Химические витамины. Химическая структура витаминов. Физические, химические и биологические свойства. II. Витамины, растворимые в воде

Доброго времени суток, уважаемые посетители проекта «Добро ЕСТЬ! », раздела « »!

В сегодняшней статье речь пойдет о витаминах .

На проекте ранее уже была информация о некоторых витаминах, эта же статья посвящена общему пониманию этих, так сказать соединений, без которых жизнь человека имела бы множество трудностей.

Витамины (от лат. vita - «жизнь») — группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы, необходимых для нормальной жизнедеятельности организмов.

Наука, которая изучает структуру и механизмы действия витаминов, а также их применение в лечебных и профилактических целях называется – Витаминология .

Классификация витаминов

Исходя из растворимости, витамины делят на:

Жирорастворимые витамины

Жирорастворимые витамины накапливаются в организме, причём их депо являются жировая ткань и печень.

Водорастворимые витамины

Водорастворимые витамины в существенных количествах не депонируются и при избытке выводятся с водой. Это объясняет большую распространённость гиповитаминозов водорастворимых витаминов и гипервитаминозов жирорастворимых витаминов.

Витаминоподобные соединения

Наряду с витаминами, известна группа витаминоподобных соединений (веществ), которые обладают теми или иными свойствами витаминов, однако, всех основных признаков витаминов не имеют.

К витаминоподобным соединениям относят:

Жирорастворимые:

  • Кофермент Q (убихинон, коэнзим Q).

Водорастворимые:

Основной функцией витаминов в жизни человека является регулирующее влияние на обмен веществ и тем самым обеспечение нормального течения практически всех биохимических и физиологических процессов в организме.

Витамины участвуют в кроветворении, обеспечивают нормальную жизнедеятельность нервной, сердечно-сосудистой, иммунной и пищеварительной систем, участвуют в образовании ферментов, гормонов, повышают устойчивость организма к действию токсинов, радионуклидов и других вредных факторов.

Несмотря на исключительную важность витаминов в обмене веществ, они не являются ни источником энергии для организма (не обладают калорийностью), ни структурными компонентами тканей.

Функции витаминов

Гиповитаминоз (недостаточность витаминов)

Гиповитаминоз — заболевание, возникающее при неполном удовлетворении потребностей организма в витаминах.

Гипервитаминоз (передозировка витаминами)

Гипервитаминоз (лат. Hypervitaminosis) – острое расстройство организма в результате отравления (интоксикации) сверхвысокой дозой одного или нескольких витаминов, содержащихся в пище или витаминосодержащих лекарствах. Доза и конкретные симптомы передозировки для каждого витамина свои.

Антивитамины

Возможно это будет и новость для некоторых людей, но все –же, у витаминов есть враги – антивитамины.

Антивитамины (греч. ἀντί - против, лат. vita - жизнь) - группа органических соединений, подавляющих биологическую активность витаминов.

Это соединения, близкие к витаминам по химическому строению, но обладающие противоположным биологическим действием. При попадании в организм антивитамины включаются вместо витаминов в реакции обмена веществ и тормозят или нарушают их нормальное течение. Это ведёт к витаминной недостаточности (авитаминоз) даже в тех случаях, когда соответствующий витамин поступает с пищей в достаточном количестве или образуется в самом организме.

Антивитамины известны почти для всех витаминов. Например, антивитамином витамина B1 (тиамина) является пиритиамин, вызывающий явления .

Подробнее об антивитаминах будет написано в следующих статьях.

История витаминов

Важность некоторых видов еды для предотвращения определённых болезней была известна ещё в древности. Так, древние египтяне знали, что печень помогает от куриной слепоты. Ныне известно, что куриная слепота может вызываться недостатком . В 1330 году в Пекине Ху Сыхуэй опубликовал трёхтомный труд «Важные принципы пищи и напитков», систематизировавший знания о терапевтической роли питания и утверждавший необходимость для здоровья комбинировать разнообразные продукты.

В 1747 году шотландский врач Джеймс Линд, пребывая в длительном плавании, провел своего рода эксперимент на больных матросах. Вводя в их рацион различные кислые продукты, он открыл свойство цитрусовых предотвращать цингу. В 1753 году Линд опубликовал «Трактат о цинге», где предложил использовать и лаймы для профилактики цинги. Однако эти взгляды получили признание не сразу. Тем не менее, Джеймс Кук на практике доказал роль растительной пищи в предотвращении цинги, введя в корабельный рацион кислую капусту, солодовое сусло и подобие цитрусового сиропа. В результате он не потерял от цинги ни одного матроса - неслыханное достижение для того времени. В 1795 году лимоны и другие цитрусовые стали стандартной добавкой к рациону британских моряков. Это послужило появлением крайне обидной клички для матросов - лимонник. Известны так называемые лимонные бунты: матросы выбрасывали за борт бочки с лимонным соком.

В 1880 году русский биолог Николай Лунин из Тартуского университета скармливал подопытным мышам по отдельности все известные элементы, из которых состоит коровье молоко: сахар, белки, жиры, углеводы, соли. Мыши погибли. В то же время мыши, которых кормили молоком, нормально развивались. В своей диссертационной (дипломной) работе Лунин сделал вывод о существовании какого-то неизвестного вещества, необходимого для жизни в небольших количествах. Вывод Лунина был принят в штыки научным сообществом. Другие учёные не смогли воспроизвести его результаты. Одна из причин была в том, что Лунин использовал тростниковый сахар, в то время как другие исследователи использовали молочный сахар, плохо очищенный и содержащий некоторое количество витамина B.
В последующие годы накапливались данные, свидетельствующие о существовании витаминов. Так, в 1889 году голландский врач Христиан Эйкман обнаружил, что куры при питании варёным белым рисом заболевают бери-бери, а при добавлении в пищу рисовых отрубей - излечиваются. Роль неочищенного риса в предотвращении бери-бери у людей открыта в 1905 году Уильямом Флетчером. В 1906 году Фредерик Хопкинс предположил, что помимо белков, жиров, углеводов и т. д., пища содержит ещё какие-то вещества, необходимые для человеческого организма, которые он назвал «accessory food factors». Последний шаг был сделан в 1911 году польским учёным Казимиром Функом, работавшим в Лондоне. Он выделил кристаллический препарат, небольшое количество которого излечивало бери-бери. Препарат был назван «Витамайн» (Vitamine), от латинского vita - «жизнь» и английского amine - «амин», азотсодержащее соединение. Функ высказал предположение, что и другие болезни - цинга, рахит - тоже могут вызываться недостатком определенных веществ.

В 1920 году Джек Сесиль Драммонд предложил убрать «e» из слова «vitamine», потому что недавно открытый не содержал аминового компонента. Так «витамайны» стали «витаминами».

В 1923 году доктором Гленом Кингом была установлена химическая структура витамина С, а в 1928 году доктор и биохимик Альберт Сент-Дьёрди впервые выделил витамин С, назвав его гексуроновой кислотой. Уже в 1933 швейцарские исследователи синтезировали идентичную витамину С столь хорошо известную аскорбиновую кислоту.

В 1929 году Хопкинс и Эйкман за открытие витаминов получили Нобелевскую премию, а Лунин и Функ - не получили. Лунин стал педиатром, и его роль в открытии витаминов была надолго забыта. В 1934 году в Ленинграде состоялась Первая всесоюзная конференция по витаминам, на которую Лунин (ленинградец) не был приглашён.

В 1910-х, 1920-х и 1930-х годах были открыты и другие витамины. В 1940-х годах была расшифрована химическая структура витаминов.

В 1970 году Лайнус Полинг, дважды лауреат Нобелевской премии, потряс медицинский мир своей первой книгой «Витамин С, обычная простуда и », в которой дал документальные свидетельства об эффективности витамина С. С тех пор «аскорбинка» остается самым известным, популярным и незаменимым витамином для нашей повседневной жизни. Исследовано и описано свыше 300 биологических функций этого витамина. Главное, что, в отличие от животных, человек не может сам вырабатывать витамин С и поэтому его запас необходимо пополнять ежедневно.

Заключение

Хочу обратить Ваше внимание, дорогие читатели, что к витаминам следует относится очень внимательно. Неправильное питание, недостаток, передозировка, неправильные дозы приема витаминов могут серьезно навредить здоровью, поэтому, для окончательных ответов на тему о витаминах, лучше проконсультироваться с врачом – витаминологом, иммунологом .

Кроме белков, жиров и углеводов, составляющих основу клеток и тканей, некоторых азотистых и безазотистых органических веществ, накапливающихся в тканях животного при метаболизме, минеральных элементов, играющих существенную роль в жизнедеятельности организма, в нем постоянно присутствуют особо активные, жизненно необходимые вещества – витамины, которые содержатся в очень малых количествах. Витамины не пластический и не энергетический материал, но недостаток или избыток их вызывает глубокие изменения в метаболизме. Они выполняют в организме функции катализаторов.

