Что такое совершенная работа в физике. Механическая работа и мощность силы

1. Из курса физики 7 класса вы знаете, что если на тело действует сила и оно перемещается в направлении действия силы, то сила совершает механическую работу A , равную произведению модуля силы и модуля перемещения:

A =Fs .

Единица работы в СИ -джоуль (1 Дж ).

[A ] = [F ][s ] = 1 H 1 м = 1 Н м = 1 Дж.

За единицу работы принимают такую работу, которую совершает сила 1 Н на пути 1 м.

Из формулы следует, что механическая работа не совершается, если сила равна нулю (тело покоится или движется равномерно и прямолинейно) или перемещение равно нулю.

Предположим, что вектор силы, действующей на тело, составляет некоторый угол a с вектором перемещения (рис. 65). Так как в вертикальном направлении тело не перемещается, то проекция силы F y на ось Y работу не совершает, а проекция силы F x на ось X совершает работу, которая равна A = F x s x .

Поскольку F x = F cos a, а s x = s , то

A = Fs cos a.

Таким образом,

работа постоянной силы равна произведению модулей векторов силы и перемещения и косинуса угла между этими векторами.

2. Проанализируем полученную формулу работы.

Если угол a = 0°, то cos 0° = 1 и A = Fs . Совершенная работа положительна и ее значение максимально, если направление силы совпадает с направлением перемещения.

Если угол a = 90°, то cos 90° = 0 и A = 0. Сила не совершает работу, если она перпендикулярна направлению перемещения тела. Так, работа силы тяжести равна нулю при движении тела по горизонтальной плоскости. Нулю равна работа силы, сообщающей телу центростремительное ускорение при его равномерном движении по окружности, так как эта силав любой точке траектории перпендикулярна направлению движения тела.

Если угол a = 180°, то cos 180° = –1 и A = –Fs . Данный случай имеет место тогда, когда сила и перемещение направлены в противоположные стороны. Соответственно совершенная работа отрицательна и ее значение максимально. Отрицательную работу совершает, например, сила трения скольжения, поскольку она направлена в сторону, противоположную направлению перемещения тела.

Если угол a между векторами силы и перемещения острый, то работа положительна; если угол a тупой, то работа отрицательна.

3. Получим формулу для расчета работы силы тяжести. Пусть тело массой m свободно падает на землю из точки A , находящейся на высоте h относительно поверхности Земли, и через некоторое время оказывается в точке B (рис. 66, а ). Работа силы тяжести при этом равна

A = Fs = mgh .

В данном случае направление движения тела совпадает с направлением действу.щей на него силы, поэтому работа силы тяжести при свободном падении положительна.

Если тело движется вертикально вверх из точки B в точку A (рис. 66, б ), то его перемещение направлено в сторону, противоположную силе тяжести, и работа силы тяжести отрицательна:

A = –mgh

4. Работу силы можно вычислить, используя график зависимости силы от перемещения.

Предположим, под действием постоянной силы тяжести тело совершает перемещение. Графиком зависимости модуля силы тяжести F тяж от модуля перемещения тела s является прямая, параллельная оси абсцисс (рис. 67). Найдем площадь выделенного прямоугольника. Она равна произведению двух его сторон: S = F тяж h = mgh . С другой стороны, этой же величине равна работа силы тяжестиA = mgh .

Таким образом, работа численно равна площади прямоугольника, ограниченного графиком, координатными осями и перпендикуляром, восставленным к оси абсцисс в точке h .

Рассмотрим теперь случай, когда сила, действующая на тело, прямо пропорциональна перемещению. Такой силой, как известно, является сила упругости. Ее модуль равен F упр = k Dl , где Dl - удлинение тела.

Предположим, пружину, левый конец которой закреплен, сжали (рис. 68, а ). При этом ее правый конец сместился на Dl 1 .В пружине возник сила упругости F упр 1 , направленная вправо.

Если теперь предоставить пружину самой себе, то ее правый конец переместится вправо (рис. 68, б ), удлинение пружины будет равно Dl 2 , а сила упругости F упр 2 .

Вычислим работу силы упругости при перемещении конца пружины из точкис координатой Dl 1 в точку с координатой Dl 2 . Используем для этого график зависимости F упр (Dl ) (рис. 69). Работа силы упругости численно равна площади трапеции ABCD . Площадь трапеции равна произведению полусуммы оснований и высоты, т. е. S = AD . В трапеции ABCD основания AB = F упр 2 = k Dl 2 , CD = F упр 1 = k Dl 1 , а высота AD = Dl 1 – Dl 2 . Подставим в формулу площади трапеции эти величины:

S = (Dl 1 – Dl 2) =– .

