет с жидкостью

Рассмотрим предмет с жидкостью площадью S = 1, высотою h, плотностью жидкости ρ, который находится в поле тяжести с ускорением свободного падения g. Сверху давление жидкости Р 0 и снизу давление Р h , так как предмет находится в состоянии равновесия, то сумма сил, на него действующих, будет равна нулю. Сила тяжести будет равна плотности жидкости на ускорение свободного падения и на объем Fт = ρ g V, так как V = h S, а S = 1, то у нас получится Fт = ρ g h.

Суммарная сила давления равна разности давлений, умноженной на площадь поперечного сечения, но так как у нас она равна единице, то P = Р h — Р 0

Так как этот предмет у нас не движется, то эти две силы равны друг другу Fт = P.

Мы получаем зависимость давления жидкости от глубины или закон гидростатического давления. Давление на глубине h отличается от давления на нулевой глубине на величину ρ g h: Р h = Р 0 + (ρ g h).

Закон сообщающихся сосудов

Используя два выведенных утверждения, мы можем вывести еще один закон – закон сообщающихся сосудов.

Рис. 4. Сообщающиеся сосуды

Два цилиндра различного сечения соединены между собой, нальем жидкость плотностью ρ в эти сосуды. Закон сообщающихся сосудов утверждает: уровни в этих сосудах будут абсолютно одинаковы. Докажем это утверждение.

Давление сверху меньшего сосуда Р 0 будет меньше давления на дне сосуда на величину ρ g h, точно так же давление Р 0 будет меньше давления на дне и у большего сосуда на такую же величину ρ g h, так как плотность и глубина у них одинаковы, следовательно, эти величины у них будут одинаковы.

Если же в сосуды налить жидкости с разными плотностями, то уровни у них будут различны.

Заключение. Гидравлический пресс

Законы гидростатики были установлены Паскалем еще в начале XVII века, и с тех пор на основе этих законов работает огромное количество самых разных гидравлических машин и механизмов. Мы рассмотрим устройство, которое носит название гидравлический пресс.

Рис. 5. Гидравлический пресс

В сосуде, состоящем из двух цилиндров, с площадью сечения S 1 и S 2 налитая жидкость устанавливается на одной высоте. Поставив поршни в эти цилиндры и приложив силу F 1, получим F 1 = Р 0 S 1 .

Из-за того, что давления, приложенные к поршням, одинаковы, легко увидеть, что сила, которую необходимо приложить к большому поршню, чтобы удержать его в покое, будет превышать силу, которая приложена к малому поршню, коэффициент отношения этих сил есть площадь большого поршня делить на площадь малого поршня.

Прикладывая сколь угодно малое усилие к малому поршню, мы разовьем очень большое усилие на большем поршне – именно таким образом и работает гидравлический пресс. Усилие, которое будет приложено к большему прессу или к детали, помещенной в то место, будет сколь угодно большим.

Следующая тема – законы Архимеда для неподвижных тел.

Домашнее задание

  1. Дать определение закону Паскаля.
  2. Что утверждает закон сообщающихся сосудов.
  3. Ответить на вопросы сайта (Источник).
  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Громов С.В., Родина Н.А. Физика 7 класс, 2002.

Закон Паскаля для жидкостей и газов

Жидкости и газы передают давление, которое оказывается на них, по всем направлениям одинаково.

Данный закон был открыт в середине XIV века французским ученым Б. Паскалем и получил впоследствии его имя.

То, что жидкости и газы передают давление, объясняют большой подвижностью частиц, из которых они составлены, это существенным образом отличает их от твёрдых, тел, чьи частицы малоподвижны, и могут только совершать колебания около положений своего равновесия. Допустим, газ, находится в замкнутом сосуде с поршнем, его молекулы равномерно заполняют весь предоставленный ему объем. Передвинем поршень, уменьшив объем сосуда, слой газа, прилегающий к поршню, сожмется, молекулы газа будут располагаться плотнее, чем на некотором удалении от поршня. Но через некоторое время частицы газа, участвуя в хаотичном движении, перемешаются с другими частицами, плотность газа выровняется, но станет больше, чем до передвижения поршня. При этом количество ударов о дно и стенки сосуда возрастает, следовательно, давление поршня передается газом во всех направлениях одинаково и в каждой точке увеличивается на одну и ту же величину. Аналогичные рассуждения можно отнести к жидкости.

