Бактерии гниения: среда обитания, способ питания, значение в природе. Характеристика возбудителей порчи мясных, молочных и яйцепродуктов Естественно-чистая культура дрожжей

Гнилостные процессы являются неотъемлемой частью круговорота веществ на планете. И происходит он непрерывно благодаря крошечным микроорганизмам. Именно гнилостные бактерии разлагают останки животных, удобряют почву. Конечно, не все так радужно, потому что микроорганизмы способны непоправимо испортить продукты в холодильнике или, того хуже, вызвать отравление и дисбактериоз кишечника.

Что такое гниение?

Гниение – это разложение белковых соединений, которые входят в состав растительных и животных организмов. В процессе из сложных органических веществ образуются минеральные соединения:

  • сероводород;
  • углекислый газ;
  • аммиак;
  • метан;
  • вода.

Гниение всегда сопровождается неприятным запахом. Чем интенсивнее «душок», тем дальше зашел процесс разложения. Чего стоит «аромат», который издают останки дохлой кошки в дальнем углу двора.

Важным фактором для развития микроорганизмов в природе является тип питания. Гнилостные бактерии питаются готовыми органическими веществами, поэтому их называют гетеротрофы.

Самая благоприятная температура для гниения колеблется в пределах 25-35°C. Если температурную планку снизить до 4-6°C, то жизнедеятельность гнилостных бактерий можно значительно, но не полностью, приостановить. Вызвать гибель микроорганизмов способно только повышение температуры в пределах 100°C.

А вот при очень низких температурах гниение полностью останавливается. Ученые не раз находили в насквозь промерзшей земле Крайнего Севера тела древних людей и мамонтов, которые замечательно сохранились, несмотря на прошедшие тысячелетия.

Чистильщики природы

В природе гнилостные бактерии играют роль санитаров. По всему миру собирается огромное количество органических отходов:

  • останки животных;
  • опавшие листья;
  • поваленные деревья;
  • сломанные ветви;
  • солома.

Что бы случилось с жителями Земли, не будь маленьких чистильщиков? Планета просто превратилась бы в свалку, непригодную для жизни. Но гнилостные прокариоты честно выполняют свою работу в природе, превращая мертвую органику в перегной. Он не только богат полезными веществами, но и склеивает комочки земли, придавая им прочность. Поэтому почва не размывается водой, а, наоборот, задерживается в ней. Растения получают живительную влагу и растворенное в воде питание.

Помощники человека

Человек давно прибегает к помощи гнилостных бактерий в сельском хозяйстве. Без них не вырастить богатый урожай зерновых, не развести коз и овец, не получить молока.

Но интересно, что гнилостные процессы используют и в техническом производстве. Например, при выделке шкур их сознательно подвергают гниению. Обработанные таким образом шкуры легко очистить от шерсти, выдубить и размягчить.

Но гнилостные микроорганизмы могут нанести и значительный вред в хозяйстве. Микробы любят полакомиться человеческой пищей. А это значит, что продукты питания попросту будут испорчены. Употребление их становится опасным для здоровья, потому что может привести к сильным отравлениям, которые потребуют долгого лечения.

Обезопасить свои продуктовые запасы можно с помощью:

  • замораживания;
  • высушивания;
  • пастеризации.

Организм человека в опасности

Процесс гниения, как это ни печально, затрагивает организм человека изнутри. Центром локализации гнилостных бактерий является кишечник. Именно там непереваренная пища разлагается и выделяет токсины. Печень и почки, как могут, сдерживают напор токсичных веществ. Но они не способны подчас справиться с перегрузками, и тогда начинается разлад в работе внутренних органов, требующий незамедлительного лечения.

Первой под прицел попадает центральная нервная система. Люди часто жалуются на такие типы недомогания:

  • раздражительность;
  • головная боль;
  • постоянная усталость.

Постоянное отравление организма токсинами из кишечника значительно ускоряет старение. Многие заболевания значительно «молодеют» из-за постоянного поражения ядовитыми веществами печени и почек.

Врачи многие десятилетия вели нещадную борьбу с гнилостными бактериями в кишечнике самыми неординарными методами лечения. Например, больным делали операцию по удалению толстого кишечника. Конечно, никакого эффекта такой тип процедуры не давал, а вот осложнений возникало немало.

Современная наука пришла к заключению, что обмен веществ в кишечнике реально восстановить с помощью молочнокислых бактерий. Считается, что активней всего борется с ними ацидофильная палочка.

