Три формы проявления эффекта ребиндера. Внешний и внутренний эффекты ребиндера. Дисперсные системы, не подчиняющиеся уравнению Рэлея

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГОУ ВПО «Казанский государственный технологический университет»

Кафедра физической и коллоидной химии

ЭФФЕКТ РЕБИНДЕРА

Выполнила: студент гр. 5271-1

Бобровник С.А.

Проверила:

Третьякова А.Я.

Казань 2010

РЕБИНДЕР Петр Александрович (03.Х.1898-12.VII.1972), советский физико-химик, академик АН СССР с 1946 г. (член-корреспондент с 1933 г.), родился в Петербурге. Окончил физико-математический факультет Московского университета (1924). В 1922-1932 гг. работал в Институте физики и биофизики АН СССР и одновременно (в 1923-1941 гг.) - в Московском государственном педагогическом институте им. К.Либкнехта (с 1923 г. - профессор), с 1935 г. - заведующий отделом дисперсных систем в Коллоидно-электрохимическом институте (с 1945 г. - Институт физической химии) АН СССР, с 1942 г. - заведующий кафедрой коллоидной химии в Московском университете.

Работы Ребиндера посвящены физикохимии дисперсных систем и поверхностных явлений. В 1928 г. ученый открыл явление понижения прочности твердых тел вследствие обратимого физико-химического воздействия на них среды (эффект Ребиндера) и в 1930-1940-е гг. разработал пути облегчения обработки очень твердых и труднообрабатываемых материалов.

Он обнаружил электрокапиллярный эффект пластифицирования металлических монокристаллов в процессе ползучести при поляризации их поверхности в растворах электролитов, исследовал особенности водных растворов поверхностно-активных веществ, влияние адсорбционных слоев на свойства дисперсных систем, выявил (1935-1940) основные закономерности образования и стабилизации пен и эмульсий, а также процесса обращения фаз в эмульсиях.

Ученый установил, что моющее действие включает сложный комплекс коллоидно-химических процессов. Ребиндер изучил процессы образования и строение мицелл поверхностно-активных веществ, развил представления о термодинамической устойчивой мицелле мыл с лиофобным внутренним ядром в лиофильной среде. Ученый выбрал и обосновал оптимальные параметры для характеристики реологических свойств дисперсных систем и предложил методы их определения.

В 1956 г. ученый открыл явление адсорбционного понижения прочности металлов под действием металлических расплавов. В 1950-е гг. ученым была создана новая область науки - физико-химическая механика. Как писал сам Ребиндер: «Конечная задача физико-химической механики состоит в том, чтобы разработать научные основы для получения твердых тел и систем с заданными структурой и механическими свойствами. Следовательно, в задачу этой области входит создание оптимально направленной технологии производства и обработки по существу всех строительных и конструкционных материалов современной техники - бетонов, металлов и сплавов, особенно жаропрочных, керамики и металлокерамики, резин, пластиков, смазочных материалов».

С 1958 г. Ребиндер - председатель Научного совета АН СССР по проблемам физико-химической механики и коллоидной химии, затем (с 1967 г.) председатель Национального комитета СССР при Международном комитете по поверхностно-активным веществам. С 1968 по 1972 г. он был главным редактором «Коллоидного журнала». Ученый награжден двумя орденами Ленина, имел звания Героя Социалистического труда (1968), лауреата Государственной премии СССР (1942).

Эффект Ребиндера, эффект адсорбционного понижения прочности твёрдых тел, облегчение деформации и разрушения твёрдых тел вследствие обратимого физико-химического воздействия среды. Открыт П. А. Ребиндером (1928) при изучении механических свойств кристаллов кальцита и каменной соли. Возможен при контакте твёрдого тела, находящегося в напряжённом состоянии, с жидкой (или газовой) адсорбционно-активной средой. Эффект Ребиндера весьма универсален -- наблюдается в твёрдых металлах, ионных, ковалентных и молекулярных моно- и поликристаллических телах, стеклах и полимерах, частично закристаллизованных и аморфных, пористых и сплошных. Основное условие проявления эффекта Ребиндера -- родственный характер контактирующих фаз (твёрдого тела и среды) по химическому составу и строению. Форма и степень проявления эффекта зависят от интенсивности межатомных (межмолекулярных) взаимодействий соприкасающихся фаз, величины и типа напряжений (необходимы растягивающие напряжения), скорости деформации, температуры. Существенную роль играет реальная структура тела -- наличие дислокаций, трещин, посторонних включений и др. Характерная форма проявления эффекта Ребиндера -- многократное падение прочности, повышение хрупкости твёрдого тела, снижение его долговечности. Так, смоченная ртутью цинковая пластина под нагрузкой не гнётся, а хрупко разрушается. Другая форма проявления -- пластифицирующее действие среды на твёрдые материалы, например воды на гипс, органических поверхностно-активных веществ на металлы и др. Термодинамический эффект Ребиндера обусловлен уменьшением работы образования новой поверхности при деформации в результате понижения свободной поверхностной энергии твёрдого тела под влиянием окружающей среды. Молекулярная природа эффекта состоит в облегчении разрыва и перестройки межмолекулярных (межатомных, ионных) связей в твёрдом теле в присутствии адсорбционно-активных и вместе с тем достаточно подвижных инородных молекул (атомов, ионов).

Важнейшие области технического приложения -- облегчение и улучшение механической обработки различных (особенно высокотвёрдых и труднообрабатываемых) материалов, регулирование процессов трения и износа с применением смазок, эффективное получение измельченных (порошкообразных) материалов, получение твёрдых тел и материалов с заданной дисперсной структурой и требуемым сочетанием механических и др. свойств путём дезагригирования и последующего уплотнения без внутренних напряжений. Адсорбционно-активная среда может наносить и существенный вред, например, снижая прочность и долговечность деталей машин и материалов в условиях эксплуатации. Устранение факторов, способствующих проявлению эффект Ребиндера, в этих случаях позволяет защищать материалы от нежелательного воздействия среды.