Таким образом, мы получили, что работа силы упругости равна:

A =– .

5 * . Предположим, что тело массой m перемещается из точки A в точку B (рис. 70), двигаясь сначала без трения по наклонной плоскости из точки A в точку C , а затем без трения по горизонтальной плоскости из точки C в точку B . Работа силы тяжести на участке CB равна нулю, поскольку сила тяжести перпендикулярна перемещению. При движении по наклонной плоскости работа силы тяжести равна:

A AC = F тяж l sin a. Так как l sin a = h , то A AC = Ft тяж h = mgh .

Работа силы тяжести при движении тела по траектории ACB равна A ACB = A AC + A CB = mgh + 0.

Таким образом, A ACB = mgh .

Полученный результат показывает, что работа силы тяжести не зависит от формы траектории. Она зависит только от начального и конечного положений тела.

Предположим теперь, что тело движется по замкнутой траектории ABCA (см. рис. 70). При перемещении тела из точки A в точку B по траектории ACB работа силы тяжести равна A ACB = mgh . При перемещении тела из точки B в точку A сила тяжести совершает отрицательную работу, которая равна A BA = –mgh . Тогда работа силы тяжести на замкнутой траектории A = A ACB + A BA = 0.

Нулю равна и работа силы упругости на замкнутой траектории. Действительно, предположим, что недеформированную вначале пружину растянули и ее длина увеличилась на Dl . Сила упругости при этом совершила работу A 1 = . При возвращении в состояние равновесия сила упругости совершает работу A 2 = . Суммарная работа силы упругости при растяжении пружины и ее возвращении в недеформированное состояние равна нулю.

6. Работа силы тяжести и силы упругости на замкнутой траектории равна нулю.

Силы, работа которых на любой замкнутой траектории равна нулю (или не зависит от формы траектории), называют консервативными.

Силы, работа которых зависит от формы траектории, называют неконсервативными.

Неконсервативной является сила трения. Например, тело перемещается из точки 1 в точку 2 сначала по прямой 12 (рис. 71), а затем по ломаной линии 132 . На каждом участке траектории сила трения одинакова. В первом случае работа силы трения

A 12 = –F тр l 1 ,

а во втором -

A 132 = A 13 + A 32 , A 132 = –F тр l 2 – F тр l 3 .

Отсюда A 12 A 132 .

7. Из курса физики 7 класса вы знаете, что важной характеристикой устройств, которые совершают работу, является мощность .

Мощностью называют физическую величину, равную отношению работы к промежутку времени, за который она совершена:

N = .

Мощность характеризует быстроту выполнения работы.

Единица мощности в СИ - ватт (1 Вт ).

[N ] === 1 Вт.

За единицу мощности принимают такую мощность, при которой работа 1 Дж совершается за 1 с.

Вопросы для самопроверки

1. Что называют работой? Какова единица работы?

2. В каком случае сила совершает отрицательную работу; положительную работу?

3. По какой формуле вычисляют работу силы тяжести; силы упругости?

5. Какие силы называют консервативными; неконсервативными?

6 * . Докажите, что работа силы тяжести и силы упругости не зависит от формы траектории.

7. Что называют мощностью? Какова единица мощности?

Задание 18

1. Мальчика массой 20 кг везут равномерно на санках, прикладывая силу 20 Н. Веревка, за которую тянут санки, составляет угол 30° с горизонтом. Чему равна работа силы упругости, возникающей в веревке, если санки переместились на 100 м?

2. Спортсмен массой 65 кг прыгает в воду с вышки, находящейся на высоте 3 м над поверхностью воды. Какую работу совершает сила тяжести, действующая на спортсмена, при его движении до поверхности воды?

3. Под действием силы упругости длина деформированной пружины жесткостью 200 Н/м уменьшилась на 4 см. Чему равна работа силы упругости?

4 * . Докажите, что работа переменной силы численно равна площади фигуры, ограниченной графиком зависимости силы от координаты и координатными осями.

5. Чему равна сила тяги двигателя автомобиля, если при постоянной скорости 108 км/ч он развивает мощность 55 кВт?