Витамины – низкомолекулярные органические вещества, выполняющие функции биологических катализаторов самостоятельно или в составе ферментов. Сейчас известно, что многие витамины функцию катализа выполняют в составе ферментов (кофакторы). Большинство витаминов в организме не синтезируются или образуются в таких количествах, которые не обеспечивают потребности организма. Источником витаминов для животных являются преимущественно корма растительного и в меньшей мере бактериального и животного происхождения.

Витамины – вещества нестойкие, они легко разрушаются высокой температурой, действием окислителей и другими факторами. При отсутствии в кормах витаминов развиваются заболевания – авитаминозы, а при недостатке в рационе – гиповитаминозы. В животноводстве явление гиповитаминозов встречается часто. Различают также гипервитаминозы, когда заболевание вызвано избыточным количеством витаминов; в животноводстве это явление не типичное, а в медицинской практике может быть как результат избыточного применения витаминных препаратов. Практически встречаются полигипо(а)витаминозы – отсутствие или недостаток не одного, а нескольких витаминов. Главные причины авитаминозов:

1. Отсутствие или недостаток витаминов в желудочно-кишечном тракте.

2. Наличие в кормах антибиотиков и сульфаниламидных препаратов, которые подавляют кишечную микрофлору, вырабатывающую некоторые витамины.

3. Физиологическое состояние организма – беременность, острые и хронические заболевания, тяжелая работа, рост и развитие молодняка, при котором повышается потребность в витаминах. При высокой продуктивности (молочная, мясная, яичная) необходимо повышенное потребление витаминов.

4. Наличие антивитаминов может также привести к а- или гиповитаминозам. Антивитамины близки по структуре к соответствующим витаминам и, включаясь в обменные реакции, ведут к нарушениям нормального течения метаболических реакций. Например, дикумарол является антивитамином для витамина К; сульфаниламидные препараты – для п-аминобензойной кислоты; аминоптерин – для фолиевой кислоты; дезоксипиридоксин – для витамин B 6 ; пиритиамин – для тиамина (B 1); пиридин-3-сульфокислота – для амида никотиновой кислоты.

Авитаминозы, как правило, проявляются неспецифическими признаками отсутствия или недостатка в корме соответствующего витамина. При этом отмечается общая слабость, отставание в росте и развитии молодняка, низкая продуктивность, пониженная сопротивляемость к вредным факторам среды.

История. В 1882 г. японский врач Такаки сделал интересное наблюдение над экипажами двух кораблей (300 человек). В период 9 месячного плавания один экипаж получал обычное питание, принятое на флоте, а второй – дополнительно еще свежие овощи. Оказалось, что из экипажа 1-го корабля за время плавания заболело болезнью бери-бери (недостаток тиамина (B 1) 170 человек, из них умерло 25.

Из экипажа второго корабля легкая форма заболевания возникла только у 14 человек. Он сделал заключение, что в свежих овощах содержатся какие-то вещества, необходимые для жизнедеятельности организма.

В 1896 г. голландец Эйкман, работавший тюремным врачом на о. Ява (Индонезия), где основным продуктом питания был полированный рис, заметил, что у кур, получавших полированный рис, развивалось заболевание, аналогичное бери-бери у человека. Когда Эйкман переводил кур на питание неочищенным рисом наступало выздоровление. На основании этих данных он пришел к выводу, что в оболочке риса (рисовых отрубях) содержится какое-то вещество, дающее лечебный эффект. Действительно, экстракт, приготовленный из шелухи риса, оказывал лечебное действие на людей, больных бери-бери.

Развитие учения о витаминах связано с работами отечественного врача Н.И. Лунина (1880 г.). Он пришел к заключению, что кроме белка (казеина), жиров, молочного сахара, солей и воды животные нуждаются в каких-то еще неизвестных веществах, незаменимых для питания. Это важное научное открытие в дальнейшем было подтверждено в работах К.А. Сосина (1890 г.), Гопкинса (1906 г.), Функа (1912 г.). Функ в 1912 году выделил из экстрактов оболочек риса кристаллическое вещество, предохраняющее от болезни бери-бери, и дал название витамин (vita - жизнь, amin - органическое вещество, содержащий амин). В настоящее время известно более 30 витаминов. Изучение их химической природы показало, что большинство из них не содержат азота или аминогруппы в своей молекуле. Однако термин "витамины" сохраняется и принят в литературе.

Таким образом, витамины – пищевые факторы, которые присутствуют в небольших количествах в пище, обеспечивают нормальное протекание биологических и физиологических процессов путем участия в регуляции обмена целостного организма.

Управление образования Брянской области

Профессиональный лицей №39

Предмет: Химия

Тема: Витамины.

Выполнила:

Учащаяся гр. №1

Профессия:

агент коммерческий

Лапичева А. А.

Преподаватель:

Янченко С. И.

Оценка: ___________

Введение 4
История открытия витаминов 5
Роль и значение витаминов в питании человека. Потребность в витаминах (авитаминоз, гиповитаминоз, гипервитаминоз) 8
Классификация витаминов 11
Содержание витаминов в пищевых продуктах 21
Промышленное производство витаминов 29
Устойчивость и стабильность при кулинарной обработке 33
Заключение 36
Литература 37

ВВЕДЕНИЕ

Современное человеческое общество живет и продолжает развиваться, активно используя достижения науки и техники, и практически немыслимо остановиться на этом пути или вернуться назад, отказавшись от использования знаний об окружающем мире, которыми человечество уже обладает. Накоплением этих знаний, поиском закономерностей в них и их применением на практике занимается наука. Человеку как объекту познания свойственно разделять и классифицировать предмет своего познания (вероятно, для простоты исследования) на множество категорий и групп; так и наука в свое время была поделена на несколько больших классов: естественные науки, точные науки, общественные науки, науки о человеке и пр. Каждый из этих классов делится, в свою очередь, на подклассы и т.д. и т.п.

В настоящее время в мире существует множество научных центров, ведущих разнообразные химико-биологические исследования. Странами-лидерами в этой области являются США, европейские страны: Англия, Франция, Германия, Швеция, Дания, Россия и др. В нашей стране существует множество научных центров, расположенных в Москве и Подмосковье (Пущино, Обнинск, Черноголовка), Петербурге, Новосибирске, Красноярске, Владивостоке... Одни из ведущих центров по стране Институт биоорганической химии им.М.А.Шемякина и Ю.А.Овчинникова, Институт молекулярной биологии им.В.А.Энгельгардта, Институт органического синтеза им.Н.Д.Зелинского, Институт физикохимической биологии МГУ им.Белозерского и др. В СанктПетербурге можно отметить Институт Цитологии РАН, химический и биологические ф-ты Гос. Университета, Институт экспериментальной медицины РАМН, Институт онкологии РАМН им. Петрова, Институт особо чистых биопрепаратов МЗиМП и т.п.

Кроме множества лекарств, в повседневной жизни люди сталкиваются с достижениями физико-химической биологии в различных сферах своей профессиональной деятельности и в быту. Появляются новые продукты питания или совершенствуются технологии сохранения уже известных продуктов. Производятся новые косметические препараты, позволяющие человеку быть здоровым и красивым, защищающие его от неблагоприятного воздействия окружающей среды. В технике находят применение различные биодобавки ко многим продуктам оргсинтеза. В сельском хозяйстве применяются вещества, способные повысить урожаи (стимуляторы роста, гербициды и др.) или отпугнуть вредителей (феромоны, гормоны насекомых), излечить от болезней растения и животных и многие другие...

Все эти вышеперечисленные успехи были достигнуты с применением знаний и методов современной химии. В современной биологи и медицине химии принадлежит одна из ведущих ролей, и значение химической науки будет только возрастать.

ИСТОРИЯ ОТКРЫТИЯ ВИТАМИНОВ

Всем известное слово "витамин" происходит от латинского "vita" - жизнь. Такое название эти разнообразные органические соединения получили далеко не случайно: роль витаминов в жизнедеятельности организма чрезвычайно велика.

Ко второй половине 19 века было выяснено, что пищевая ценность продуктов питания определяется содержанием в них в основном следующих веществ: белков, жиров, углеводов, минеральных солей и воды.

Считалось общепризнанным, что если в пищу человека входят в определенных количествах все эти питательные вещества, то она полностью отвечает биологическим потребностям организма. Это мнение прочно укоренилось в науке и поддерживалось такими авторитетными физиологами того времени, как Петтенкофер, Фойт и Рубнер.

Однако практика далеко не всегда подтверждала правильность укоренившихся представлений о биологической полноценности пищи.

Практический опыт врачей и клинические наблюдения издавна с несомненностью указывали на существование ряда специфических заболеваний, непосредственно связанных с дефектами питания, хотя последнее полностью отвечало указанным выше требованиям. Об этом свидетельствовал также многовековой практический опыт участников длительных путешествий. Настоящим бичом для мореплавателей долгое время была цинга; от нее погибало моря ков больше, чем, например, в сражениях или от кораблекрушений. Так, из 160 участников известной экспедиции Васко да Гамма прокладывавшей морской путь в Индию,100 человек погибли от цинги.

История морских и сухопутных путешествий давала также ряд поучительных примеров, указывавших на то, что возникновение цинги может быть предотвращено, а цинготные больные могут быть вылечены, если в их пищу вводить известное количество лимонного сока или отвара хвои.