Даже самые прочные тела имеют огромное число дефектов, которые и ослабляют их сопротивление нагрузке, делают менее прочными по сравнению с тем, что предсказывает теория. При механическом разрушении твердого тела процесс начинается с того места, где расположены микродефекты. Увеличение нагрузки приводит к развитию в месте дефекта микротрещины. Однако снятие нагрузки приводит к восстановлению первоначальной структуры: ширина микротрещины часто бывает недостаточной для полного преодоления сил межмолекулярного (межатомного) взаимодействия. Уменьшение нагрузки приводит к «стягиванию» микротрещины, силы межмолекулярного взаимодействия восстанавливаются практически полностью, трещина исчезает. Дело еще и в том, что образование трещины - это образование новой поверхности твердого тела, а такой процесс требует затраты энергии, равной энергии поверхностного натяжения, помноженной на площадь этой поверхности. Уменьшение нагрузки ведет к «стягиванию» трещин, т. к. система стремится к уменьшению энергии, в ней запасенной. Следовательно, для успешного разрушения твердого тела необходимо покрыть образующуюся поверхность специальным веществом, называемым поверхностно-активным, которое будет уменьшать работу по преодолению молекулярных сил при образовании новой поверхности. Поверхностно-активные вещества проникают в микротрещины, покрывают их поверхности слоем толщиной всего в одну молекулу (что определяет возможность использования очень малых количеств добавок этих веществ), предотвращая процесс «схлопывания», препятствуя возобновлению молекулярного взаимодействия.

Поверхностно-активные вещества в определенных условиях облегчают измельчение твердых тел. Очень тонкое (вплоть до размера коллоидных частиц) измельчение твердых тел вообще невозможно осуществить без добавления поверхностно-активных веществ.

Теперь остается вспомнить, что разрушение твердого тела (т. е. образование новых микротрещин) начинается именно с того места, где расположен дефект структуры этого тела. Кроме того, добавляемое поверхностно-активное вещество адсорбируется преимущественно также в местах расположения дефектов - таким образом облегчается его адсорбция на стенках будущих микротрещин. Приведем слова академика Ребиндера: «Отрыв части происходит именно по этим слабым местам [расположения дефектов], и, следовательно, образующиеся при измельчении мелкие частицы тела уже не содержат этих наиболее опасных дефектов. Выражаясь точнее, вероятность встречи опасного слабого места становится тем меньше, чем меньше ее размеры.

Если, измельчая реальное твердое тело любой природы, мы дойдем до частиц, размеры которых примерно такие же, как расстояния между самыми опасными дефектами, то такие частицы уже почти наверняка не будут содержать опасных дефектов структуры, они станут гораздо прочнее, чем крупные образцы того же самого тела. Следовательно, стоит только измельчить твердое тело на достаточно мелкие кусочки, и эти кусочки той же самой природы, того же состава будут наиболее прочными, почти идеально прочными».

Потом эти однородные, бездефектные частицы надо соединить, сделать из них твердое (высокопрочное) тело нужных размеров и формы, заставить частицы плотно упаковаться и очень прочно объединиться друг с другом. Полученная таким образом деталь машины или строительная деталь должна быть гораздо прочнее, чем исходный материал до измельчения. Естественно, не настолько прочной, как отдельная частица, т. к. в местах объединения возникнут новые дефекты. Однако при умелом проведении процесса объединения частиц прочность исходного материала будет превзойдена. Для этого требуется особенно плотно упаковать мелкие частицы, чтобы между ними снова возникли силы межмолекулярного взаимодействия. Обычно для этого используют сжатие частиц прессованием и нагрев. Нагревают полученный прессованием мелкозернистый агрегат, не доводя его до плавления. При повышении температуры увеличивается амплитуда тепловых колебаний молекул (атомов) в кристаллической решетке. В точках соприкосновения колеблющиеся молекулы двух соседних частиц сближаются и даже перемешиваются. Силы сцепления увеличиваются, частицы стягиваются, практически не оставляя пустот и пор, дефекты мест соприкосновения исчезают.

В ряде случаев частицы удается склеить или спаять друг с другом. При этом процесс надо вести в таком режиме, чтобы прослойки клея или припоя не содержали дефектов.

Коренное усовершенствование процесса измельчения твердых тел, основанное на практическом применении эффекта Ребиндера, оказалось весьма полезным для многих отраслей промышленности. Технологические процессы измельчения существенно ускорились, при этом потребление энергии заметно уменьшилось. Тонкое измельчение позволило проводить многие технологические процессы при менее высоких температурах и давлениях. В результате были получены более высококачественные материалы: бетоны, керамические и металлокерамические изделия, красители, карандашные массы, пигменты, наполнители и многое другое. Облегчается механическая обработка тугоплавких и жаропрочных сталей.

Вот как описывает способ применения эффекта Ребиндера он сам: «Строительные детали из цементного бетона могут быть надежно объединены в монолитную конструкцию путем склеивания цементным виброколлоидным клеем… Такой клей представляет собой смесь тонкомолотого цемента (часть которого можно заменить тонкомолотым песком) с предельно малым количеством воды и добавкой поверхностно-активного вещества. Смесь разжижается предельным вибрированием в процессе нанесения на склеиваемые поверхности в виде тонкой прослойки. После быстрого затвердевания прослойка клея становится самым прочным местом в конструкции».

Использование идей академика Ребиндера относительно облегчения процесса измельчения твердых тел имеет большое практическое значение, например, для разработки метода уменьшения прочности минералов с целью повышения эффективности бурения в твердых породах.

Понижения прочности металлов под действием металлических расплавов . В 1956 г. Ребиндер открыл явление понижения прочности металлов под действием металлических расплавов. Было показано, что наибольшее понижение поверхностной энергии твердого тела (металла) почти до нуля можно вызвать расплавленными средами, которые близки к твердому телу по молекулярной природе. Так, прочность на растяжение монокристаллов цинка удалось понизить в десятки раз при нанесении на их поверхность слоя жидкого металла олова толщиной в 1 микрон и меньше. Подобные эффекты для тугоплавких и жаропрочных сплавов наблюдаются под действием жидких легкоплавких металлов.

Открытое явление оказалось весьма важным для совершенствования способов обработки металлов давлением. Этот процесс невозможен без применения смазки. Для материалов новой техники - тугоплавких и жаропрочных сплавов - обработка особенно существенно облегчается при применении активных смазок, которые размягчают тонкие поверхностные слои металла (что, собственно, и происходит под действием небольших количеств металлических расплавов). При этом металл как бы смазывает сам себя - устраняется вредная избыточная деформация, возникающая при обработке, которая вызывает так называемый наклеп - мешающее обработке повышение прочности. Открываются новые возможности обработки металлов давлением при нормальной и повышенной температурах: повышается качество изделий, уменьшается износ обрабатывающего инструмента, расход энергии на обработку.