Если на тело действует сила, то эта сила совершает работу по перемещению этого тела. Прежде чем дать определение работе при криволинейном движении мате­риальной точки, рассмотрим частные случаи:

В этом случае механиче­ская работа A равна:

A = F s cos =
,

или A = Fcos × s = F S × s ,

где F S – проекция силы на перемеще­ние. В данном случае F s = const , и геометрический смысл работы A – это площадь прямо­угольника, построенного в координатах F S , , s .

Построим график проекции силы на направление перемещения F S как функции перемещения s. Полное перемещение представим как сумму n малых перемещений
. Для ма­лого i -ого перемещения
работа равна

или площади заштрихованной трапеции на рисунке.

Полная механическая работа по перемещению из точки 1 в точку 2 будет равна:


.

Величина, стоящая под интегралом будет представлять элементарную работу по бесконечно малому перемещению
:

­– элементарная работа.

Разбиваем траекторию движения материальной точки на бесконечно малые перемещения и работу силы по перемещению материальной точки из точки 1 в точку 2 определяем как криволинейный интеграл:

работа при криволинейном движении.

Пример 1: Работа силы тяжести
при криволинейном движении материальной точки.


.

Далее как постоянную величину можно вынести за знак интеграла, а интеграл согласно рисунку будет представлять полное перемещение . .

Если обозначить высоту точки 1 от поверхности Земли через , а высоту точки 2 через , то

Мы видим, что в данном случае работа определяется положением материальной точки в начальный и конечный момент времени и не зависит от формы траектории или пути. Работа силы тяжести по замкнутому пути равна нулю:
.

Силы, работа которых на замкнутом пути равна нулю, называется консервативными .

Пример 2 : Работа силы трения.

Это пример неконсервативной силы. Чтобы показать это достаточно рассмотреть элементарную работу силы трения:

,

т.е. работа силы трения всегда отрицательная величина и на замкнутом пути не может быть равной нулю. Работа, совершаемая в единицу времени, называется мощностью . Если за время
совершается работа
, то мощность равна

механическая мощность .

Взяв
в виде

,

получим для мощности выражение:

.

В СИ единицей работы является джоуль:
= 1 Дж = 1 Н1 м, а единицей мощности является ватт: 1 Вт = 1 Дж/с.

Механическая энергия.

Энергия является общей количественной мерой движения взаимодействия всех видов материи. Энергия не исчезает и не возникает из нечего: она лишь может переходить из одной формы в другую. Понятие энергии связывает воедино все явления в природе. В соответствии с различными формами движения материи рассматривают разные виды энергии – механическую, внутреннюю, электромагнитную, ядерную и др.

Понятия энергии и работы тесно связаны друг с другом. Известно, что работа совершается за счет запаса энергии и, наоборот, совершая работу, можно увеличить запас энергии в каком-либо устройстве. Другими словами работа – это количественная мера изменения энергии:

.

Энергия также как и работа в СИ измеряется в джоулях: [E ]=1 Дж.

Механическая энергия бывает двух видов – кинетическая и потенциальная.

Кинетическая энергия (или энергия движения) определяется массами и скоростями рассматриваемых тел. Рассмотрим материальную точку, движущуюся под действием силы . Работа этой силы увеличивает кинетическую энергию материальной точки
. Вычислим в этом случае малое приращение (дифференциал) кинетической энергии:

При вычислении
использован второй закон Ньютона
, а также
- модуль скорости материальной точки. Тогда
можно представить в виде:

-

- кинетическая энергия движущейся материальной точки .

Умножив и разделив это выражение на
, и учитывая, что
, получим

-

- связь между импульсом и кинетической энергией движущейся материальной точки .

Потенциальная энергия (или энергия положения тел) определяется действием на тело консервативных сил и зависит только от положения тела.

Мы видели, что работу силы тяжести
при криволинейном движении материальной точки
можно представить в виде разности значений функции
, взятых в точке 1 и в точке 2 :

.

Оказывается, что всегда, когда силы консервативны, работу этих сил на пути 1
2 можно представить в виде:

.

Функция , которая зависит только от положения тела – называется потенциальной энергией .

Тогда для элементарной работы получим

работа равна убыли потенциальной энергии .

Иначе можно сказать, что работа совершается за счёт запаса потенциальной энергии.

Величину , равную сумме кинетической и потенциальной энергий частицы, называют полной механической энергией тела:

полная механическая энергия тела .

В заключении заметим, что используя второй закон Ньютона
, дифференциал кинетической энергии
можно представить в виде:

.