Формулировка закона Паскаля

Давление, производимое внешними силами на жидкость (газ), находящуюся в состоянии покоя, передается веществом во все стороны без изменения к любой точке жидкости (газа) и стенкам сосуда.

Закон Паскаля выполняется для несжимаемых и сжимаемых жидкостей и газов, если сжимаемостью пренебрегают. Этот закон — следствие закона сохранения энергии.

Гидростатическое давление жидкостей и газов

Жидкости и газы передают не только внешнее давление, но и давление, которое возникает благодаря существованию силы тяжести. Эта сила создает внутри жидкости (газа) давление, которое зависит от глубины погружения, при этом приложенные внешние силы увеличивают это давление в любой точке вещества на одну и ту же величину.

Давление, которое оказывает покоящаяся жидкость (газ), называют гидростатическим. Гидростатическое давление ($p$) на любой глубине внутри жидкости (газа) не зависит от формы сосуда, в котором она (он) находится и равно:

где $h$ — высота столба жидкости (газа); $\rho $ — плотность вещества. Из формулы (1) для гидростатического давления следует, что во всех местах жидкости (газа), которые находятся на одной глубине, давление одно и то же. С увеличением глубины гидростатическое давление растет. Так, на глубине 10 км давление воды составляет приблизительно $ ^8Па$.

Следствие закона Паскаля: давление в любой точке на одном горизонтальном уровне жидкости (газа), находящейся в состоянии равновесия имеет одну и ту же величину.

Примеры задач с решением

Задание. Даны три сосуда разной формы (рис.1). Площадь дна каждого сосуда равна $S$. В каком из сосудов давление одной и той же жидкости на дно наибольшее?

Решение. В данной задаче речь идет о гидростатическом парадоксе. Следствием закона Паскаля является то, что давление жидкости не зависит от формы сосуда, а определено высотой столба жидкости. Так как по условию задачи площадь дна каждого сосуда равна S, из рис.1 видим, что высота столбов жидкости одинакова, несмотря на разный вес жидкости, сила «весового» давления на дно во всех сосудах одинакова и равна весу жидкости в цилиндрическом сосуде. Объяснение этого парадокса заключено в том, что сила давления жидкости на наклонные стенки имеет вертикальную составляющую, которая направлена вниз в сужающемся к верху сосуде и направленную вверх в расширяющемся.

Задание. На рис.2 изображены два сообщающихся сосуда с жидкостью. Поперечное сечение одного из сосудов в $n\ $ раз меньше, чем второго. Сосуды закрыты поршнями. К малому поршню прикладывают силу $F_2.\ $Какой силой надо подействовать на большой поршень, чтобы система находилась в состоянии равновесия?

Решение. В задаче представлена схема гидравлического пресса, который работает на основе закона Паскаля. Давление, которое создает на жидкость первый поршень, равен:

Второй поршень оказывает на жидкость давление:

Если система находится в равновесии, $p_1$ и $p_2$ равны, запишем:

Найдем модуль силы, приложенной к большому поршню:

Давление в жидкостях закон паскаля


§ 11. Закон Паскаля. Сообщающиеся сосуды

Пусть жидкость (или газ) заключена в замкнутый сосуд (рис. 17).

Давление, оказываемое на жидкость в каком-либо одном месте на её границе, например поршнем, передаётся без изменений во все точки жидкости – закон Паскаля.

Закон Паскаля справедлив и для газов. Этот закон можно вывести, рассматривая условия равновесия произвольных, мысленно выделенных в жидкости цилиндрических объёмов (рис. 17) с учётом того, что жидкость давит на любую поверхность только перпендикулярно ей.


Используя этот же приём, можно показать, что из-за наличия однородного поля тяжести разность давлений на двух уровнях жидкости, отстоящих по высоте друг от друга на расстоянии `H`, даётся соотношением `Deltap=rhogH`, где `rho` — плотность жидкости. Отсюда следует

в сообщающихся сосудах, заполненных однородной жидкостью, давление во всех точках жидкости, расположенных в одной горизонтальной плоскости, одинаково независимо от формы сосудов.

При этом поверхности жидкости в сообщающихся сосудах устанавливаются на одном уровне (рис. 18).