Вместо перевода дорогого металла в стружку в процессе изготовления изделия резанием можно применить пластическое изменение формы: обработку давлением без потерь металла. При этом качество изделий также повышается.

Резкое понижение прочности поверхностного слоя металлов играет существенную роль в улучшении работы узлов трения. Возникает автоматически действующий механизм управления износом: если имеются случайные неровности на трущихся поверхностях (заусеницы, царапины и т. п.), в местах их дислокации развивается высокое местное давление, вызывающее поверхностное течение металлов, значительно облегченное под действием адсорбированных расплавов (смоченный расплавом поверхностный слой металла теряет прочность). Трущиеся поверхности легко пришлифовываются или заполировываются. Введенная «смазка» вызывает ускоренный «износ» неровностей, увеличивается скорость приработки (обкатки) машин.

Активные расплавы-примеси можно использовать в качестве модификаторов процесса кристаллизации. Адсорбируясь на кристалликах-зародышах выделяемого металла, они уменьшают скорость их роста. Таким образом, образуется мелкозернистая структура металла с более высокой прочностью.

Разработан процесс «тренировки» металла в поверхностно-активной среде. Металл подвергают периодическим поверхностным воздействиям, которые не приводят к разрушению. Из-за облегчения пластических деформаций в поверхностных слоях металл во внутреннем объеме как бы «разминается», происходит диспергирование кристаллической решетки зерен. Если проводить такой процесс при температуре, близкой к температуре начала рекристаллизации металла, в поверхностно-активной среде происходит образование мелкокристаллической структуры с гораздо более высокой твердостью. Да и измельчение металлов при получении тонкого порошка не обходится без применения поверхностно-активных расплавов. В дальнейшем из этого порошка получают изделия горячим прессованием (в полном соответствии с описанным выше процессом упрочнения материалов из порошков).

ЭФФЕКТ РЕБИНДЕРА В ПОЛИМЕРАХ. Выдающийся советский физико-химик академик Петр Александрович Ребиндер был первым, кто попытался воздействовать на работу разрушения твердого тела. Именно Ребиндеру удалось понять, каким образом это можно осуществить. Еще в 20-х годах прошлого века он использовал для этой цели так называемые поверхностно-активные, или адсорбционно-активные, вещества, которые способны эффективно адсорбироваться на поверхности даже при низкой концентрации в окружающей среде и резко снижать поверхностное натяжение твердых тел. Молекулы данных веществ атакуют межмолекулярные связи в вершине растущей трещины разрушения и, адсорбируясь на свежеобразованных поверхностях, ослабляют их. Подобрав специальные жидкости и введя их на поверхность разрушаемого твердого тела, Ребиндер добился поразительного уменьшения работы разрушения при растяжении (рис.1). На рисунке представлены деформационно-прочностные кривые монокристалла цинка (пла-стинки толщиной порядка миллиметра) в отсутствие и в присутствии поверхностно-активной жидкости. Момент разрушения в обоих случаях отмечен стрелками. Хорошо видно, что если просто растягивать образец, он разрушается при более чем 600% удлинении. Но если ту же процедуру производить, нанеся на его поверхность жидкое олово, разрушение наступает всего при ~10% удлинении. Поскольку работа разрушения -- это площадь под кривой зависимости напряжения от деформации, нетрудно заметить, что присутствие жидкости уменьшает работу даже не в разы, а на порядки. Именно этот эффект и был назван эффектом Ребиндера, или ад-сорбционным понижением прочности твердых тел .

Рис.1. Зависимость напряжения от деформации монокристаллов цинка при 400°С: 1 -- н а воздухе; 2 -- в расплаве олова

Эффект Ребиндера -- универсальное явление, оно наблюдается при разрушении любых твердых тел, в том числе и полимеров. Тем не менее, природа объекта вносит свои особенности в процесс разрушения, и полимеры в этом смысле не исключение. Полимерные пленки состоят из крупных целых молекул, удерживаемых вместе силами Ван-дер-Ваальса или водородными связями, которые заметно слабее, чем ковалентные связи внутри самих молекул. Поэтому молекула, даже будучи членом коллектива, сохраняет некие обособленность и индивидуальные качества. Главная особенность полимеров -- цепное строение их макромолекул, которое обеспечивает их гибкость. Гибкость молекул, т.е. их способность изменять свою форму (за счет деформации валентных углов и поворотов звеньев) под действием внешнего механического напряжения и ряда других факторов, лежит в основе всех характеристических свойств полимеров. В первую очередь -- способности макромолекул к взаимной ориентации. Правда, надо оговориться, что последнее относится только к линейным полимерам. Существует огромное количество веществ, имеющих большой молекулярный вес (например, белки и другие биологические объекты), но не обладающих специфическими качествами полимеров, поскольку сильные внутримолекулярные взаимодействия мешают их макромолекулам сгибаться. Более того, типичный представитель полимеров -- натуральный каучук, -- будучи «сшитым» с помощью специальных веществ (процесс вулканизации), может превратиться в твердое вещество -- эбонит, не подающий вообще никаких признаков полимерных свойств.

В полимерах эффект Ребиндера проявляется весьма своеобразно. В адсорбционно-активной жидкости возникновение и развитие новой поверхности наблюдается не только при разрушении, а значительно раньше -- еще в процессе деформации полимера, которая сопровождается ориентацией макромолекул.

Рис.2. Внешний вид образцов полиэтилентерефталата, растянутых на воздухе (а) и в ад-сорбционно-активной среде (н- пропаноле) (б).

ребиндер полимер металл прочность

На рис.2 представлены изображения двух образцов лавсана, один из которых был растянут на воздухе, а другой -- в адсорбционно-активной жидкости. Хорошо видно, что в первом случае в образце возникает шейка. Во втором случае пленка не сужается, зато становится молочно-белой и не прозрачной. Причины наблюдающегося побеления становятся понятными при микроскопическом исследовании.