Дифференциал потенциальной энергии
, как указывали выше, равен:

.

Таким образом, если сила – консервативная сила и отсутствуют другие внешние силы, то , т.е. в этом случае полная механическая энергия тела сохраняется.

Чтобы иметь возможность охарактеризовать энергетические характеристики движения, было введено понятие механической работы. И именно ей в её разных проявлениях посвящена статья. Для понимания тема одновременно и лёгкая, и довольно сложная. Автор искренне старался сделать её более понятной и доступной для понимания, и остаётся только надеяться, что цель достигнута.

Что называют механической работой?

Что же так называют? Если над телом работает какая-то сила, и в результате действия оной тело перемещается, то это и называется механической работой. При подходе с точки зрения научной философии здесь можно выделить несколько дополнительных аспектов, но в статье будет тема раскрыта с точки зрения физики. Механическая работа - это не сложно, если хорошо вдуматься в написанные здесь слова. Но слово "механическая" обычно не пишется, и всё сокращается до слова «работа». Но не каждая работа является механической. Вот сидит человек и думает. Работает ли он? Мысленно да! Но механическая ли это работа? Нет. А если человек идёт? Если тело перемещается под действием силы, то это механическая работа. Всё просто. Иными словами, сила, действующая на тело, совершает (механическую) работу. И ещё: именно работой можно охарактеризовать результат действия определённой силы. Так ечли человек идёт, то определённые силы (трения, тяжести и т.д.) совершают над человеком механическую работу, и в результате их действия человек меняет точку своего нахождения, другими словами перемещается.

Работа как физическая величина равняется силе, что действует на тело, множимой на путь, который совершило тело под влиянием этой силы и в направлении, указываемом ею. Можно сказать, что механическая работа была сделана, если одновременно было соблюдено 2 условия: сила действовала на тело, и оно переместилось в направление её действия. Но она не совершалась или не совершается, если сила действовала, а тело не поменяло свое местонахождение в системе координат. Вот небольшие примеры, когда механическая работа не совершается:

  1. Так человек может навалиться на огромный валун с целью сдвинуть его, но сил не хватает. Сила действует на камень, а он не перемещается, и работа не происходит.
  2. Тело движется в системе координат, а сила равняется нулю или они все компенсировались. Такое можно наблюдать во время движения по инерции.
  3. Когда направление, в котором двигается тело, перпендикулярно действию силы. Когда поезд двигается по горизонтальной линии, то сила тяжести свою работу не совершает.

Зависимо от определённых условий механическая работа бывает отрицательной и положительной. Так, если направления и силы, и движения тела одинаковы, то происходит положительная работа. Примером положительной работы является действие силы тяжести на падающую каплю воды. Но если сила и направление движения противоположны, то значит происходит отрицательная механическая работа. Примером уже такого варианта является поднимающийся вверх воздушный шарик и сила тяжести, которая совершает отрицательную работу. Когда тело поддаётся влиянию нескольких сил, такая работа называется "работой результирующей силы".

Особенности практического применения (кинетическая энергия)

Переходим от теории к практической части. Отдельно следует поговорить о механической работе и её использовании в физике. Как многие наверняка вспомнили, вся энергия тела делится на кинетическую и потенциальную. Когда объект находится в положении равновесия и никуда не движется, его потенциальная энергия равняется общей энергии, а кинетическая равняется нулю. Когда начинается движение, потенциальная энергия начинает уменьшаться, кинетическая расти, но в сумме они равняются общей энергии объекта. Для материальной точки кинетическую энергию определяют как работу силы, которая ускорила точку от нуля до значения Н, а в формульном виде кинетика тела равна ½*М*Н, где М - масса. Чтобы узнать кинетическую энергию объекта, который состоит из множества частиц, необходимо найти сумму всей кинетической энергии частиц, и это будет кинетическая энергия тела.

Особенности практического применения (потенциальная энергия)

В случае, когда все действующие на тело силы консервативны, и потенциальная энергия равняется общей, то работа не совершается. Этот постулат известен как закон сохранения механической энергии. Механическая энергия в замкнутой системе является постоянной во временном интервале. Закон сохранения широко используют для решения задач из классической механики.

Особенности практического применения (термодинамика)

В термодинамике работа, которую совершает газ при расширении, рассчитывают по интегралу умножения давления на объем. Такой подход применим не только в тех случаях, когда есть точная функция объема, но и ко всем процессам, что могут быть отображены в плоскости давление/объем. Также применяется знание о механической работе не только к газам, но и ко всему, что может оказать давление.