Давление, которое появляется в жидкости из-за поля тяжести, называется гидростатическим. В жидкости на глубине `H`, считая от поверхности жидкости, гидростатическое давление равно `p=rhogH`. Полное давление в жидкости складывается из давления на поверхности жидкости (обычно это атмосферное давление) и гидростатического.

  • Лекция 1. Международное частное право в системе российского права 1.3. Система международного частного права Международное частное право, как и многие отрасли права, делится на две части: Общую и Особенную. В Общей части рассматриваются […]
  • Тема 1: Общие положения уголовно-исполнительного права 1.7. Понятие, виды и структура норм уголовно-исполнительного права Норма уголовно-исполнительного права – это общеобязательное, формально определённое правило поведения, направленное […]
  • Мини-энциклопедия по правилам безопасного поведения Презентация к уроку Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если […]
  • Каковы формы и виды собственности на объекты животного мира? Согласно Федеральному закону «О животном мире» (ст. 4) животный мир в пределах территории Российской Федерации является государственной собствен­ностью. На континентальном […]
  • Если полис забыл дома ЕСЛИ ЗАБЫЛ ПОЛИС ДОМА КАК ДОКАЗАТЬ ИНСПЕКТОРУ ЧТО ОН СУЩЕСТВУЕТ АВТО КУПЛЕН В САЛОНЕ В МАРТЕ И ПОСТАВЛЕН НА УЧЕТ В МАРТЕ БЕЗ СТРАХОВКИ НА УЧЕТ НЕ СТАВЯТ Ответы юристов (10) добрый день, Влад! ответственность за […]
  • Предоставление финансовой помощи на финансирование отдельных целевых расходов Одной из отличительных особенностей оказания финансовой помощи в форме предоставления субвенций или субсидий является их адресность и целевой характер. В […]

Давление – это скалярная величина, равная отношению нормальной компоненты силы, действующей на элементарную площадку внутри жидкости, к площади этой элементарной площадки.

Касательные составляющие силы DF не существенны, т.к. приводят к текучести жидкости, т.е. нарушению равновесия.

Единицы давления. В СИ – Па (паскаль): 1 Па = 1 Н/м 2 ;

в СГС – дин/см 2 .

Внесистемные единицы: физическая (нормальная) атмосфера (атм) равна давлению столба ртути высотой 760 мм;

миллиметр ртутного столба (мм. рт. ст.).

1мм. рт. ст. = r рт. gh = (13,6×10 3 кг/м 3)×(9,81 м/с 2)×(10 -3 м) = 133 Па.

1 атм = 760 мм. рт. ст. = 1,01×10 5 Па.

Свойства покоящейся жидкости (газа).

1. Сила, вызванная давлением покоящейся жидкости, действует всегда перпендикулярно поверхности, с которой эта среда соприкасается.

2. Жидкости и газы создают давление во всех направлениях.

Силы, действующие на частицы жидкости или газа, относятся к одному из двух видов.

1) Объемные силы – это силы дальнодействия, которые действуют на каждый элемент объема жидкости или газа. Примером такой силы служит сила тяжести.

2) Поверхностные силы – это силы близкодействия, которые возникают в результате непосредственного контакта между взаимодействующими элементами жидкости, газа и твердого тела на их общей границе. Примером поверхностной силы является сила атмосферного давления.

Закон Паскаля. Поверхностные силы, действующие на неподвижную жидкость (или газ), создают давление, одинаковое во всех точках жидкости (газа). Величина давления в любой точке жидкости (газа) не зависит от направления (т.е. от ориентации элементарной площадки).

Доказательство.

1. Докажем, что давление в данной точке жидкости одинаково по всем направлениям.

Рис. 5.1.1.а Рис. 5.1.1.б

Для доказательства воспользуемся принципом отвердевания : любой элемент жидкости можно рассматривать как твердое тело и применять к этому элементу условия равновесия твердого тела.

Выделим мысленно в окрестности данной точки жидкости бесконечно малый отвердевший объем в виде трехгранной призмы (рис. 5.1.1), одна из граней которой (грань OBCD) расположена горизонтально. Площади оснований AOB и KDC будем считать малыми, по сравнению с площадями боковых граней. Тогда малым будет объем призмы, а, следовательно, и сила тяжести, действующая на эту призму.