Рис.3. Электронная микрофотография образца полиэтилентерефталата, деформирован ного в н-пропаноле. (Увел. 1000 )

Вместо монолитной прозрачной шейки в полимере образуется уникальная фибриллярно-пористая структура состоящая из нитеобразных агрегатов макромолекул (фибрилл), разделенных микропустотами (порами). В этом случае взаимная ориентация макромолекул достигается не в монолитной шейке, а внутри фибрилл. Поскольку фибриллы разобщены в пространстве, такая структура содержит огромное количество микропустот, которые интенсивно рассеивают свет и придают полимеру молочно-белый цвет. Поры заполняются жидкостью, поэтому гетерогенное строение сохраняется и после снятия деформирующего напряжения. Фибриллярно-пористая структура возникает в особых зонах и по мере деформировании полимера захватывает все больший объем. Анализ микроскопических изображений позволил установить особенности структурных перестроек в полимере, подвергаемом крейзингу (рис.4).

Рис.4. Схематическое изображение отдельных стадий крейзинга-полимера: I --инициирование крейзов, II -- рост крейзов, III -- уширение крейзов.

Зародившись на каком-либо дефекте (неоднородности структуры), которые имеются в изобилии на поверхности любого реального твердого тела, крейзы растут через все сечение растягиваемого полимера в направлении, нормальном оси растягивающего напряжения, сохраняя постоянную и весьма малую (~1 мкм) ширину. В этом смысле они подобны истинным трещинам разрушения. Но когда крейз «перерезает» все поперечное сечение полимера, образец не распадается на отдельные части, а остается единым целым. Это обусловлено тем, что противоположные края такой своеобразной трещины соединены тончайшими ниточками ориентированного полимера (рис.3). Размеры (диаметры) фибриллярных образований, так же как и разделяющих их микропустот, -- 1--10 нм.

Когда фибриллы, соединяющие противоположные стенки крейзов, становятся достаточно длинными, начинается процесс их слияния (при этом площадь поверхности уменьшается, рис.5). Другими словами, полимер претерпевает своеобразный структурный переход от рыхлой структуры к более компактной, состоящей из плотно упакованных агрегатов фибрилл, ко-торые ориентированы в направлении оси растяжения.

Рис.5. Схема, иллюстрирующая коллапс структуры полимера, происходящий при больших зна-чениях деформации в адсорбционно-активной жидкости, на различных стадиях растяжения

Существует метод разделения молекул путем адсорбции из раствора тех из них, которые способны проникать в поры данного размера (молекулярно-ситовый эффект). Поскольку размер пор можно легко регулировать, изменяя степень вытяжки полимера в адсорбционно-активной среде (используя эффект Ребиндера), легко добиться избирательной адсорбции. Важно отметить, что используемые в практике адсорбенты обычно представляют собой некий порошок или гранулят, которым заполняют разного рода емкости (например, сорбент в том же противогазе). С помощью эффекта Ребиндера легко получить пленку или волокно со сквозной нанометрической пористостью. Другими словами, открывается перспектива создать конструкционный материал, обладающий оптимальными механическими свойствами и одновременно являющийся эффективным сорбентом.

С помощью эффекта Ребиндера элементарным путем (простым растяжением полимерной пленки в адсорбционно-активной среде) удается делать пористые полимерные пленки на основе практически любых синтетических полимеров. Размеры пор в таких пленках легко регулировать, изменяя степень деформации полимера, что позволяет изготавливать разделительные мембраны для решения самых разных практических задач.

Эффект Ребиндера в полимерах несет в себе большой прикладной потенциал. Во-первых, простой вытяжкой полимера в адсорбционно-активной жидкости можно получать разнообразные полимерные сорбенты, разделительные мембраны и полимерные изделия, имеющие поперечный рельеф, и, во-вторых, эффект Ребиндера дает химику-технологу универсальный непрерывный метод введения модифицирующих добавок в полимеры.

Список используемых материалов

1. www.rfbr.ru/pics/28304ref/file.pdf

2. www.chem.msu.su/rus/teaching/colloid/4.html

3. http://femto.com.ua/articles/part_2/3339.html

4. Большая Советская Энциклопедия. М.: Советская энциклопедия, 1975, т. 21.

6. http://slovari.yandex.ru/dict/bse/article/00065/40400.htm

7. http://www.nanometer.ru/2009/09/07/rfbr_156711/PROP_FILE_files_1/rffi4.pdf

8. http://ru.wikipedia.org/wiki/Эффект_Ребиндера

Размещено на Allbest.ru

Подобные документы

    Определение содержания непредельных углеводородов в дизельном топливе по йодному числу. Нахождение минеральных примесей, плотности и вязкости, коэффициента поверхностного натяжения нефтепродуктов. Использование методов Вестфаля-мора и Ребиндера-вейлера.

    курсовая работа , добавлен 27.11.2014

    Изучение основных видов адсорбции. Факторы, влияющие на скорость адсорбции газов и паров. Изотерма адсорбции. Уравнение Фрейндлиха и Ленгмюра. Особенности адсорбции из растворов. Правило Ребиндера, Панета-Фаянса-Пескова. Понятие и виды хроматографии.

    презентация , добавлен 28.11.2013

    Схватывание и твердение различных модификаций гипса. Классификация и свойства добавок. Определение поверхностного натяжения. Определение пластической прочности. Рычажный пластометр Ребиндера. Влияние добавок на кинетику твердения гипсового теста.

    курсовая работа , добавлен 17.02.2013

    Общие сведения о коррозии металлов, ее виды и типы. Причины возникновения химической и электрохимической коррозии и механизм ее протекания. Методы защиты металлических изделий от коррозионных процессов. Антикоррозийная защита неметаллическими покрытиями.

    практическая работа , добавлен 03.11.2011

    Особенности химических реакций в полимерах. Деструкция полимеров под действием тепла и химических сред. Химические реакции при действии света и ионизирующих излучений. Формирование сетчатых структур в полимерах. Реакции полимеров с кислородом и озоном.

    контрольная работа , добавлен 08.03.2015

    Объективные ошибки фотометрии. Спектрофотометрические кривые хлороформных растворов. Общее понятие про фотоэлектрический эффект. Метод колориметрического титрования или дублирования. Схема автоматического фотоколориметра. Практика фотометрических методов.

    курсовая работа , добавлен 30.10.2011

    Строение атомов металлов. Положение металлов в периодической системе. Группы металлов. Физические свойства металлов. Химические свойства металлов. Коррозия металлов. Понятие о сплавах. Способы получения металлов.