Особенности практического применения на практике (теоретическая механика)

В теоретической механике все вышеописанные свойства и формулы рассматриваются более детально, в частности это проекции. Она даёт и свое определение для различных формул механической работы (пример определения для интеграла Риммера): предел, до которого стремится сумма всех сил элементарных работ, когда мелкость разбиения стремится к нулевому значению, называется работой силы вдоль кривой. Наверное, сложно? Но ничего, с теоретической механикой всё. Да уже и вся механическая работа, физика и другие сложности закончились. Дальше будут только примеры и заключение.

Единицы измерения механической работы

Для измерения работы в СИ используются джоули, а СГС использует эрг:

  1. 1 Дж = 1 кг·м²/с² = 1 Н·м
  2. 1 эрг = 1 г·см²/с² = 1 дин·см
  3. 1 эрг = 10 −7 Дж

Примеры механической работы

Для того чтобы разобраться окончательно с таким понятием как механическая работа, следует изучить несколько отдельных примеров, которые позволят рассмотреть её с множества, но далеко не всех сторон:

  1. Когда человек поднимает руками камень, то происходит механическая работа с помощью мускульной силы рук;
  2. Когда по рельсам едет поезд, его тянет сила тяги тягача (электровоза, тепловоза и т.д.);
  3. Если взять ружье и выстрелить из него, то благодаря силе давления, которую создадут пороховые газы, будет сделана работа: пуля перемещена вдоль ствола ружья одновременно с увеличением скорости самой пули;
  4. Механическая работа есть и тогда, когда сила трения действует на тело, заставляя его уменьшить скорость своего движения;
  5. Вышеописанный пример с шарами, когда они поднимаются в противоположную сторону относительно направления силы тяжести, тоже является примером механической работы, но кроме силы тяжести действует ещё и сила Архимеда, когда вверх поднимается всё, что легче воздуха.

Что такое мощность?

Напоследок хочется затронуть тему мощности. Работу силы, которая совершается в одну единицу времени, и называют мощностью. По сути мощность - это такая физическая величина, которая является отображением отношения работы к определённому промежутку времени, во время которого эта работа и совершалась: М=Р/В, где М - мощность, Р - работа, В - время. Единицу мощности в СИ обозначают в 1 Вт. Ватт равняется мощности, которая совершает работу в один джоуль за одну секунду: 1 Вт=1Дж\1с.

Прежде чем раскрывать тему «В чём измеряется работа», необходимо сделать небольшое отступление. Всё в этом мире подчиняется законам физики. Каждый процесс или явление можно объяснить на основе тех или иных законов физики. Для каждой измеряемой величины существует единица, в которой её принято измерять. Единицы измерения являются неизменными и имеют единое значение во всём мире.

Причиной этого является следующее. В тысяча девятьсот шестидесятом году на одиннадцатой генеральной конференции по мерам и весам была принята система измерений, которая признана во всём мире. Эта система получила наименование Le Système International d’Unités, SI (СИ система интернационал). Эта система стала базовой для определений принятых во всём мире единиц измерения и их соотношения.

Физические термины и терминология

В физике единица измерения работы силы называется Дж (Джоуль), в честь английского учёного физика Джеймса Джоуля, сделавшего большой вклад в развитие раздела термодинамики в физике. Один Джоуль равен работе, совершаемой силой в один Н (Ньютон), при перемещении её приложения на один М (метр) в направлении действия силы. Один Н (Ньютон) равен силе, массой в один кг (килограмм), при ускорении в один м/с2 (метр в секунду) в направлении силы.

К сведению. В физике всё взаимосвязано, выполнение любой работы связано с выполнением дополнительных действий. В качестве примера можно взять бытовой вентилятор. При включении вентилятора в сеть лопасти вентилятора начинают вращаться. Вращающиеся лопасти воздействуют на поток воздуха, придавая ему направленное движение. Это является результатом работы. Но для выполнения работы необходимо воздействие других сторонних сил, без которых выполнение действия невозможно. К ним относятся сила электрического тока, мощность, напряжение и многие другие взаимосвязанные значения.