Таким образом, практический опыт ясно указывал на то, что цинга и некоторые другие болезни связанны с дефектами питания, что даже самая обильная пища сама по себе еще далеко не всегда гарантирует от подобных заболеваний и что для предупреждения и лечения таких заболеваний необходимо вводить в организм какие-то дополнительные вещества, которые содержаться не во всякой пище.

Экспериментальное обоснование и научно-теоретическое обобщение этого многовекового практического опыта впервые стали возможны благодаря открывшем новую главу в науке исследованием русского ученого Николая Ивановича Лунина, изучавшего в лаборатории Г. А. Бунге роль минеральных веществ в питании.

Н. И. Лунин проводил свои опыты на мышах, содержавшихся на искусственно приготовленной пище. Эта пища состояла из смеси очищенного казеина(белок молока),жира молока, молочного сахара, солей, входящих в состав молока и воды. Казалось, налицо были все необходимые составные части молока; между тем мыши, находившееся на такой диете, не росли, теряли в весе, переставали поедать даваемый им корми, наконец, погибали. В то же время контрольная партия мышей, получившая натуральное молоко, развивалась совершенно нормально. На основании этих работ Н. И. Лунин в 1880 г. пришел к следующему заключению:"...если, как вышеупомянутые опыты учат, невозможно обеспечить жизнь белками, жирами, сахаром, солями и водой, то из этого следует, что в молоке, помимо казеина, жира, молочного сахара и солей, содержатся еще другие вещества, незаменимые для питания. Представляет большой интерес исследовать эти вещества и изучить их значение для питания".

Это было важное научное открытие, опровергавшее установившееся положения в науке о питании. Результаты работ Н. И. Лунина стали оспариваться; их пытались объяснить, например, тем, что искусственно приготовленная пища, которой он в своих опытах кормил животных, была якобы невкусной.

В 1890 г. К.А. Сосин повторил опыты Н. И. Лунина с иным вариантом искусственной диеты и полностью подтвердил выводы Н. И. Лунина. Все же и после этого безупречный вывод не сразу получил всеобщее признание.

Блестящим подтверждением правильности вывода Н. И. Лунина установлением причины болезни бери-бери, которая была особенно широко распространена в Японии и Индонезии среди населения, питавшегося главным образом полированным рисом.

Врач Эйкман, работавший в тюремном госпитале на острове Ява, в 1896 году подметил, что куры, содержавшиеся во дворе госпиталя и питавшиеся обычным полированным рисом, страдали заболеванием, напоминающим бери-бери. После перевода кур на питание неочищенным рисом болезнь проходила.

Наблюдения Эйкмана, проведенные на большом числе заключенных в тюрьмах Явы, также показали, что среди людей, питавшихся очищенным рисом, бери-бери заболевал в среднем один человек из 40,тогда как в группе людей, питавшихся неочищенным рисом, ею заболевал лишь один человек из 10000.

Таким образом, стало ясно, что в оболочке риса (рисовых отрубях) содержится какое-то неизвестное вещество, предохраняющее от заболевания бери-бери. В 1911 году польский ученый Казимир Функ выделил это вещество в кристаллическом виде(оказавшееся, как потом выяснилось, смесью витаминов);оно было довольно устойчивым по отношению к кислотам и выдерживало, например, кипячение с 20%-ным раствором серной кислоты. В щелочных растворах активное начало, напротив, очень быстро разрушалось. По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу. Функ пришел к заключению, что бери-бери является только одной из болезней, вызываемых отсутствием каких-то особых веществ в пище.

Несмотря на то,что эти особые вещества присутствуют в пище,как подчеркнул ещё Н. И. Лунин,в малых количествах, они являются жизненно необходимыми. Так как первое вещество этой группы жизненно необходимых соединений содержало аминогруппу и обладало некоторыми свойствами аминов, Функ (1912) предложил назвать весь этот класс веществ витаминами (лат. Vita - жизнь, vitamin-амин жизни). Впоследствии, однако, оказалось, что многие вещества этого класса не содержат аминогруппы. Тем не менее термин "витамины" настолько прочно вошел в обиход, что менять его не имело уже смысла.

После выделения из пищевых продуктов вещества, предохраняющего от заболевания бери-бери, был открыт ряд других витаминов. Большое значение в развитии учения о витаминах имели работы Гопкинса, Степпа, Мак Коллума, Мелэнби и многих других учёных.

В настоящее время известно около 20 различных витаминов. Установлена и их химическая структура; это дало возможность организовать промышленное производство витаминов не только путём переработки продуктов, в которых они содержаться в готовом виде, но и искусственно, путём их химического синтеза.


ПОТРЕБНОСТЬ В ВИТАМИНАХ (АВИТАМИНОЗ, ГИПОВИТАМИНОЗ, ГИПЕРВИТАМИНОЗ)

Сейчас мы радуемся солнечным денькам, частым прогулкам на свежем воздухе и предстоящим каникулам. Но даже летом, в этот, казалось бы, благополучный с точки зрения обеспеченности витаминами период времени года, нам необходимо следить за тем, чтобы их поступало в достатке. Так, бета-каротин, витамины С и Е защищают клетки от вредного воздействия солнца, озона и агрессивных кислородосодержащих молекул, которые образуются в организме при повышенной активности солнца. В жаркие дни, при повышенном потоотделении, организм интенсивно теряет минеральные вещества, которые нужно восполнять. В таблице вы найдете наиболее подходящие продукты питания для летнего сезона.

В процентах представлено покрытие суточной потребности в витамине на 100 г продукта.

Продукт Бета-каротин Витамин С Витамин Е
Абрикос Витамин Е -20 процентов
Клубника Витамин С - 50 процентов
Дыня Бета-каротин - 50 процентов Витамин С - 20 процентов
Морковь Бета-каротин - 100 процентов
Перец Бета-каротин - 20 процентов Витамин С - 100 процентов Витамин Е - 20 процентов
Сыр
Зеленый горох Витамин С - 20 процентов
Тыквенные семечки Витамин Е - 50 процентов
Черная смородина Витамин С - 100 процентов
Кедровые орехи Витамин Е - 100 процентов

(разработаны Институтом питания и утверждены Министерством здравоохранения, 1991 г.)

Фоли- евая кислота, мкг

Дети
0-12 мес. 30- 40 0,4 3-4 10 0.3- 0.5 0.4- 0.6 0.4- 0.6 5-7 40- 60 0.3- 0.5
1-3 года 45 0,45 5 10 0,8 0,9 0,9 10 100 1.0
4-10 лет 50- 60 0.5- 0.7 7- 10 2,5 0.9- 1.2 1.0- 1.4 1.3- 1.6 11- 15 200 1.5- 2.0
11-17 лет, мальчики 70 1.0 12- 15 2,5 1.4- 1.5 1.7- 1.8 1.8- 2.0 18- 20 200 3.0
девочки 70 0,8 10- 12 2,5 1,3 1,5 1,6 17 200 30
Взрослые
мужчины 70- 100* 1.0 10 2,5 1.2- 2.1* 1.5- 2.4 2.0 16- 28* 200 3.0
женщины 70- 80* 0.8- 1.0 8 2,5 1.1- 1.5* 1.3- 1.8 1,8 14- 20* 200 3.0
Беременные и кормящие - дополнительно к норме 20- 40 0.2- 0.4 2-4 10 0.4- 0.6 0.3- 0.5 0.3- 0.5 2-5 100- 200 1.0
Пожилые (старше 60 лет)
мужчины 80 1.0 15 2,5 1.2- 2.4 1.4- 1.6 2,2 15- 18 200 3
женщины 80 0,8 12 2,5 1.1- 1.3 1.3- 1.5 2.0 13- 16 200 3

*) в зависимости от физической активности и энергозатрат

Болезни, которые возникают вследствие отсутствия в пище тех или иных витаминов, стали называть авитаминозами. Если болезнь возникает вследствие отсутствия нескольких витаминов, её называют поливитамино- зом. Однако типичные по своей клинической картине авитаминозы в настоящее время встречаются довольно редко. Чаще приходиться иметь дело с относительным недостатком какого-либо витамина; такое заболевание называется гиповитаминозом. Если правильно и своевременно поставлен диагноз, то авитаминозы и особенно гиповитаминозы легко излечить введением в организм соответствующих витаминов.

Чрезмерное введение в организм некоторых витаминов может вызвать заболевание, называемое гипервитаминозом.

В настоящее время многие изменения в обмене веществ при авитаминозе рассматривают как следствие нарушения ферментных систем. Известно, что многие витамины входят в состав ферментов в качестве компонентов их простетических или коферментных групп.

Многие авитаминозы можно рассматривать как патологические состояния, возникающие на почве выпадения функций тех или других коферментов. Однако в настоящее время механизм возникновения многих авитаминозов ещё неясен, поэтому пока ещё не представляется возможность трактовать все авитаминозы как состояния, возникающие на почве нарушения функций тех или иных коферментных систем.