    реферат , добавлен 05.12.2003

    Анализ проблем изыскания жаростойких металлических материалов, предназначенных для изготовления нагревателей, печей, теплообменников. Знакомство с наиболее распространенными уравнениями скорости окисления металлов. Общая характеристика теории Вагнера.

    контрольная работа , добавлен 10.04.2015

    Энтальпия - термодинамическая функция состояния и сумма внутренней энергии и работы против внешних сил. Энтальпия образования сложного вещества. Определение энтальпии реакции нейтрализации. Описание эксперимента, вычисление относительной ошибки измерения.

    лабораторная работа , добавлен 18.05.2012

    Сущность, виды, методы получения, сферы применения металлических покрытий. Технология и особенности химического серебрения стекла. Характеристика основных методов химического осаждения металлов. Прочность прилипания металлического слоя к поверхности.

и K " n

D K n

При изучении процесса диспергирования установлено, что в частице при деформации развиваются микротрещины на основе дефектов кристаллической решетки. Среди этих микротрещин имеются и такие, широкие части которых выходят на поверхность тела, а тупики остаются внутри тела. Поверхностные микротрещины являются основной причиной понижения механической прочности реальных твердых тел по сравнению с их теоретической прочностью.

8.4.2. Эффект Ребиндера и его роль в диспергировании.

В 1928 г. П. А. Ребиндер высказал предположение о том, что в

основе понижения механических свойств твердых тел под влиянием поверхностно-активных веществ (ПАВ) лежит снижение свободной поверхностной энергии и, как следствие, уменьшение работы, необходимой для образования новых поверхностей.

Разрушение можно рассматривать как процесс образования новых поверхностей, следовательно, адсорбция ПАВ облегчает разрушение. Прочность твердого тела тем меньше, чем меньше поверхностная энергия. Поверхностную энергию можно уменьшить с помощью ПАВ. Существует выражение, устанавливающее связь прочности и поверхностной энергии для тела, имеющего дефект в виде микротрещины.

Рассмотрим твердое тело – пластину (рис. 8.3) единичной толщины, к которой приложено растягивающее напряжение P . В соответствии с законом Гука, упругая деформация тела приводит к накоплению в нем упругой энергии с плотностью, равной

W упр

где E - модуль Юнга. Пусть в теле возникает сплошная трещина длинной L . При этом в части объема происходит уменьшение упругой

Зависимость lg D (или lg ) от lg в соответствии с уравнением

D K n и K " n представляет собой прямую линию, тангенс угла наклона которой равен показателю степени n с минусом. Значение показателя n в этих уравнениях зависит от соотношения между размером частиц и длиной волны падающего света, характеризуемого параметром z .

Показатель степени n в уравнениях

находят на основе турбидиметрических данных. Для этого экспериментально измеряют оптическую плотность системы при различных длинах волн и строят график зависимости в координатах

lg D lg . Показатель

определяют

тангенсу

угла наклона

полученной прямой. По значению n

находят соответствующее

значение параметра

рассчитывают средний радиус частиц исследуемой дисперсной системы.

Следует отметить, что этот метод, как и уравнение Рэлея, применим только для «белых» золей, то есть для дисперсных систем, не поглощающих свет (метод базируется только на светорассеянии).

10.8. Световая микроскопия.

10.8.1. Световая микроскопия.

Светорассеяние и нефелометрия являются косвенными методами

измерения размера частиц, основанными на оптических свойствах дисперсных систем. Возникает вопрос, существуют ли прямые методы, то есть можно ли увидеть коллоидную частицу. При наблюдении системы в обычный микроскоп в проходящем свете

www.mitht.ru/e-library

Значение показателя степени n в этом уравнении в свою очередь зависит от z ; с увеличением z значение n уменьшается, стремясь в пределе к 2 для частиц, радиус которых

больше длины волны. При малых значениях z соблюдается уравнение Рэлея и при n 4 .

Исходя из теории Шифрина, можно определить размер частиц по характеристической мутности. Для этого измеряют значение оптической плотности D серии разбавленных растворов и вычисляют

мутность по уравнению:

С помощью графической экстраполяции находят значение характеристической мутности. Подставляя найденное значение также значение и в формулу (10.26), определяют значение (z)

и по таблице значение z . По уравнению (10.24) вычисляют радиус частицы.

С увеличением размеров частиц закон Рэлея перестает соблюдаться и интенсивность рассеянного света становится обратно пропорциональной длине волны в степени меньшей, чем четвертая. Если размер (диаметр) частиц составляет от 1/10 до 1/3 длины световой волны, и показатели преломления частиц и среды не сильно различаются, для описания светорассеяния в системе можно воспользоваться эмпирическим уравнением, предложенным Геллером:

D K n и K " n (10.29)

где K и K " – константы, не зависящие от длины волны.

деформации и соответственно уменьшение плотности упругой энергии. Можно приближенно считать, что подобная релаксация напряжений происходит в области размером порядка l (рис. 8.3), т. е. уменьшение запасенной в теле упругой энергии пропорционально квадрату размера трещины:

E упр

Рис. 8.3. Пластина единичной толщины под воздействием растягивающего

напряжения P .

При механическом диспергировании протекает обратный процесс - рекомбинация частиц, интенсивность которого увеличивается при увеличении степени дисперстности. Максимальный размер частиц,

который можно получить механическим измельчением - 1 10 6 м . Рекомбинацию частиц можно подавить, применяя инертный разбавитель. Так получают коллоидную серу дроблением ромбической серы с добавлением сахара как инертного разбавителя. К образующейся смеси коллоидной серы с сахаром добавляют воду и разделяют смесь с помощью диализа.

www.mitht.ru/e-library

Увеличение поверхностной энергии F пов пропорционально поверхностному натяжению и удвоенной длине трещин, так как трещина имеет два берега.

F пов ~ 2 l (8.8))

Вместе с тем рост трещины сопровождается увеличением поверхностной энергии вследствие образования новой поверхности раздела фаз с площадью, пропорциональной удвоенной длине трещины. Общее изменение энергии при образовании трещин равно сумме изменений упругой и поверхностной энергий:

P2 l 2

Графически зависимость изменения энергии от длины трещины изображается кривой с максимумом (рис. 8.5) .

Рис. 8.5. Зависимость изменения поверхностной энергии от длинны трещины.

Для частиц, размер которых не превышает 20 1 длины волны

падающего света, при условии отсутствия поглощения света и вторичного светорассеяния справедливо уравнение Рэлея.