Электрический ток, по своей сути, – это упорядоченное движение электронов в проводнике в единицу времени. В основе электрического тока лежит положительно или отрицательно заряжённые частицы. Они носят название электрических зарядов. Обозначается буквами C, q, Кл (Кулон), названо в честь французского учёного и изобретателя Шарля Кулона. В системе СИ является единицей измерения количества заряженных электронов. 1 Кл равен объёму заряженных частиц, протекающих через поперечное сечение проводника в единицу времени. Под единицей времени подразумевается одна секунда. Формула электрического заряда представлена ниже на рисунке.

Сила электрического тока обозначается буквой А (ампер). Ампер – это единица в физике, характеризующая измерение работы силы, которая затрачивается для перемещения зарядов по проводнику. По своей сути, электрический ток – это упорядоченное движение электронов в проводнике под воздействием электромагнитного поля. Под проводником подразумевается материал или расплав солей (электролит), имеющий небольшую сопротивляемость прохождению электронов. На силу электрического тока влияют две физические величины: напряжение и сопротивление. Они будут рассмотрены ниже. Сила тока всегда прямо пропорциональна по напряжению и обратно пропорциональна по сопротивлению.

Как было сказано выше, электрический ток – это упорядоченное движение электронов в проводнике. Но есть один нюанс: для их движения нужно определённое воздействие. Это воздействие создаётся путём создания разности потенциалов. Электрический заряд может быть положительным или отрицательным. Положительные заряды всегда стремятся к отрицательным зарядам. Это необходимо для равновесия системы. Разница между количеством положительно и отрицательно заряжённых частиц называется электрическим напряжением.

Мощность – это количество энергии, затрачиваемое на выполнение работы в один Дж (Джоуль) за промежуток времени в одну секунду. Единицей измерения в физике обозначается как Вт (Ватт), в системе СИ W (Watt). Так как рассматривается мощность электрическая, то здесь она является значением затраченной электрической энергии на выполнение определённого действия в промежуток времени.

Пусть тело, на которое действует сила , проходит, двигаясь по некоторой траектории, путь s. При этом сила либо изменяет скорость тела, сообщая ему ускорение, либо компенсирует действие другой силы (или сил), противодействующей движению. Действие на пути s характеризуется величиной, которая называется работой.

Механической работой называется скалярная величина, равная произведению проекции силы на направление перемещения Fs и пути s, проходимого точкой приложения силы (рис. 22):

A = Fs*s. (56)

Выражение (56) справедливо в том случае, если величина проекции силы Fs на направление перемещения (т. е. на направление скорости) остается все время неизменной. В частности, это имеет место, когда тело движется прямолинейно и постоянная по величине сила образует с направлением движения постоянный угол α. Поскольку Fs = F * cos(α), выражению (47) можно придать следующий вид:

A = F * s * cos(α).

Если – вектор перемещения, то работа вычисляется как скалярное произведение двух векторов и :

. (57)

Работа - алгебраическая величина. Если сила и направление перемещения образуют острый угол (cos(α) > 0), работа положительна. Если угол α - тупой (cos(α) < 0), работа отрицательна. При α = π/2 работа равна нулю. Последнее обстоятельство особенно отчетливо показывает, что понятие работы в механике существенно отличается от обыденного представления о работе. В обыденном понимании всякое усилие, в частности и мускульное напряжение, всегда сопровождается совершением работы. Например, для того чтобы держать тяжелый груз, стоя неподвижно, а тем более для того, чтобы перенести этот груз по горизонтальному пути, носильщик затрачивает много усилий, т. е. «совершает работу». Однако это – «физиологическая» работа. Механическая работа в этих случаях равна нулю.

Работа при перемещении под действием силы

Если величина проекции силы на направление перемещения не остается постоянной во время движения, то работа выражается в виде интеграла:

. (58)

Интеграл такого вида в математике называются криволинейным интегралом вдоль траектории S. Аргументом здесь служит векторная переменная , которая может меняться как по модулю, так и по направлению. Под знаком интеграла стоит скалярное произведение вектора силы и вектора элементарного перемещения .

За единицу работы принимается работа, совершаемая силой, равной единице и действующей в направлении перемещения, на пути, равном единице. В СИ единицей работы является джоуль (Дж), который равен работе, совершаемой силой в 1 ньютон на пути в 1 метр:

1Дж = 1Н * 1м.


В СГС единицей работы является эрг, равный работе, совершаемой силой в 1 дину на пути в 1 сантиметр. 1Дж = 10 7 эрг.

Иногда применяется внесистемная единица килограммометр (кГ*м). Это работа, совершаемая силой в 1 кГ на пути в 1 метр. 1кГ*м = 9,81 Дж.

Похожие публикации