На каждую грань призмы действуют поверхностные силы F 1 , F 2 и F 3 . Из равновесия жидкости следует, что , т.е. векторы F 1 , F 2 и F 3 образуют треугольник (на рис. 5.1.1.б), подобный треугольнику . Тогда

.

Умножим знаменатели этих дробей на OD = BC = AK, Þ



, Þ , Þ .

Таким образом, давление в неподвижной жидкости не зависит от ориентации площадки внутри жидкости .

2. Докажем, что давление в двух любых точках жидкости одинаково.

Рассмотрим две произвольные точки A и B жидкости, отстоящие друг от друга на расстояние DL. Выделим в жидкости произвольно ориентированный цилиндр, в центрах оснований которого находятся выбранные нами точки A и B (рис. 5.1.2). Площади оснований цилиндра DS будем считать малыми, тогда объемные силы также будут малыми по сравнению с поверхностными.

Предположим, что давления в точках A и B разные: , тогда , а значит, выделенный объем придет в движение. Полученное противоречие доказывает, что давление в двух любых точках жидкости одинаково .

Примером поверхностных сил, для которых выполняется закон Паскаля, является сила атмосферного давления.

Атмосферное давление – это давление, которое оказывает воздух атмосферы на все тела; оно равно силе тяжести, действующей на столб воздуха с единичной площадью основания.

Опыт Торричелли продемонстрировал наличие атмосферного давления и впервые позволил его измерить. Этот опыт был описан в 1644 году.

Рис. 5.1.3. Рис. 5.1.4.

В этом опыте длинная стеклянная трубка, запаянная с одного конца, наполняется ртутью; затем открытый конец ее зажимается, после чего трубка перевертывается, опускается зажатым концом в сосуд с ртутью и зажим снимается. Ртуть в трубке при этом несколько опускается, т.е. часть ртути выливается в сосуд. Объем пространства над ртутью в трубке называется торричелевой пустотой . (Давление паров ртути в торричелевой пустоте при 0°C составляет 0,025 Па.)

Уровень ртути в трубке одинаков независимо от того, как установлена трубка: вертикально или под углом к горизонту (рис. 5.1.3). При обычных нормальных условиях вертикальная высота ртути в трубке составляет h = 760 мм. Если бы вместо ртути трубка была заполнена водой, то высота h = 10,3 м.

Приборы, применяемые для измерения атмосферного давления, называются барометрами . Простейший ртутный барометр представляет собой трубку Торричелли.

Для того, чтобы объяснить, почему трубка Торричелли действительно позволяет измерить атмосферное давление, обратимся к рассмотрению объемных сил и вычислению зависимости давления в жидкости от глубины h .

Давление в жидкости, создаваемое объемными силами, т.е. силой тяжести, называется гидростатическим давлением .

Получим формулу для давления жидкости на глубине h . Для этого выделим в жидкости затвердевший параллепипед, одно из оснований которого находится на поверхности жидкости, а другое на глубине h (рис. 5.1.4). На этой глубине на параллепипед действуют силы, изображенные на рисунке.

Силы, действующие на параллепипед, вдоль оси x уравновешены. Запишем условие равновесия сил вдоль оси y .

где p 0 – атмосферное давление, - масса параллепипеда, r - плотность жидкости. Тогда

, (5.1.3)

Первое слагаемое в формуле (5.1.3) связано с поверхностными силами, а второе слагаемое , называемое гидростатическим давлением, связано с объемными силами.

Если сосуд с жидкостью движется с ускорением a , направленным вниз, то условие (5.1.2) принимает вид: , Þ

В состоянии невесомости (a = g ) гидростатическое давление равно нулю.

Примеры применения закона Паскаля.

1. Гидравлический пресс (рис. 5.1.5).

.

3. Гидростатический парадокс . (рис. 5.1.8).

Возьмем три сосуда различной формы, но с одинаковой площадью сечения дна. Предположим эта площадь равна S = 20 см 2 = 0,002 м 2 . Уровень воды во всех сосудах одинаков и равен h = 0,1 м. Однако из-за различной формы сосудов в них находится разное количество воды. В частности, в сосуде A налита вода весом 3 Н, в сосуде B – весом 2 Н и в сосуде C – весом 1 Н.

Гидростатическое давление на дно во всех сосудах равно Па. Одинакова и сила давления воды на дно сосудов Н. Как может вода весом 1 Н в третьем сосуде создать силу давления 2 Н?

Похожие публикации