Поэтому сопровождать лечение и профилактику дисбактериоза кишечника обязательно должны кисломолочные продукты:

  • кефир;
  • ацидофильное молоко;
  • ацидофильная простокваша;
  • ацидофильная паста.

Приготовить их несложно в домашних условиях из пастеризованного молока и ацидофильной закваски, которую можно приобрести в аптеке. В состав закваски входят высушенные ацидофильные бактерии, упакованные в герметичную тару.

Фармацевтическая промышленность предлагает свою продукцию для лечения дисбактериоза кишечника. В аптечных сетях появились препараты на основе бифидобактерий. Они комплексно действуют на весь организм, и не только подавляют гнилостные микробы, но и улучшают обмен веществ, способствуют синтезу витаминов, заживляют язвы в желудке и кишечнике.

Можно ли пить молоко?

Споры вокруг целесообразности потребления молока учеными ведутся уже много лет. Лучшие умы человечества разобщились на противников и защитников этого продукта, но к единому мнению так и не пришли.

Человеческий организм с самого рождения запрограммирован на потребление молока. Это основной продукт питания для деток первого года жизни. Но со временем в организме происходят изменения, и он теряет способность переваривать многие компоненты молока.

Если побаловать себя очень хочется, то придется учесть, что молоко является самостоятельным блюдом. Привычное с детства лакомство, молоко со сладкой булочкой или свежим хлебом, к сожалению, взрослым недоступно. Попадая в кислую среду желудка, молоко моментально створаживается, обволакивает стенки и не позволяет остальной пище перевариваться в течение 2 часов. Это провоцирует гниение, образование газов и токсинов, а впоследствии проблемы в работе кишечника и длительное лечение.

В процессе обмена веществ микроорганизмы не только осуществляют синтез сложных белковых веществ собственной цитоплазмы, но и производят глубокое разрушение белковых соединений субстрата. Процесс минерализации органических белковых веществ микроорганизмами, протекающий с выделением аммиака или с образованием аммонийных солей, получил в микробиологии название гниения или аммонификации белков.

Таким образом, в строгом микробиологическом смысле гниение - это минерализация органического белка, хотя в повседневной жизни «гниением» называют целый ряд разнообразных процессов, имеющих чисто случайное сходство, объединяя в этом понятии и порчу пищевых продуктов (мяса, рыбы, яиц, плодов, овощей), и разложение трупов животных и растений, и разнообразные процессы, протекающие в навозе, растительных отбросах, и т.д.

Аммонификация белка - сложный многоступенчатый процесс. Его внутренняя сущность заключается в энергетических превращениях микроорганизмами аминокислот с использованием их углеродного скелета в синтезе цитоплазменных соединений. В естественных условиях разложение богатых белками веществ растительного и животного происхождения, возбуждаемое различными бактериями, плесенями, актиномицетами, протекает необычайно легко как при широком доступе воздуха, так и в условиях полного анаэробиоза. В связи с этим химизм разложения белковых веществ и природа возникающих продуктов распада могут сильно варьировать в зависимости от вида микроорганизма, химической природы белка, условий протекания процесса: аэрации, влажности, температуры.

При доступе воздуха, например, процесс гниения протекает очень интенсивно, вплоть до полной минерализации белковых веществ - образуется аммиак и даже частично элементарный азот, образуются либо метан, либо углекислый газ, а также сероводород и соли фосфорной кислоты. В анаэробных условиях, как правило, полной минерализации белка не происходит, и часть возникающих (промежуточных) продуктов гниения, имеющих обычно неприятный запах, сохраняется в субстрате, придавая ему тошнотворный запах гниения.

Препятствует аммонификации белков низкая температура. В вечномерзлых слоях земли Крайнего Севера находили, например, трупы мамонтов, пролежавшие десятки тысячелетий, но не подвергшиеся разложению.

В зависимости от индивидуальных свойств микроорганизмов - возбудителей гниения - происходит либо неглубокий распад белковой молекулы, либо глубокое ее расщепление (полная минерализация). Но есть и такие микроорганизмы, которые принимают участие в гниении лишь после того, как в субстрате в результате жизнедеятельности других микробов появляются продукты гидролиза белковых веществ. Собственно «гнилостными» называют тех микробов, которые возбуждают глубокий распад белковых веществ, обусловливая полную их минерализацию.