С открытием витаминов и выяснением их природы открылись новые перспективы не только в предупреждении и лечении авитаминозов, но и в области лечения инфекционных заболеваний. Выяснилось, что некоторые фармацевтические препараты (например, из группы сульфаниламидных) частично напоминают по своей структуре и по некоторым химическим признакам витамины, необходимые для бактерий, но в то же время не обладают свойствами этих витаминов. Такие "замаскированные под витамины" вещества захватываются бактериями, при этом блокируются активные центры бактериальной клетки, нарушается её обмен и происходит гибель бактерий.


КЛАССИФИКАЦИЯ ВИТАМИНОВ

В настоящее время витамины можно охарактеризовать как низкомолекулярные органические соединения, которые, являясь необходимой составной частью пищи, присутствуют в ней в чрезвычайно малых количествах по сравнению с основными ее компонентами.

Витамины - необходимый элемент пищи для человека и ряда живых организмов потому, что они не синтезируются или некоторые из них синтезируются в недостаточном количестве данным организмом. Витамины - это вещества, обеспечивающее нормальное течение биохимических и физиологических процессов в организме. Они могут быть отнесены к группе биологически активных соединений, оказывающих свое действие на обмен веществ в ничтожных концентрациях.

Витамины делят на две большие группы: 1. витамины, растворимые в жирах, и 2. витамины, растворимые в воде. Каждая из этих групп содержит большое количество различных витаминов, которые обычно обозначают буквами латинского алфавита. Следует обратить внимание, что порядок этих букв не соответствует их обычному расположению в алфавите и не вполне отвечает исторической последовательности открытия витаминов.

В приводимой классификации витаминов в скобках указаны наиболее характерные биологические свойства данного витамина - его способность предотвращать развития того или иного заболевания. Обычно названию заболевания предшествует приставка "анти", указывающая на то, что данный витамин предупреждает или устраняет это заболевание.


Витамины.

Общие сведения о витаминах.

Витаминами обычно называют органические вещества, присутствие которых в небольших количествах в пище человека и животных необходимо для их нормальной жизнедеятельности.


Витамины участвуют во множестве биохимических реакций, выполняя каталитическую функцию в составе активных центров большого количества разнообразных ферментов, либо выступая информационными регуляторными посредниками, выполняя сигнальные функции экзогенных прогормонов и гормонов.


Термин «витамины», т.е. «амины жизни» (от лат. Vita –жизнь), своим возникновением обязан тому, что первые выделенные витамины принадлежали к классу аминов. Однако позднее выяснилось, что присутствие аминогруппы в витаминах не обязательно.


Витамины не представляют собой особой группы органических соединений, поэтому невозможна их классификация на основе химической структуры, но они могут быть разделены на растворимые в воде (гидровитамины) и в жирах (липовитамины).


К водорастворимым витаминам относятся:

К жирорастворимым витаминам относятся:

  • каротин (провитамин А),
  • витамин А,
  • витамин D,
  • витамин Е,
  • витамин К,
  • витамин F и др.
Витамины в косметике.

Витамины оказывают не только местное "омолаживающее" действие на кожу, но усваиваются через кожу организмом, оказывая на него благотворное влияние.


При различных местных патологических процессах вследствие нарушения питания клеток или других причин (разрушение витаминов микроорганизмами и т.д.) поступление витаминов в ткань не соответствует её потребности. В результате такого недостатка в витамине патологический процесс осложняется. Местное же введение недостающего витамина может чрезвычайно облегчить и ускорить выздоровление благодаря общему стимулирующему влиянию на рост тканей.


В отношении косметических средств эту гипотезу следует расширить, так как дряблость открытых участков кожи (лица, шеи, рук) и ранние морщины зависят не только от недостаточного поступления витаминов в кожу, но и от вымывания жирорастворимых витаминов при частом мытье мылом или смазывании жирами.


Ввиду того, что витамины благоприятствуют стимуляции клеток, их стали применять в косметике - кремах, туалетном молоке, туалетных водах и маслах.


Витамины оказывают весьма благотворное влияние, устраняя дряблость, открытые поры, морщины, экзему (особенно сухую), потемнение кожи. Они способствуют обмену веществ кожи, ускоряют и облегчают усвоение кожей продуктов питания, доставляемых кровью, и этим повышают её тонус: падение же тонуса как раз и является следствием увядания кожи и появления морщин.


Прежде всего возник вопрос о возможности усвоения витаминов кожей . Теперь доказано, что накожный путь для введения витаминов является безусловно эффективным. Гидровитамины очень легко всасываются кожей, а липовитамины нуждаются в особых условиях: наличии в препарате жировых веществ и обязательно в виде тончайшей эмульсии или ещё лучше - коллоидной взвеси.


Целесообразность применения жирорастворимых витаминов в виде коллоидной взвеси или тонкой эмульсии объясняется следующим. Известно, что при приёме внутрь витамины (например, А и D) могут проявить своё действие только при условии, когда совместно с ними вводится небольшое количество жира. Это связано с тем, что растворённые в жире витамины под действием желчи в кишечнике одновременно переходят частью в состояние мельчайшей эмульсии, частью - коллоидной взвеси и только в таком виде могут быть усвоены организмом. Иными словами - жиры являются проводниками жирорастворимых витаминов.


Отсюда может быть сделан и другой вывод: всякий жир или жироподобное вещество, которое ткань не способна всасывать, препятствует усвоению витамина. Поэтому добавление высокоплавких жиров, тем более вазелинов, вазелинового масла, не рационально.


В литературе описываются опыты применения витаминосодержащих препаратов в косметике, давшие положительные результаты и оказавшие благотворное влияние на устранение дряблости, открытых пор, морщин, потемнения кожи, экземы.


Витамины вместе со стероидами и фосфатидами заслуживаю особого внимания. Введение в кожу таких ценных веществ, особенно сочетаний из них, весьма полезно. Косметологов они должны интересовать как средства, сильно повышающие жизнедеятельность и поддерживающие её тонус.


Витамин А


Витамин А (ретинол, аксерофтол) С20Н30ОН - жирорастворимый витамин. В чистом виде нестабилен, встречается как в растительных продуктах, так и в животных источниках. Поэтому производится и используется в виде ретинола ацетата и ретинола пальмитата. В организме синтезируется из бета-каротина. Необходим для зрения и роста костей, здоровья кожи и волос, нормальной работы иммунной системы и т.д.


Строение витамина А


Ретинол может быть получен нами из пищи или синтезирован внутри нашего организма из бета-каротина .



Одна молекула бета-каротина расщепляется в организме на 2 молекулы ретинола. Можно сказать, что бета-каротин является растительным источником ретинола и называется провитамином А.



Каротин - растительный пигмент жёлто-красного цвета.

Ретинол имеет бледно-желтый цвет.


Источники витамина А


Витамин А (ретинол) содержится в животных продуктах (особенно в печёночном жире некоторых морских рыб). Каротин содержится в овощах и фруктах (моркови, хурме, люцерне и т.д.).


Каротин и витамин А растворимы в жирах, выдерживают нагревание до 120°С в течении 12 часов при условии отсутствия кислорода. В присутствии кислорода легко подвергаются окислению и инактивируются.


В настоящее время осуществлён синтез витамина А. В чистом виде это бледно-жёлтые игольчатые кристаллы, с температурой плавления 63-64°С, нерастворимые в воде, растворимые в спирте и других органических растворителях.


Функции витамина А


Витамин А входит в состав зрительного пурпура и принимает участие в процессе зрения. При недостатке в организме витамина А наблюдается ороговение эпителия кожи и слизистых оболочек, повреждение желез внутренней секреции и половых желёз, ослабляется противодействие организма инфекции.


Витамин А участвует в окислительно-восстановительных процессах, регуляции синтеза белков, способствует нормальному обмену веществ, функции клеточных и субклеточных мембран.


Хорошо известна роль витамина А в регенерации клеток . По этой причине он широко используется при лечении дерматологических заболеваний, в случаях повреждения кожи (раны, ожоги, обморожения), в косметических средствах.


Витамин А в косметике


Витамин А применяется в виде масляного раствора различной концентрации как непосредственно внутрь, так и в наружных косметических средствах. Он придаёт коже хороший цвет, смягчает её, обеспечивает нормальную деятельность. Крем с витамином А употребляется также при солнечных ожогах, себорейной экземе, ожогах, обморожениях.


Дозировка витамина А: 75000 и.е. (интернациональных единиц) на 1 кг крема. Очень хорошо добавление лецитина яйца или сои.


Минимальная суточная потребность взрослого человека - 1 мг (3300 и.е.) витамина А или двойное количество каротина.



Для укрепления и смягчения эпидермы можно применять смесь из 44 г яичного желтка и 56 г глицерина. Эта смесь содержит много холестерина, лецитина и витамина А и применяется для поддержания и обновления тканей.


Слабая окраска желтка яйца говорит о недостатке в нём витамина А. Такие желтки для косметических целей менее ценны.


Близким по действию к каротину являются некоторые душистые вещества: бета-ионон и цитраль, которые поэтому полезно вводить в соответствующие кремы в составе отдушек.