Для частиц, размер которых равен длине световой волны или больше ее, определение размеров частиц по светорассеянию может быть осуществлено исходя из общей теории светорассеяния.

В случае, когда радиус составляет от одной десятой до одной третьей длины световой волны, и показатели преломления частиц и среды не слишком различаются (m 1,5 ), определение размеров частиц дисперсных систем проводят по методу К. С. Шифрина и И. Я. Слонима. Согласно этому методу, мутность зависит от параметров и z следующим образом:

а при С об 0

[τ ]

где – мутность системы, см-1 ; С об – объемная доля дисперсной фазы; – характеристическая мутность.

При z 2 (т. е. r 0,080 ) можно использовать уравнение Рэлея

(частицы видны в микроскоп).

Зависимость мутности от параметра z описывается уравнением

τ const

C об

www.mitht.ru/e-library

[ τ] lim

C об

С об 0

Весьма удобным объектом исследования оптических свойств коллоидных систем являются латексы, представляющие модель гидрофобных золей. Они являются двухфазными и трехкомпонентными системами, состоящими из полимерных частиц ультрамикроскопических размеров, взвешенных в серуме – водном растворе стабилизатора. В качестве стабилизатора применяют различные поверхностно-активные вещества (соли жирных и сульфокислот).

10.7.2. Дисперсные системы, не подчиняющиеся уравнению Рэлея.

Интенсивность света, рассеянного разбавленной дисперсной системой, а также угловое распределение рассеянного света (индикатрисса рассеяния) зависят от значений двух безразмерных параметров и z . Параметр характеризует отклонение свойств частицы от свойств среды и определяется уравнением

где m

Отношение

показателя

преломления дисперсной

фазы к показателю преломления дисперсионной среды.

Параметр z

характеризует отношение радиуса частицы r к длине

В точке максимума значение первой производной функции равно

0 , т. е.

2 dl

2P 2

Этому максимуму свободной энергии отвечает критический размер трещины, равный:

l кр ~

Трещины с размером, большим критического, неустойчивы и самопроизвольно увеличивают свои размеры, что приводит к образованию макроскопической трещины и разрушению тела. Трещины с размером, меньшим критического, должны стремиться уменьшить свои размеры (залечиваться).

Выражение (8.11) можно также представить в виде:

E 1/ 2

Согласно этому соотношению, полученному впервые Гриффитсом и названному его именем. Реальная прочность P 0 твердого тела,

имеющего трещину с размером l , пропорциональна корню квадратному из величины поверхностной энергии и обратно пропорциональна корню квадратному из длины трещины. «Теоретическая» прочность идеального тела равна

где b – размер молекул. Уравнение Гриффитса может быть также представлено в виде

www.mitht.ru/e-library

Таким образом, отношение реальной и идеальной прочности твердого тела определяется соотношением между размером молекул b и размером дефекта.

Таким образом, анализ взаимосвязи механических свойств и поверхностной энергии показывает, что, изменяя величину поверхностной энергии, можно влиять на прочность материалов. Развитие микротрещин под действием внешних сил может быть облегчено адсорбцией различных веществ на поверхности тела из среды, в которой проводят диспергирование.

Адсорбироваться могут ионы электролитов, молекулы поверхностно-активных веществ, жидкие металлы (например, ртуть). На поверхности образуется двухмерный газ. Адсорбированные ионы или молекулы проникают в щели и стремятся раздвинуть микротрещины. Происходит также экранирование сил сцепления, действующих между поверхностями микротрещин. Адсорбированное понижение прочности получило название эффекта Ребиндера . Вещества, повышающие эффективность диспергирования, называются понизителями твердости. Этот эффект имеет большое практическое значение не только в процессах собственно диспергирования, но и в процессах бурения твердых пород, при тонкой обработке металлов.

Понизители твердости могут быть введены в диспергирующее устройство в виде паров, жидкости. Этот способ широко применяется при получении высокодисперсного цемента.

К эффективным методам относятся механическое дисперигирование, основанное на применении вибрационных методов (воздействие колебаний достаточно высокой частоты и малой

Запишем уравнение в общем виде:

I пр I 0 e k c l

I пр

e k c l

e τ l

Выразим

через оптическую плотность:

I пр

Для дисперсных систем со сферическими частицами уравнение Рэлея можно записать в таком виде:

I расс

24 π3

τ λ 4

С об V

n2 2 n2

где I расс -

полная интенсивность

света, рассеянного 1 см3

системы; С об – объемная доля дисперсной фазы; V– объем частицы, см3 .

Отсюда можно вычислить объем частиц:

где K

2 n2

Уравнение Рэлея справедливо лишь для разбавленных растворов, так как оно не учитывает вторичного рассеяния света и взаимодействия между частицами. Поэтому для определения размера частиц следует найти для ряда растворов с разной кратностью разбавления и экстраполировать величину / C об до С об 0 .

Помимо действия химических процессов, оказывающих влияние на свойства поверхности и фрикционное взаимодействие между твердыми телами, существует открытое и исследованное П.А. Ребиндером аналогичное смазочное средство, обусловленное чисто молекулярным взаимодействием смазки с твердыми поверхностями, получившее название «эффекта Ребиндера».

Реальные твердые тела имеют как поверхностные, так и внутренние дефекты структуры. Как правило, подобные дефекты обладают избыточной свободной энергией. За счет физической адсорбции молекул поверхностно-активных веществ (ПАВ) происходит снижение уровня свободной поверхностной энергии твердого тела в местах их посадки. Это уменьшает работу выхода дислокаций на поверхность. Поверхностно-активные вещества проникают в трещины и в межкристаллитное пространство, оказывая механическое воздействие на их стенки и, раздвигая их, приводят к хрупкому растрескиванию материала и уменьшению прочности контактирующих тел. И если подобные процессы развиваются только на выступах контактирующих тел, уменьшая сопротивление сдвигу неровностей этого материала, то в целом этот процесс приводит к выглаживанию поверхности, уменьшению удельного давления в контактной зоне и в целом

уменьшению трения и износа трущихся тел. Но если нормальные нагрузки при трении значительно увеличиваются, высокие удельные давления распространяются на всю контурную площадь, разупрочнение материала осуществляется на большом участке поверхности и приводит уже к очень быстрому ее разрушению.