Белковые вещества в процессе питания не могут быть непосредственно усвоены микробной клеткой. Коллоидная структура белков препятствует их поступлению в клетку через клеточную оболочку. Лишь после гидролитического расщепления более простые продукты гидролиза белков проникают внутрь микробной клетки и используются ею в синтезе клеточного вещества. Таким образом, гидролиз белков протекает вне тела микроба. Микроб для этого выделяет в субстрат протеолитические экзоферменты (протеиназы). Такой способ питания обусловливает в субстратах разложение огромных масс белковых веществ, тогда как внутри микробной клетки в белковую форму превращается лишь сравнительно небольшая часть продуктов гидролиза белка. Процесс расщепления белковых веществ в данном случае в большой степени преобладает над процессом их синтеза. В силу этого общебиологическая роль гнилостных микробов как агентов разложения белковых веществ огромна.

Механизм минерализации сложной белковой молекулы гнилостными микробами можно представить следующей цепью химических превращений:

I. Гидролиз крупной белковой молекулы до альбумоз, пептонов, полипептидов, дипептидов.

II. Продолжающийся более глубокий гидролиз продуктов расщепления белка до аминокислот.

III. Превращения аминокислот под действием микробных ферментов. Разнообразие аминокислот и ферментов, имеющихся в ферментативном комплексе различных микробов, те или иные условия протекания процесса обусловливают и чрезвычайное химическое разнообразие продуктов превращения аминокислот.

Так, аминокислоты могут подвергаться декарбоксилированию, дезаминированию как окислительному, так и восстановительному и гидролитическому. Энергичная карбоксилаза вызывает декарбоксилирование аминокислот с образованием летучих аминов или диаминов, имеющих тошнотворный запах. Из аминокислоты лизина при этом образуется кадаверин, из аминокислоты орнитина - путресцин:

Кадаверин и путресцин получили название «трупных ядов» или птомаинов (от греческого ptoma - труп, падаль). Ранее считалось, что птомаины, возникающие при распаде белков, вызывают пищевые отравления. Однако в настоящее время выяснено, что ядовитыми являются не сами птомаины, а сопутствующие им их производные - нейрин, мускарин, а также некоторые вещества неизвестной химической природы.

При дезаминировании от аминокислот отщепляется аминогруппа (NH2), из которой образуется аммиак. Реакция субстрата при этом становится щелочной. При окислительном дезаминировании, кроме аммиака, образуются еще и кетонокислоты:

При восстановительном дезаминировании возникают предельные жирные кислоты:

Гидролитическое дезаминирование и декарбоксилирование приводят к возникновению спиртов:

Кроме того, могут образоваться при этом и углеводороды (например, метан), непредельно жирные кислоты, водород.

Из ароматических аминокислот в анаэробных условиях возникают дурнопахнущие продукты гниения: фенол, индол, скатол. Индол и скатол образуются обычно из триптофана. Из аминокислот, содержащих серу, в аэробных условиях гниения возникают сероводород или меркаптаны, также обладающие неприятным запахом тухлых яиц. Сложные белки - нуклеопротеиды - распадаются на нуклеиновые кислоты и белок, которые в свою очередь расщепляются. Нуклеиновые кислоты при распаде дают фосфорную кислоту, рибозу, дезоксирибозу и азотистые органические основания. В каждом конкретном случае возможно протекание только части указанных химических превращений, а не полностью всего цикла.

Появление в пищевых продуктах, богатых белком (таких, как мясо или рыба), запаха аммиака, аминов и других продуктов распада аминокислот является показателем их микробной порчи.

Микроорганизмы, возбуждающие аммонификацию белковых веществ, очень широко распространены в природе. Они встречаются повсеместно: в почве, в воде, в воздухе - и представлены чрезвычайно разнообразными формами - аэробными и анаэробными, факультативноанаэробными, спорообразующими и бесспорозыми.

Аэробные гнилостные микроорганизмы

Сенная палочка (Bacillus subtilis) (рис. 35) - широко распространенная в природе аэробная бацилла, обычно выделяемая из сена, очень подвижная палочка (3-5 х 0,6 мкм) с перитрихиальным жгутованием. Если выращивание производить на жидких средах (например, на сенном отваре), то клетки бациллы получаются несколько крупнее и соединяются в длинные цепочки, образуя на поверхности жидкости морщинистую и сухую серебристо-беловатую пленку. При развитии на твердых средах, содержащих углеводы, образуется мелкоморщинистая сухая или зернистая, срастающаяся с субстратом колония. На ломтиках картофеля колонии сенной палочки всегда получаются слегка морщинистыми, бесцветными или слегка розоватыми, напоминающими бархатистый налет.