При выборе каротина или витамина А для врачебно-косметических препаратов нельзя не учесть исследований, согласно которым установлено, что витамин А может проявить своё стимулирующее действие только в присутствии витамина D, тогда витамин А равняется по активности витамину, содержащемуся в рыбьем жире. Таким образом, ценность витаминизированных препаратов может быть повышена комплексным применением этих двух витаминов.


Витамины группы В.


Витамин В1


Витамин В1 (тиамин) - гетероциклическое соединение состава С12Н18ОN4SCl2 - участвует в жировом обмене и тонизирует нервную систему.


В организме он соединяется с двумя молекулами фосфорной кислоты и образует активную группу фермента карбоксилазы, способствующего разложению промежуточного продукта расщепления углеводов - пировиноградной кислоты.


Витамин В1 устойчив при нагревании в кислой среде, но быстро инактивируется в щелочной.


Содержится в дрожжах, семенах злаковых и бобовых культур (в наружной оболочке и зародышах семян), в печени животных.


Суточная потребность для взрослого человека витамина В1 2-3 мг.


Применяется в эмульсионных кремах с кислым эмульгатором при нарушениях питания кожи.


Витамин В1 принимает участие в разнообразных процессах обмена в организме. Тиамин является катализатором при окислительных процессах тканевого дыхания, регулятором углеводного, белкового, жирового и водного обмена.


Витамин В1 необходим для нормального функционирования кожи. Экспериментальные данные позволяют предполагать, что витамин В1 снимает воспалительную реакцию кожи. Кроме того он обладает зудоутоляющим действием.


Витамин В6


Витамин В6(пиридоксин) С8Н11О3N - производное пиридина.

В организме фосфорилируется и входит в состав ферментов, участвующих в жировом обмене и осуществляющих переаминирование аминокислот. Рекомендуется как средство, способствующее росту волос и препятствующее облысению. Отлично смягчает кожу (как свежий яичный желток).


Витамин В12


Витамин В12 (цианкоболамин) С63Н90N14O14PCo.

Особенностью витамина В12 является наличие в его молекуле кобальта и цианагруппы, образующих координационный комплекс.


Витамин В12 представляет собой игольчатые кристаллы тёмно-красного цвета, без запаха и вкуса, растворимые в воде.


Он обладает мощным кроветворным свойством. Хорошо действует также при фотодерматозах, экземах, некоторых формах дерматитов и др. Участвует в синтезе нуклеопротеидов и пуринов, усиливает образование фолиевой кислоты и повышает окисление альфа-аминокислот.


Как через желудок, так и через кожу (в отличие от других витаминов) плохо всасывается, если одновременно не присутствует "внутренний фактор Касла" - специальный препарат из слизистой оболочки пилорической части желудка животных (гастромукопротеин).


Ввиду того, что применение витамина В12 приводит к увеличению не только количества гемоглобина, эритроцитов и лейкоцитов, но и тромбоцитов, применение его без наблюдения врача, особенно в косметической продукции, недопустимо , так как существует опасность увеличения свёртываемости крови в тех случаях, когда это нежелательно.


Пантотеновая кислота


Пантотеновая кислота (С19Н17О5N) входит в группу витаминов В. Соединение диоксидиметилмасляной кислоты и аминокислоты бета-аланина.


Светло-жёлтое маслообразное вещество, растворимое легко в воде. Температура плавления 75-80°С.


Широко распространено в растительных и животных тканях. Особенно много её в дрожжах, внутренних органах животных (например, в печени).


Биологическое значение пантотеновой кислоты как фактора, участвующего в обмене веществ, весьма велико. Вместе с тиоэтиламином, аденозином и тремя остатками фосфорной кислоты она составляет кофермент А1 (коэнзим А1), входящий в состав ферментов, катализирующих реакции окисления многих органических кислот и реакцию ацетилирования.


Кофермент А катализирует большое число реакций, в частности образование ацетилхолина из холина, окисление уксусной и пировиноградной кислот, образование лимонной и жирных кислот, стеринов, эфиров и многих других веществ.


В литературе имеются многочисленные сведения о весьма благоприятном действии пантотеновой кислоты (особенно в сочетании с витамином F).

При накожном применении она усиливает обмен веществ в коже лица и головы и поэтому увеличивает тургор тканей лица, уменьшает, а в некоторых случаях и прекращает выпадение волос. Рекомендуется при серьёзных нарушениях кровообращения на коже лица и головы. Известен препарат "Пантенол" - пантотеновый спирт, соответствующий витамину группы В.


Недостаток в организме пантотеновой и фолиевой кислот приводит к ускорению поседения . Применением пантотеновой кислоты и пантенола можно достичь благоприятных результатов.


Витамин Р


Витамин Р - ряд веществ группы флавоноидов; содержится в виде глюкозидов во многих растениях: шиповнике, цитрусовых, ягодах чёрной смородины, зелёных листьях чая и др.


Р-витаминной активностью обладают многие красящие и дубильные вещества растений:

  • флавоны - рутин, кверцетин (тетра-окси-флавонол С15Н10О7),
  • кверцитрин (содержится в ягодах крушины - Rhamnus tinctoria);
  • катехины (1-эпикатехин, 1-эпигаллокатехин), содержащиеся в чае;
  • кумарины (эскулин),
  • галловая кислота и др.

Большое распространение получил комплекс катехинов из чайного листа (собственно витамин Р) и рутин, получаемый из зелёной массы гречихи и цветков японской софоры.


Витамин Р из листьев чая - аморфный порошок жёлто-зелёного цвета, горьковато-вяжущего вкуса, растворимый в воде и спирте.


Рутин - жёлтый кристаллический порошок без запаха и вкуса, трудно растворяется в холодной, но легко - в горячей воде.


Совместно с витамином С витамин Р участвует в окислительно-восстановительных процессах организма. Уменьшает проницаемость и ломкость капилляров. Применяется в средствах для ращения волос (0,2% витамина Р, 0,3% аскорбиновой кислоты от веса жидкости или крема), для усиления обмена веществ в коже, для накопления в ткани витамина С, против хрупкости кровеносных сосудов, при многих кожных заболеваниях, сопровождающихся воспалительными явлениями, экземах, дерматитах.


Витамин Р не токсичен.


Витамин РР


Название Витамина РР происходит от слова Pellagra preventive - предупреждающий пеллагру.


Витамин РР - это бета-никотиновая (бета-пиридинкарбоновая) кислота С6Н5О2N или её амид. Они входят в комплекс витаминов В.


Витамин РР - белый порошок, трудно растворимый в холодной воде (1:70) и легко в спирте. Входит в состав дегидраз - ферментов, участвующих в процессах биологического окисления. Организмом используется в форме амидного соединения.


Никотиновая кислота участвует в обмене углеводов серы, белков и в превращении пигментов. При недостаточности никотиновой кислоты в организме кожа сильно шелушится, теряет эластичность, темнеет, волосы выпадают.


Благодаря способности расширять кровеносные сосуды витамин РР улучшает кровообращение, что благоприятно сказывается на росте волос и питании кожи.


Витамин РР с успехом применяется при лечении красноты кожи и красных угрей. Хорошо смягчает кожу и в этом сходен с яичным желтком.


Доза никотиновой кислоты или её амида - 0,1% в жидкости и до 0,3% в эмульсионных кремах.


Особенно хорошо сочетание с настоем календулы. Широко употребляется в средствах для укрепления волос, при сухости кожи головы и волос.



Биотин (витамин Н, коэнзим R, фактор Х, фактор N, антисеборейный витамин, кожный фактор) С10Н16О3N2S - водорастворимый витамин комплекса В.


Бесцветные кристаллы легко растворяются в воде и спирте. Термоустойчив. Широко распространён в природе. Много его в печени, почках, дрожжах.


При недостатке биотина в организме развивается себорея (биотин - антисеборейный фактор ). Принимает участие в обмене углекислоты.


Хороший результат при себорее даёт водная вытяжка из дрожжей, консервированная 25% этилового спирта. При этом извлекается весь комплекс гидровитаминов, проявляющих синергетическое действие.


Витамин С


Витамин С (С6Н8О6) - аскорбиновая кислота .

Химическая природа и биологическое действие этого витамина хорошо изучены. Аскорбиновая кислота является одним из звеньев окислительно-восстановительных ферментных систем и переносчиком водорода по следующей схеме:



Наличие энольной группировки (по соседству с карбонилом) обусловливает кислый характер соединения. Группа карбонила и примыкающая спиртовая группа обусловливают лёгкую диссоциацию водорода, благодаря чему при взаимодействии с металлами легко образуются соли при сохранении лактонного кольца.


Энольная группировка, легко окисляющаяся в дикетогруппировку, обуславливает очень высокие восстановительные свойства аскорбиновой кислоты.


Из разных изомеров аскорбиновой кислоты в качестве противоцинготного средства наиболее активен L-изомер, а некоторые изомеры, например, d-изомер, совсем не действуют.


Чистая L-аскорбиновая кислота представляет собой бесцветные кристаллы моноклинической формы, легко растворимые в воде (1:5), хуже - в спирте (1:40), нерастворимые в большинстве жирных масел, а также в бензоле, хлороформе и эфире.