Эффект Ребиндера широко используется как при разработке смазочных материалов (для этого в смазочный материал вводят специальные ПАВ), так и для облегчения деформирования и обработки материала при изготовлении деталей машин (для этого используются специальные смазки и эмульсии в виде смазочно-охлаждающих жидкостей СОЖ).

Проявление эффекта Ребиндера происходит на самых разнообразных материалах. Это и металлы, горные породы, стекла, элементы машин и оборудования. Среда, вызывающая понижение прочности, может быть газообразной и жидкой. Часто в качестве ПАВ могут выступать расплавленные металлы. Например, медь, выделившаяся при расплавлении подшипника скольжения, становится ПАВ для стали. Проникая в трещины и межкристаллическое пространство вагонных осей, этот процесс становится причиной хрупкого разрушения осей и причиной аварий на транспорте.

Не отдавая должного внимания природе процесса, мы часто стали сталкиваться с примерами, когда аммиак вызывает растрескивание латунных деталей, газообразные продукты сгорания резко ускоряют процесс разрушения турбинных лопаток, расплавленный хлористый магний действует разрушающе на высокопрочные нержавеющие стали и ряд других. Знания природы этих явлений открывает возможности направленно решать вопросы повышения износостойкости и разрушения ответственных деталей и узлов машин и оборудования, а при надлежащем использовании эффекта Ребиндера повышать производительность обрабатывающего оборудования и эффективность использования пар трения, т.е. экономить энергию.

Этот роман – «собранье пестрых глав», где каждая глава названа строкой из Пушкина и являет собой самостоятельный рассказ об одном из героев. А героев в романе немало – одаренный музыкант послевоенного времени, «милый бабник», и невзрачная примерная школьница середины 50-х, в душе которой горят невидимые миру страсти – зависть, ревность, запретная любовь; детдомовский парень, физик-атомщик, сын репрессированного комиссара и деревенская «погорелица», свидетельница ГУЛАГа, и многие, многие другие. Частные истории разрастаются в картину российской истории XX века, но роман не историческое полотно, а скорее многоплановая семейная сага, и чем дальше развивается повествование, тем более сплетаются судьбы героев вокруг загадочной семьи Катениных, потомков «того самого Катенина», друга Пушкина. Роман полон загадок и тайн, страстей и обид, любви и горьких потерь. И все чаще возникает аналогия с узко научным понятием «эффект Ребиндера» – как капля олова ломает гибкую стальную пластинку, так незначительное, на первый взгляд, событие полностью меняет и ломает конкретную человеческую жизнь.

«Новеллы, изящно нанизанные, словно бусины на нитку: каждая из них – отдельная повесть, но вдруг один сюжет перетекает в другой, и судьбы героев пересекаются самым неожиданным образом, нитка не рвётся. Всё повествование глубоко мелодично, оно пронизано музыкой – и любовью. Одних любовь балует всю жизнь, другие мучительно борются за неё. Одноклассники и влюблённые, родители и дети, прочное и нерушимое единство людей, основанное не на кровном родстве, а на любви и человеческой доброте, – и нитка сюжета, на которой прибавилось ещё несколько бусин, по-прежнему прочна… Так человеческие отношения выдерживают испытание сталинским временем, «оттепелью» и ханжеством «развитого социализма» с его пиком – Чернобыльской катастрофой. Нитка не рвётся, едва ли не вопреки закону Ребиндера».

Елена Катишонок, лауреат премии «Ясная поляна» и финалист «Русского Букера»

На нашем сайте вы можете скачать книгу "Эффект Ребиндера" Елена Минкина-Тайчер бесплатно и без регистрации в формате fb2, rtf, epub, pdf, txt, читать книгу онлайн или купить книгу в интернет-магазине.

В отличие от рассмотренного случая «газ - твердое тело», адсорбция жидкостей сильно усложняется наличием третьего компонента - растворителя, молекулы которого могут также адсорбироваться на поверхности адсорбента и, следовательно, являются конкурентами молекул адсорбата. Таким образом, адсорбция этого вида всегда является адсорбцией из смеси. Кроме этого, адсорбция на границе «твердое тело-раствор» всегда осложняется взаимодействием молекул адсорбтива с молекулами среды. При рассмотрении адсорбции из раствора на твердом теле принято различать два случая.

    Адсорбция неэлектролитов или молекулярная адсорбция.

    Адсорбция электролитов.

Зависимость молекулярной равновесной адсорбции из раствора на твердое тело характеризуется обычной изотермой адсорбции, а для достаточно разбавленных растворов хорошо описывается эмпирическим уравнением Фрейндлиха-Ленгмюра–Либиха . Использование уравнений Ленгмюра и Гиббса затруднено из-за сложности определения поверхностного натяжения.

При адсорбции из раствора молекулы адсорбата и среды являются конкурентами. И чем хуже адсорбируется среда, тем лучше адсорбируется адсорбат. Исходя из того, что поверхностное натяжение для ПАВ мало, можно считать, что чем больше поверхностное натяжение самой среды, тем меньше ее молекулы способны к адсорбции. Поэтому адсорбция на твердом теле обычно лучше идет из водных растворов и хуже из растворов органических веществ, имеющих относительно небольшое поверхностное натяжение. При адсорбции также выполняется правило Траубе : с увеличением цепи адсорбата в гомологическом ряду конкурентная адсорбция идет в сторону того адсорбата, который обладает большей молекулярной массой.

С увеличением длины молекул адсорбата выше определенного критического значения из-за невозможности молекулы адсорбата проникнуть внутрь пор адсорбция с увеличением молекулярной массы адсорбтива падает.

Правило выравнивания полярностей Ребиндера : вещество может адсорбироваться на поверхности раздела фаз в том случае, если его адсорбция приводит к выравниванию полярностей этих фаз, т.е по полярности это вещество должно занимать промежуточное положение между веществами, составляющими эти фазы .

Если надо провести адсорбцию компонента из жидкой фазы, необходимо, чтобы полярность адсорбента и раствора резко отличались друг от друга. Чем хуже растворимо вещество в растворителе, тем лучше оно будет адсорбироваться.

Критерием пригодности растворителя в качестве среды для адсорбции является теплота смачивания этим растворителем адсорбента. Разность полярностей на второй границе раздела всегда меньше, чем на первой, поэтому Е 1 > E 2 и Q >0 . Чем больше Q , тем интенсивнее взаимодействие растворителя с адсорбентом и тем, следовательно, худшей средой для адсорбции он является.