Развивается сенная палочка в очень широком диапазоне температур, являясь практически космополитом. Но вообще считается, что наилучшей температурой для ее развития является 37-50 °С. Споры у сенной палочки овальные, располагаются эксцентрально, без строгой локализации (но все же во многих случаях ближе к центру клетки). Прорастание спор экваториальное. Грамположительна, углеводы разлагает с образованием ацетона и уксусного альдегида, обладает очень высокой протеолитической способностью. Споры сенной палочки весьма термоустойчивы - нередко сохраняются в консервах, стерилизованных при 120°С.

Картофельная палочка (Bac. mesentericus) (рис. 36) - распространена в природе не менее широко, чем сенная. Обычно картофельная палочка встречается на картофеле, попадая сюда из почвы.

Морфологически картофельная палочка очень сходна с сенной: ее клетки (3-10 х 0,5-0,6 мкм) имеют перитрихиальное жгутование; встречаются как одиночные, так и соединенные в цепочку. Споры картофельной палочки, как и сенной, овальные, иногда встречаются продолговатые, крупные; располагаются они в любой части клетки (но чаще центрально). При формировании спор клетка не раздувается, споры прорастают экваториально.

При выращивании на ломтиках картофеля картофельная палочка образует обильный желтовато-бурый складчатый влажно блестящий налет, напоминающий брыжейку, благодаря чему микроб и получил свое название. На агаровых белковых средах образует тонкие, сухие и морщинистые колонии, не срастающиеся с субстратом.

По Граму картофельная палочка окрашивается положительно. Оптимальная температура развития, как и у сенной палочки, 35-45 °С. При разложении белков образует много сероводорода. Споры картофельной палочки очень термоустойчивы и подобно спорам сенной палочки выдерживают длительное кипячение, часто сохраняясь в консервированных продуктах.

Bac. сеreus. Это - палочки (3-5 х 1-1,5 мкм) с прямыми концами, одиночные или соединенные в запутанные цепочки. Встречаются варианты и с более короткими клетками. Цитоплазма клеток заметно зернистая или вакуолистая, по концам клеток часто образуются блестящие жироподобные зерна. Клетки бациллы подвижные, с перитрихиальным жгутованием. Споры Вас. cereus образует овальные или эллипсоидные, обычно располагающиеся центрально и прорастающие полярно. При развитии на МПА (мясопептонном агаре) бацилла образует крупные компактные колонии со складчатым центром и ризоидными волнистыми краями. Иногда колонии бывают мелкобугристыми с бахромчатыми краями и жгутиковидными выростами, с характерными крупинками, преломляющими свет. Bac. cereus является аэробом. Однако в некоторых случаях развивается и при затрудненном доступе кислорода. Встречается эта бацилла в почве, в воде, на растительных субстратах. Желатину разжижает, молоко пептонизирует, крахмал гидролизует. Температурный оптимум развития Bac. cereus 30 °С, максимум 37-48 °С. При развитии в мясопептонном бульоне образует обильную однородную муть с легко распадающимся мягким осадком и нежной пленкой на поверхности.

Из других аэробных гнилостных микробов можно отметить земляную палочку (Вас. mycoides), Вас. megatherium, а также бесспоровые пигментные бактерии - «чудесную палочку» (Bact. prodigiosum), Pseudomonas fluorescens.

Земляная палочка (Bac. mycoides) (рис. 37) - одна из очень распространенных гнилостных почвенных бацилл, имеет довольно крупные (5-7 х 0,8-1,2 мкм) одиночные или соединенные в длинные цепочки клетки. На твердых средах земляная палочка образует весьма характерные колонии - пушистые, ризоидные или мицелиевидные, стелющиеся по поверхности среды, как грибной мицелий. За это сходство бацилла и получила название Bac. mycoides, что значит «грибовидная».

Bac. megaterium - бацилла, имеющая крупные размеры, за что и получила свое название, означающее «большое животное». Она постоянно встречается в почве и на поверхности гниющих материалов. Молодые клетки обычно толстые - до 2 мкм в поперечнике, длиной от 3,5 до 7 мкм. Содержимое клеток грубозернистое с большим количеством крупных включений жироподобного или гликогеноподобного вещества. Нередко включения заполняют почти сплошь всю клетку, придавая ей весьма характерное строение, по которому легко распознают данный вид. Колонии на агаровых средах гладкие, грязно-белые, жирно-блестящие. Края колонии резко обрезаны, иногда волнисто-бахромчатые.