Водные растворы - сильно кислой реакции (рН для 0,1 н. раствора - 2,2).


Аскорбиновая кислота даёт целый ряд производных. Под влиянием окислителей, а также при высокой температуре она быстро разрушается.


Окисляясь, переходит в дегидроаскорбиновую кислоту . При этом витаминные свойства вещества пропадают, а из дегидроформы вновь может быть восстановлена аскорбиновая кислота. Такой переход аскорбиновой кислоты в окисленную форму и обратно, как полагают, и обусловливает её фармакологическое действие.


В сухом виде аскорбиновая кислота хорошо сохраняется.


Витамин С влияет на внутриклеточное дыхание, т.е. способствует потреблению кислорода клетками нашего тела, участвует в белковом и кислородном обмене.


В природных условиях витамин С находится в листьях, корнеклубнях, плодах, овощах и фруктах. Особенно богаты им плоды шиповника и чёрной смородины.


Постоянным спутником витамина С является витамин Р - один из факторов, способствующих укреплению сосудов.


В животных тканях витамин С содержится в незначительных количествах. В настоящее время получается синтетически .


Витамин С очень чувствителен к окислению, к щелочам и высокой температуре, к тяжёлым металлам, особенно к меди, ионы которой каталитически ускоряют окислительное разрушение витамина.


В косметике витамин С применяется главным образом в виде плодовых соков (лимона, шиповника) или синтетического продукта в масках, кремах, туалетном молоке.


Витамин С успешно применяется в дерматологии . При недостаточности витамина С начинают развиваться ясная фрагментация волос и сухость кожи. Было доказано, что эти поражения быстро устраняются только с помощью витамина С.


Показания для применения витамина С - жёлтый цвет лица, увядшая морщинистая кожа, веснушки. Применение витамина С в кремах приводит к почти полному удалению веснушек.


Для косметолога витамин С представляет собой интерес, как средство, уменьшающее содержание в коже холестерина, являющегося одним из факторов её старения, и как отбеливающее средство против веснушек, загара и пигментных пятен.


Дозировка: 20 г аскорбиновой кислоты на 1 кг крема (лучше эмульсионного с кислым или нейтральным эмульгатором). Суточная потребность взрослого человека 50-75 мг.


Применение витаминов в лаках для ногтей, а также в жидкостях для снятия лака нецелесообразно, так как роговое образование, из которого состоит ноготь, представляет собой скопление отмерших и ороговевших клеток, неспособных к процессам усвоения.


Большие трудности представляют собой сохранение в косметической продукции витамина С в биологически активном состоянии и предохранение его от разрушения.


Одним из методов сохранения витамина С является добавление в косметическую продукцию 0,3-0,5% бензойнокислого натрия. При этом активность витамина С сохраняется на 75-80% при введении в кислую или нейтральную среду.


Витамин D


В настоящее время известны два основных витамина D: D2 и D3.


D2 (С28Н44О) образуется из провитамина эргостерина, распространённого в растениях.


D3 (С27Н44О) образуется из провитамина животных тканей - 7-дегидрохолестерина.


В открытии витамина D большую роль сыграл холестерин . Доказано, что при облучении холестерина в обычной атмосфере или в условиях индифферентного газа (азота) происходят фотохимические реакции и он приобретает антирахитические свойства.


Причиной активирования холестерина считают находящийся в нём в небольших количествах стерин с тремя двойными связями - эргостерин (С27Н42О). Дальнейшие работы показали, что витамин D, получаемый путём ультрафиолетового облучения из эргостерина, представляет собой полимер или изомер эргостерина. Было обнаружено, что при ультрафиолетовом облучении эргостерина изменяется таутомерное равновесие его молекулы в сторону образования каталитически действующего таутомера, который и является витамином D.


Таким образом, в результате облучения провитамина наступает превращение инактивной (энольной) формы молекулы в каталитически активный таутомер, который постепенно накопляясь, проявляется своим химическим и физиологическим действием.


Переоблучение ведёт к наступлению химической реакции, переводящей молекулу в новую форму, в результате чего таутомерия исчезает, а с нею должно исчезнуть и обусловленное ею витаминогенное действие.


При переоблучении эргостерин даёт ряд промежуточных и конечных продуктов, из которых одни не обладают витаминными свойствами, а другие - токсистирол - ядовиты. Этим объясняется вредное влияние на организм чрезмерного освещения тела солнцем или другими источниками ультрафиолетовых лучей (кварцевой лампы и др.)


Изменения в химическом строении стеринов и переход их в витамины основаны на том, что молекулы различных веществ, поглощая световые лучи, могут претерпевать химические изменения. При этом энергия световых лучей переходит в химическую энергию продуктов такой фотохимической реакции.


В фотохимических явлениях наибольшая активность принадлежит лучам света с малой длиной волны, главным образом ультрафиолетовым лучам. Только те из них вызывают фотохимические реакции, которые данным веществом поглощаются. Лучи с большой длиной волны оказываются совершенно неактивными.


Присущие витамину D витаминные свойства в настоящее время приписываются нескольким веществам, имеющим сходную структуру.


Наиболее изучен витамин D2 -кальциферол . Все активные препараты витамина D получены облучением стеролов (эргостерола, холестерола и их производных) ультрафиолетовыми лучами.


Витамин D3 получается облучением эргостерола.


Образование витамина D из стеролов под влиянием ультрафиолетовых лучей говорит об огромном влиянии на организм человека солнечного света как источника ультрафиолетовых лучей.


Естественным источником витамина D являются рыбий жир, жир трески, налима, лосося, облучённые дрожжи и молоко. Выпускаемый фармацевтической промышленностью витамин D содержит главным образом D2. Его активность определяется в международных или интернациональных единицах (м.е. или и.е.). Одна единица соответствует 0,000000025 г чистого витамина.


Витамин D самостоятельно не применяется в косметической продукции, за исключением косметики, предназначенной для детей. Однако в минимальных дозах он мог бы быть полезен в косметике для любого возраста, в первую очередь как активатор витамина А.


Витамин Е


Витамин Е (С29Н50О2). Красящие вещества жиров (в частности, каротин и хлолрофил) обычно сопровождает оранжево-жёлтое или бледно-жёлтое маслообразное вязкое жирорастворимое вещество. Это вещество названо токоферолом или витамином Е.


Химическое строение


Токоферол представляет собой производную двухатомного фенола гидрохинона с изопреноидной боковой цепью, связанной одновременно с ароматическим кислородом одной из гидроксильных групп и соседним атомом углерода бензольного кольца. Остальные атомы водорода бензольного кольца замещены на метильные группы.



В соответствии с количеством и местом присоединения метильных групп различают α-токоферол, β-токоферол, γ-токоферол и δ-токоферол:



Свойства витамина Е


Температура застывания токоферола 0°С. Токоферол перегоняется в вакууме без разложения. При омылении переходит вместе с витаминами А и D в неомыляемую фракцию, однако в отличие от них в процессе перегонки при 180 ° и 50 мм давления не разрушается и полностью дистиллируется.


Токоферол весьма устойчив к воздействию воздуха, света, температуры, к кислотам и щелочам. Биологически он очень активен, а недостаточность его приводит к бесплодию.


Из разрушающих витамин Е факторов следует отметить воздействие перманганата, озона, хлора, ультрафиолетового облучения. Потерю активности витамина Е в жирах связывают с прогорканием тех жиров, в которых он находится. Это объясняется наличием в жирах органических перекисей, образующихся в результате самоокисления, что приводит к окислению витамина Е.



Витамины группы Е содержатся в растительных маслах.


Приводим данные о примерном содежании альфа-токоферола в некоторых жирах:





Ипользование витамина Е в косметике


Токоферолы служат атиоксидантами по отношению к ненасыщенным липидам, ингибируя процесс пероксидного окисления последних.


Антиокислительная функция токоферолов определяется их способностью связывать появляющиеся в клетках активные свободные радикалы (участники пероксидного окисления липидов) в относительно устойчивые и потому не способные к продолжению цепи феноксидные радикалы.


Витамин Е вводят в кремы и лосьоны для ухода за волосами совместно с витамином А для смягчения кожи и улучшения питания кожных покровов из расчёта 3% 2%-ного масляного раствора альфа-токоферола или альфа-токферолацетата от веса продукции.


Известны антисклеротические свойства витамина Е и его способность повышать усвоение и действие витамина А.


Витамин F


Витамином F называют совокупность нескольких незаменимых жирных кислот, проявляющих чрезвычайную активность. К этим кислотам относят:

  • линолевую,
  • линоленовую,
  • олеиновую,
  • архаидновую и пр.

Уже давно было замечено, что некоторые животные и растительные жиры обладают большой химической и биологической активностью, поэтому они применялись как лечебное и косметическое средство с древнейших времён (свиное сало, оливковое и миндальное масло). В частности, хаульмугровое масло считается и сейчас эффективным средством для лечения проказы. Рыбий жир применяется для лечения ранений, льняное масло с известковой водой - как средство от ожогов.