Глава 2.4 Адгезия. Когезия. Смачивание и растекание жидкости

Тема 2.4.1. Понятие когезии и адгезии. Смачивание и растекание. Работа адгезии и когезии. Уравнение Дюпре. Краевой угол смачивания. Закон Юнга. Гидрофобные и гидрофильные поверхности

В гетерогенных системах различают межмолекулярное взаимодействие внутри фаз и между ними.

Когезия - притяжение атомов и молекул внутри отдельной фазы . Она определяет существование вещества в конденсированном состоянии и может быть обусловлена межмолекулярными и межатомными силами. Понятие адгезии , смачивания и растекания относятся к межфазным взаимодействиям.

Адгезия обеспечивает между двумя телами соединение определенной прочности благодаря физическим и химическим межмолекулярными силами. Рассмотрим характеристики когезионного процесса. Работа когезии определяется затратой энергии на обратимый процесс разрыва тела по сечению равной единице площади: W k =2  , где W k - работа когезии; - поверхностное натяжение

Так как при разрыве образуется поверхность в две параллельные площади, то в уравнении появляется коэффициент 2. Когезия отражает межмолекулярное взаимодействие внутри гомогеннойфазы, то ее можно охарактеризовать такими параметрами как энергия кристаллической решетки, внутреннее давление, летучесть, температура кипения. Адгезия - результат стремления системы к уменьшению поверхностной энергии. Работа адгезии характеризуется работой обратимого разрыва адгезионной связи, отнесенной к единице площади. Она измеряется в тех же единицах, что и поверхностное натяжение. Полная работа адгезии, приходящаяся на всю площадь контакта тел: W s = W a S

Адгезия - работа по разрыву адсорбционных сил с образованием новой поверхности в 1м 2 .

Чтобы получить соотношение между работой адгезии и поверхностным натяжением взаимодействующих компонентов, представим себе две конденсированные фазы 2 и 3, имеющие поверхность на границе с воздухом 1, равную единице площади (рис. 2.4.1.1).

Будем считать, что фазы взаимно нерастворимы. При совмещении этих поверхностей, т.е. при нанесении одного вещества на другое происходит явление адгезии, т.к. система стала двухфазной, то появляется межфазное натяжение  23 . В результате первоначальная энергия Гиббса системы снижается на величину, равную работе адгезии:

G + W a =0, W a = - G .

Изменение энергии Гиббса системы в процессе адгезии:

;

G нач . = 31 + 21 ;

G кон =  23 ;

.

- уравнение Дюпре.

Оно отражает закон сохранения энергии при адгезии. Из него следует, что работа адгезии тем больше, чем больше поверхностные натяжения исходных компонентов и чем меньше конечное межфазное натяжение.

Межфазное натяжение станет равно 0, когда исчезнет межфазная поверхность, что происходит при полном растворении фаз

Учитывая, что W k =2 , и умножая правую часть на дробь , получим:

где W k 2, W k 3 - работа когезии фаз 2 и 3.

Таким образом, условие растворения состоит в том, что работа адгезии между взаимодействующими телами должна быть равна или больше среднего значения суммы работ когезии. От работы когезии надо отличать адгезионную прочность W п .

W п работа, затраченная на разрушение адгезионного соединения . Эта величина отличается тем, что в нее входит как работа разрыва межмолекулярных связей W a , так и работа, затраченная на деформацию компонентов адгезионного соединения W деф :

W п = W a + W деф .

Чем прочнее адгезионное соединение, тем большей деформации будут подвергаться компоненты системы в процессе его разрушения. Работа деформации может превышать обратимую работу адгезии в несколько раз.

Смачивание - поверхностное явление, заключающееся во взаимодействии жидкого с твердым или другим жидким телом при наличии одновременного контакта трех несмешивающихся фаз, одна из которых обычно является газом.

Степень смачиваемости характеризуется безразмерной величиной косинуса краевого угла смачивания или просто краевого угла. При наличии капли жидкости на поверхности жидкой или твердой фазы наблюдаются два процесса при условии, что фазы взаимно нерастворимы.

На рис. 2.4.1.2 показана капля на поверхности твердого тела в условиях равновесия. Поверхностная энергия твердого тела, стремясь к уменьшению, растягивает каплю по поверхности и равна  31 . Межфазная энергия на границе твердое тело - жидкость стремится сжать каплю, т.е. поверхностная энергия уменьшается за счет уменьшения площади поверхности. Растеканию препятствуют когезионные силы, действующие внутри капли. Действие когезионных сил направлено от границы между жидкой, твердой и газообразной фазами по касательной к сферической поверхности капли и равно  21 . Угол  (тетта), образованный касательной к межфазным поверхностям, ограничивающим смачивающую жидкость, имеет вершину на границе раздела трех фаз и называется краевым углом смачиваемости . При равновесии устанавливается следующее соотношение

- закон Юнга .

Отсюда вытекает количественная характеристика смачивания как косинус краевого угла смачивания
. Чем меньше краевой угол смачивания и, соответственно, чем большеcos , тем лучше смачивание.

Если cos  > 0, то поверхность хорошо смачивается этой жидкостью, если cos  < 0, то жидкость плохо смачивает это тело (кварц – вода – воздух: угол  = 0; «тефлон – вода – воздух»: угол  = 108 0). С точки зрения смачиваемости различают гидрофильные и гидрофобные поверхности.

Если 0< угол <90, то поверхность гидрофильная, если краевой угол смачиваемости >90, то поверхность гидрофобная. Удобная для расчета величины работы адгезии формула получается в результате сочетания формулы Дюпре и закона Юнга:

;

- уравнение Дюпре-Юнга.

Из этого уравнения видна разница между явлениями адгезии и смачиваемости. Разделив обе части на 2, получим

.

Так как смачивание количественно характеризуется cos , то в соответствии с уравнением оно определяется отношением работы адгезии к работе когезии для смачивающей жидкости. Различие между адгезией и смачиванием в том, что смачивание имеет место при наличии контакта трех фаз. Из последнего уравнения можно сделать следующие выводы:

1. При = 0 cos = 1, W a = W k .

2. При = 90 0 cos = 0, W a = W k /2 .

3. При =180 0 cos = -1, W a =0 .

Последнее соотношение не реализуется.

Похожие публикации