Пигментная бактерия Pseudomonas fluorescens мелкая (1-2 х 0,6 мкм) грамотрицательная бесспоровая палочка, подвижная, с лофотрихиальным жгутованием. Бактерия образует зеленовато-желтый флюоресцирующий пигмент, который, проникая в субстрат, окрашивает его в желто-зеленый цвет.

Пигментная бактерия Bacterium prodigiosum (рис. 38) широко известна под названием «чудесная палочка» или «палочка чудесной крови». Очень маленькая грамотрицательная бесспоровая подвижная палочка с перитрихиальным жгутованием. При развитии на агаровых и желатиновых средах образует колонии темно-красного цвета с металлическим блеском, напоминающие капли крови.

Появление таких колоний на хлебе и картофеле в средние века вызывало у религиозных людей суеверный ужас и связывалось с злокознями «еретиков» и «дьявольским наваждением». Из-за этой безвредной бактерии святейшая инквизиция сожгла на кострах не одну тысячу совершенно невинных людей.

Факультативноанаэробные бактерии

Палочка протея, или вульгарный протей (Proteus vulgaris) (рис. 39). Этот микроб является одним из наиболее типичных возбудителей гниения белковых веществ. Он часто встречается на самопроизвольно загнившем мясе, в кишечнике животных и человека, в воде, в почве и пр. Клетки этой бактерии отличаются большой полиморфностью. В суточных культурах на мясо- пептонном бульоне они мелкие (1-3 х 0,5 мкм), с большим количеством перитрихиально расположенных жгутиков. Затем начинают появляться извитые нитевидные клетки, достигающие в длину 10-20 мкм и более. Благодаря такому разнообразию в морфологическом строении клеток бактерия и была названа по имени морского бога Протея, которому древнегреческая мифология приписывала способность менять свой образ и превращаться по желанию в различных животных и чудовищ.

Как мелкие, так и крупные клетки протея обладают сильным движением. Это придает колониям бактерии на твердых средах, характерную особенность «роения». Процесс «роения» заключается в том, что из колонии выходят отдельные клетки, скользят по поверхности субстрата и на некотором расстоянии от нее останавливаются, размножаются, давая начало новому росту. Получается масса мелких, едва видимых простым глазом беловатых колоний. От этих колоний снова отделяются новые клетки и на свободной от микробного налета части среды образуют новые центры размножения и т.д.

Вульгарный протей - грамотрицательный микроб. Оптимальная температура его развития 25-37°С. При температуре около 5 °С он прекращает свой рост. Протеолитическая способность протея очень велика: он разлагает белки с образованием индола и сероводорода, вызывая резкое изменение кислотности среды - среда становится сильнощелочной. При развитии на углеводных средах протей образует много газов (CO2 и H2).

В условиях умеренного доступа воздуха при развитии на пептонных средах некоторой протеолитической способностью обладает кишечная палочка (Escherichia coli). Характерно при этом образование индола. Но кишечная палочка не является типичным гнилостным микроорганизмом и на углеводных средах в анаэробных условиях вызывает нетипичное молочнокислое брожение с образованием молочной кислоты и целого ряда побочных продуктов.

Анаэробные гнилостные микроорганизмы

Clostridium putrificum (рис. 40) - энергичный возбудитель анаэробного разложения белковых веществ, осуществляющий это расщепление с обильным выделением газов - аммиака и сероводорода. Cl. putrificum довольно часто встречается в почве, воде, в полости рта, в кишечнике животных и на разных гниющих продуктах. Иногда может быть обнаружен и в консервах. Cl. putrificum - подвижные палочки с перитрихиальным жгутованием, удлиненные и тонкие (7-9 х 0,4-0,7 мкм). Встречаются и более длинные клетки, соединенные в цепочки и одиночные. Температурный оптимум развития клостридия 37 °С. Развиваясь в глубине мясопептонного агара, он образует хлопьевидные рыхлые колонии. Споры шаровидные, расположены терминально. При спорообразовании в месте возникновения споры клетка сильно раздувается. Спороносящие клетки Cl. putrificum напоминают спороносящие клетки бациллы ботулизма.