Оказалось, что хорошее действие этих жиров в значительной степени объясняется содержанием в них более или менее значительного количества глицеридов ненасыщенных жирных кислот следующих рядов:

  • CnH2n-4O2
  • CnH2n-6O2
  • .................. до
  • CnH2n-10O2

Кислоты первого ряда могут иметь тройную или две двойные связи. К ним относится в первую очередь линолевая кислота:


Входит в состав многих жидких растительных масел, главным образом льняного, конопляного, макового, подсолнечного, соевого, хлопкового. В небольших количествах она содержится в животных жирах, например, в рыбьих жирах.


К ряду CnH2n-6O2 относится линоленовая кислота , имеющая три двойные связи:

Содежание линолевой и леноленовой кислот в различных жирах приведено в таблице ниже:


Название жиров
Масло льняное
хлопковое
соевое
кукурузное
ореховое
(из грецких орехов)
15,8
миндальное -
персиковое -
чёрной горчицы 2
конопляное До 12,8
маковое 5
подсолнечное -
арахисное -
Свинное сало 10,7
Говяжий жир -
Масло какао -
Коровье масло

Применение витамина F в косметических средствах


Ненасыщенные жирные кислоты осуществляют в животном организме биокаталитические функции по окислению насыщенных жирных кислот, участвуя тем самым в процессе усвоения жиров и в жировом обмене кожных покровов.


Специфическое действие непредельных жирных кислот выражается в предупреждении и излечении дерматитов у человека и животных. Они укрепляют стенки кровеносных сосудов и повышают их эластичность, уменьшают их хрупкость и проницаемость, снижают токсические явления от избыточной секреции щитовидной железы, повышают сопротивляемость организма против инфекции.


При недостатке этих кислот в пище, наблюдается шероховатость и сухость кожи, склонность к сыпи. Волосы становятся ломкими и тонкими, теряют свой блеск и начинают выпадать. Кожа головы покрывается перхотью. Ногти становятся ломкими, на них образуются трещины.


Витамин F растительного происхождения обладает биогенностимулирующим свойством, улучшает процессы обмена веществ, вызывает эпителизацию пораненных мест, восстанавливает ткани. При нанесении на кожу он проникает в ткань, оказывая при этом глубокое действие: способствует увеличению содержания эстрогенных веществ и повышению гормональных функций у женщин, приводит к понижению кровяного давления, влияет на обмен витамина А и др.


Линоленовая кислота впитывается в кровь через 20 минут после нанесения её на кожу.


Витамин F повышает защитные свойства организма в целом, и кожи, в частности. Дерматологическое действие выражается также в его способности повышать упругость кожи благодаря наличию карбоксильной группы и иона водорода и образования поэтому на поверхности ткани прочного молекулярного слоя.


Поэтому блокирование карбоксильной группы (например при этерефикации) приводит к уменьшению или полной потере активности непредельных жирных кислот.


В настоящее время установлено, что витамином F являются биологически активные ненасыщенные жирные кислоты, имеющие двойные связи в положении 9-12 (по отношению к группе СООН). Отсутствие у кислот двойных связей в этом положении приводит к потере активности.


При увеличении числа двойных связей в направлении к группе СООН повышается активность кислот. Биологически наиболее активными являются ненасыщенные жирные кислоты, обладающие цис-конфигурацией, присущей жирным кислотам, входящим в состав растительных масел.


Главное действие витамина F - это образование перекисей по месту двойных связей кислот и диссоциация этих перекисей с освобождением кислорода. Следовательно, ненасыщенные жирные кислоты должны действовать как переносчики кислорода и тем энергичнее, чем больше в них двойных связей. Для косметики витамин F - прекрасный продукт.


Витамин F входит в состав крема для чистки кожи, в кремы стимулирующие, жировые, безжировые для смегчения кожи, против трещин на коже, сыпей, солнечных ожогов, в средствах для волос (против перхоти и выпадения волос).


Помимо целого ряда положительных свойств, присущих самому витамину F, он обладает ещё способностью активировать действия других витаминов (А, D2,Е, каротина), содержащихся в растительных маслах.


Иногда отмечается небольшое раздражение кожи при употреблении высоконепредельных жирных кислот в концентрированном виде, но в меньших концентрациях (например, 10-15%-ных) раздражений никогда не бывает. Это тем более важно, что в жидкие эмульсионные кремы эти кислоты обычно вводят до 3%, а в густые кремы - до 6-7%.

«ВИТАМИНЫ»

1. Витамины – это низкомолекулярные органические соединения различной химической природы и строения, обеспечивающие нормальное протекание биохимических, физиологических процессов в организме путем участия в обмене веществ целостного организма.

2. Классификация витаминов

I. По растворимости:

    Жирорастворимые витамины :

    витамин А (ретинол, антиксерофтальмический);

    витамин Д (кальциферол, антирахитичный);

    витамин Е (токоферол, антистерильный, витамин размножения);

    витамин К (филохинон, антигеморрагический).

    Водорастворимые витамины :

    витамин В 1 (тиамин, антиневритный);

    витамин В 2 (рибофлавин, витамин роста);

    витамин В 3 (пантотеновая кислота, антидерматитный фактор);

    витамин В 5 (РР) (никотиновая кислота, антипеллагрический);

    витамин В 6 (пиридоксин, антидерматитный);

    витамин В 12 (цианкобаламин, антианемический);

    витамин С (аскорбиновая кислота);

    витамин Н (биотин, антисеборейный);

    витамин Р (рутин, капилляроукрепляющий).

II. По необходимости:

    Собственно витамины (см. выше)

    Витаминоподобные вещества :

Обладают витаминным действием, но частично могут синтезироваться в организме. Иногда применяются как пластический материал для постройки тканей. Относятся фолиевая кислота, линолевая кислота, инозит, убихинон, парааминобензойная кислота, орнитин, оротовая кислота и т.д.

3. Особенности витаминов

    витамины не включаются в структуру тканей, т.к. не используются как пластический материал;

    витамины не используются в качестве источника энергии;

    витамины проявляют свою активность в низких концентрациях (суточная норма – несколько мг);

    они либо вообще не образуются в организме, либо образуются в очень маленьких количествах. Разные организмы имеют разную потребность в витаминах.

4. Патологические состояния

    Гиповитаминоз – это патологическое состояние, развивающееся вследствие недостатка витамина в пище.

    Авитаминоз – это патологическое состояние, развивающееся вследствие полного отсутствия витамина в пище.

    Гипервитаминоз – это патологическое состояние, развивающееся вследствие избыточного поступления витамина в организм.

Причины гиповитаминоза:

а) первичные (экзогенные) причины:

Связаны с особенностями питания и состоянием организма человека:

    Отсутствие в рационе свежих овощей и фруктов (витамины С и Р);

    Употребление исключительно рафинированных продуктов (шлифованный рис, хлеб высшего сорта);

    Использование в пищу исключительно консервированных продуктов и продуктов быстрого приготовления;

    Употребление в пищу исключительно продуктов растительного происхождения (вызывает недостаток витаминов группы В)

    Повышенная потребность организма в витаминах (беременность, лактация, онкологические заболевания).

б) вторичные (эндогенные) причины:

Они связаны с нарушением усвоения витаминов:

    Применение лекарственных препаратов, проявляющих антивитаминную активность;

    Наблюдается при острых и хронических интоксикациях;

    Болезнь печени и поджелудочной железы;

    Усиленный распад витаминов в кишечнике.

5. Групповая характеристика некоторых витаминов

Функциональные группы витаминов

Физиологическое действие витаминов

Представители

Повышающие общую реактивность организма

Регулируют функциональное состояние организма, ЦНС, обмен веществ, питание и состояние тканей

А, С, В 1 , В 2 , В 5 .

Антигеморрагические

Влияют на нормальную проницаемость и устойчивость кровеносных сосудов, повышают свертываемость крови

Антианемические

Нормализуют и стимулируют кроветворение

Антиинфекционные

Стимулируют выработку антител, защитного эпителия

Регулирующие зрение

Регулируют остроту, расширяют поле цветного зрения

    Характеристика жирорастворимых витаминов

Особенности группы :

    эти витамины растворимы в жирорастворителях и не растворимы в воде;

    они способны накапливаться в организме;

    характерно явление существования витамеров – веществ, несколько отличающихся от витаминов, но также обладающих витаминной активностью.

Витамин А

Впервые был выделен в 1913 г. Представляет собой одноатомный непредельный циклический спирт, t° пл = 64°C. Растворяется в жирах и органических растворителях. Качественная реакция: с раствором хлорида сурьмы (III) – происходит изменение окраски с синей на розово-фиолетовую. В мягких условиях и под действием ферментов ретинол может переходить в ретиналь (альдегид) – это витамин А 2 . Его активность ниже, чем у витамина А.

:

    Наблюдается похудание и истощение, торможение роста;

    Сухость кожи, растрескивание и ороговение кожи, сухость слизистой оболочки глаза (ксерофтальмия): слеза не выделяется → сухость слизистой → отек, воспаление, конъюктивит. Конечная стадия – куриная слепота.

    Снижение иммунитета, учащается заболеваемость.

Признаки гипервитаминоза :

Воспаление глаз, выпадение волос, тошнота, головные боли, истощение. Развивается в течение 3 – 4 часов. Печень белого медведя, тюленя, моржа содержит очень много витамина А.

Биологическая роль витамина А на молекулярном уровне :

    Витамин А регулирует рост и дифференцировку быстро делящихся и размножающихся клеток и тканей (клетки костной ткани, хряща, эпителия);

    Регулирует нормальный рост и дифференцировку клеток быстрорастущего организма;

    Принимает участие в ОВР (наличие двойных связей);

    Принимает участие в синтезе антител, т.е. иммуноглобулинов;

    Принимает участие в акте световосприятия (входит в состав родопсина).

Источники витамина А :

    Сам витамин А содержится в продуктах животного происхождения – в печени, яичном желтке, цельном молоке, сливках, сметане. Печень морского окуня содержит 35% витамина А.

    Провитамин А – это каротиноиды. Их около 70, самый активный – β - каротин. Содержатся в красномякотных овощах и фруктах.

    Откладывается в запас в печени в виде сложных эфиров с пальмитиновой кислотой (на 100 г печени – 20 мкг витамина А).

Суточная потребность в витамине А – 1-2,5 мг для взрослых, 2-5 мг для детей, в каротине – 2-5 мг. Передозировка опасна.

Витамин Д

В организме представлен в виде витаминов Д 2 и Д 3 . Это кристаллическое, бесцветное вещество, растворимо в органических растворителях. Чувствительны к УФИ. Качественная реакция с SbCl 3 – оранжево-красное соединение. С органическими кислотами по ОН – группе образуют сложные эфиры.

:

    У детей – рахит. В этом случае наблюдается мягкость костей, они изгибаются под тяжестью тела и приобретают уродливую форму. Наблюдается деформация костей черепа. Все это связано с тем, что в крови понижается содержание кальция и неорганического фосфата.

    Снижается тонус мышц (атония). Выпячивается живот, вплоть до развития пупочных грыж.

    При глубоком авитаминозе у детей задерживается появление первых зубов.

    У взрослых – размягчение костной ткани и деминерализация костей. Возникает остеопороз – повышенная хрупкость и ломкость костей.

Признаки гипервитаминоза :

При большой дозе – смерть (кальцификация почек, аорты, мышц почек).

Биороль витамина Д на молекулярном уровне :

    Способствует всасыванию Са 2+ и РО 4 в стенках кишечника;

    Участвует в обмене Са 2+ между кровью и костной тканью;

    Способствует обратному всасыванию – реабсорбции - Са 2+ и фосфат-ионов в почках.

Источники витамина Д :

Содержится в продуктах животного происхождения, в основном, в печени, сливочном масле, яичном желтке, рыбьем жире, а также в дрожжах, подсолнечном масле.

Суточная потребность – 12-25 мкг.

Витамин Е

Был получен в 1922 г. Обеспечивает развитие нормального потомства.

Признаки гипо - и авитаминоза :

    При недостатке витамина у животных развивается невынашиваемость плода;

    Нарушение развития половых процессов (сперматогенез, овогенез).

Биороль витамина Е :

    Является физиологическим антиоксидантом, т.е. он защищает мембраны клеток от перекисного окисления;

    Стабилизирует биомембраны.

Источники витамина Е :

    Растительные масла;

    Семена злаков, яичный желток, сливочное масло, мясо, салат, капуста.

Депонируется в жировой ткани, в ткани поджелудочной железы и в мышцах.

Витамин К

Выделен в 1935 г.

Признаки гипо – и авитаминоза :

У взрослых авитаминоза по витамину К не наблюдается, но он очень опасен для детей, особенно для младенцев. При этом нарушается процесс свертывания крови и в результате этого наблюдаются внутренние кровотечения, образуются внутренние и подкожные кровоизлияния.

Биороль витамина К :

    Участвует в процессах свертывания крови;

а) Необходим для образования в печени белков, участвующих в свертывании крови (регулирует образование протромбина).

б) Активирует протромбин, увеличивая в его составе количество центров, связывающих кальций.

    Повышает прочность стенок капилляров.

Источники витамина К :

Содержится в зеленых культурах (шпинат, капуста, рябина и т.д.). Также витамин К синтезируется микрофлорой кишечника.

Суточная потребность для взрослых – около 1 мг.

    Характеристика водорастворимых витаминов

Особенности группы :

    хорошо растворимы в воде;

    эти витамины не накапливаются в организме, легко из него выводятся;

    они либо поступают с пищей, либо синтезируются микрофлорой кишечника;

    характерно наличие антивитамеров;

    по химической структуре – гетероциклы;

    гипервитаминоз не характерен.

Витамин В 1

Мелкие, бесцветные кристаллы, растворимы в воде и спирте, не растворимы в органических растворителях. При нагревании разрушение структуры происходит через 15 минут.

Признаки гипо – и авитаминоза :

Полиневрит (болезнь «бери-бери»)

    Нарушение деятельности со стороны ЦНС: потеря памяти на недавние события, галлюцинации;

    Нарушается деятельность сердечно-сосудистой системы: одышка, тахикардия, сердечная недостаточность;

    Наблюдается поражение и расстройство деятельности желудочно-кишечного тракта, а именно нарушаются моторная и секреторная функции, полная атония кишечника. Это приводит к застою и гниению пищи;

    Нарушается водный обмен, развиваются отеки

    Наблюдается поражение нервов, боль на всем протяжении нерва, следствием является паралич.

У птиц – судорожное закидывание головы.

Источники витамина В 1 :

Широко распространен в дрожжах, горохе, муке грубого помола, почках, печени, нешлифованном рисе, бобах, фасоли и т.д. Синтезируется микрофлорой человеческого кишечника.

Суточная потребность – 1,3-3 мг.

Витамин В 2

Хорошо растворим в воде, растворы имеют зелено-желтую окраску. Устойчив к нагреванию (выдерживает кипячение 6 ч), но при освещении быстро разрушается.

Признаки авитаминоза :

Похудание, остановка роста, выпадение волос, появляются незаживающие трещины в уголках рта, происходит воспаление слизистой («географический язык»), воспаление кровеносных сосудов глаз (нарушение зрения), общая мышечная слабость, шелушение кожи (особенно лица), малокровие.

Биороль витамина В 2 :

    Отвечает за регенерацию тканей;

    Принимает участие в окислении высших жирных кислот;

    Входит в состав ферментов класса оксидоредуктаз.

Источники витамина В 2 :

Содержится в молочных продуктах, муке грубого помола, зеленых овощах, печени, почках, мясе, яичном желтке.

Суточная потребность – 2-4 мг.

Витамин В 3

Признаки авитаминоза :

    При недостатке витамина развиваются дерматиты;

    Происходит обесцвечивание волос;

    Изъязвление слизистой желудка и кишечника;

    Понижение иммунитета;

    Жжение ног.

Источники витамина :

Содержится практически во всех продуктах, может синтезироваться микрофлорой кишечника.

Суточная норма - ≈ 10 мг.

Витамин В 5

Не очень хорошо растворим в воде, растворимость увеличивается в подкисленной среде.

Признаки авитаминоза :

При недостатке витамина образуется шершавая кожа («пеллагра»), поражаются открытые участки кожи, а также слизистая желудочно-кишечного тракта. Затем нарушается работа ЦНС. Боли в области кишечника, тошнота, жидкий стул, психозы, депрессия. Такие симптомы возникают у больных с недостаточным белковым питанием (не хватает триптофана).

Источники витамина :

Содержится в картофеле, рисе, печени, почках, молоке и т.д. Может синтезироваться в организме на основе триптофана.

Суточная потребность – 15-25 мг.

Витамин В 6

Хорошо растворим в воде. Устойчив к кислотам и щелочам, но быстро разрушается при нагревании.

Признаки авитаминоза :

    Поражение кожи, развитие дерматитов. У животных поражается кожа хвоста, лап, ушей, происходит выпадение волос, изъязвление;

    Наблюдается расстройство кроветворной системы (анемия);

    Нарушение со стороны ЦНС: эпилептические припадки (особенно у грудных детей – искусственников)

Биороль витамина :

Входит в состав ферментов, участвуя тем самым в обмене веществ.

Источники витамина :

Содержится в молоке, бобовых культурах, капусте, моркови. Незначительная часть может синтезироваться микрофлорой кишечника.

Суточная доза – 2-3 мг.

Витамин С

В кристаллическом виде устойчив, в растворе – легко окисляется растворами йода, брома, серебра. Является производным углеводов. Синтезируется в организме многих животных, кроме обезьян, летучих мышей, человека, морских свинок.

Признаки авитаминоза :

    Ломкость капилляров, кровоточивость десен;

    Общая слабость;

    Повышенная восприимчивость к инфекциям;

    Болезненность десен, их отечность и разрыхленность;

    Множественные подкожные кровоизлияния.

Биороль витамина :

    Является источником водорода в ОВР, он необходим в синтезе адреналина.

    Участвует в формировании зрелого коллагена.

Источники витамина :

Содержится в цитрусовых, черной смородине, шиповнике, чесноке, луке, хвое и т.д.

Похожие публикации