Термоустойчивость спор Cl. putrificum довольно высокая. Если при производстве консервов споры не будут уничтожены, при хранении готовой продукции на складе они могут развиться и вызвать порчу (микробиологический бомбаж) консервов. Сахаролитическими свойствами Cl. putrificum не обладает.

Clostridium sporogenes (рис. 41) - по морфологическим признакам представляет собой довольно крупную палочку с закругленными концами, легко образующую цепочки. Микроб очень подвижен благодаря перитрихиально расположенным жгутикам. Название Clostridium sporogenes, данное И. И. Мечниковым (1908 г.), характеризует способность этого микроба быстро образовывать споры. Через 24 ч под микроскопом можно видеть много палочек и свободно лежащих спор. Через 72 ч процесс спорообразования заканчивается и вегетативных форм совсем не остается. Споры микроб образует овальные, расположенные центрально или ближе к одному из концов палочки (субтерминально). Капсул не образует. Оптимум развития 37 °С.

Cl. sporogenes - анаэроб. Токсическими и патогенными свойствами не обладает. В анаэробных условиях на агаровых средах образует поверхностные мелкие, неправильной формы, вначале прозрачные, а затем превращающиеся в непрозрачные желтовато-белые колонии с бахромчатыми краями. В глубине агара колонии образуются «мохнатые», круглые, с плотным центром. Аналогично в анаэробных условиях микроб вызывает быстрое помутнение мясопептонного бульона, газообразование и появление неприятного гнилостного запаха. В ферментативном комплексе Clostridium sporogenes содержатся очень активные протеолитические ферменты, способные расщеплять белок, до последней его стадии. Под действием Clostridium sporogenes молоко пептонизируется уже через 2-3 дня и рыхло свертывается, желатина разжижается. На средах с печенью иногда образуется черный пигмент с выделяющимися белыми кристаллами тирозина. Микроб вызывает почернение и переваривание мозговой среды и резкий гнилостный запах. Кусочки ткани быстро перевариваются, разрыхляются и расплавляются почти до конца в течение нескольких дней.

Clostridium sporogenes обладает также и сахаролитическими свойствами. Распространенность этого микроба в природе, резко выраженные протеолитические свойства, высокая термоустойчивость спор характеризуют его как одного из главных возбудителей гнилостных процессов в пищевых продуктах.

Cl. sporogenes является возбудителем порчи мясных и мясо-овощных консервов. Чаще всего подвергаются порче консервы «Мясо тушеное» и первые обеденные блюда с мясом и без мяса (борщ, рассольник, щи и др.). Наличие небольшого количества спор, оставшихся в продукте после стерилизации, может вызвать порчу консервов при хранении в условиях комнатной температуры. Наблюдается сначала покраснение мяса, затем почернение, появляется резкий гнилостный запах, при этом часто наблюдается бомбаж банок.

В гнилостном разложении белков принимают участие и различные плесневые грибы и актиномицеты - Penicillium, Mucor mucedo, Botrytis, Aspergillus, Trichoderma и др.

Значение процесса гниения

Общебиологическое значение процесса гниения огромно. Гнилостные микроорганизмы являются «санитарами земли». Вызывая минерализацию громадного количества белковых веществ, попадающих в почву, осуществляя разложение трупов животных и растительных отбросов, они производят биологическую очистку земли. Глубокое расщепление белков вызывают споровые аэробы, менее глубокое - споровые анаэробы. В природных условиях этот процесс совершается поэтапно в содружестве многих видов микроорганизмов.

Но в пищевом производстве гниение является вредным процессом и наносит большой материальный ущерб. Порча мяса, рыбы, овощей, яиц, фруктов и других продуктов питания наступает быстро и протекает очень энергично, если хранить их незащищенными, в условиях, благоприятных для развития микробов.

Лишь в отдельных случаях в пищевом производстве гниение может быть использовано как полезный процесс - при созревании соленой сельди и сыров. Используется гниение в кожевенном производстве для швицевания шкур (удаление шерсти со шкур животных при выработке кож). Зная причины процессов гниения, люди научились защищать пищевые продукты белкового происхождения от их распада путем применения самых разнообразных методов консервирования.


Гнилостные бактерии вызывают распад белков. В зависимости от глубины распада и образующихся конечных продуктов могут возникать различные пороки пищевых продуктов. Эти микроорганизмы широко распространены в природе. Они встречаются в почве, воде, воздухе, на пищевых продуктах, а также в кишечнике человека и животных. К гнилостным микроорганизмам относятся аэробные споровые и бесспоровые палочки, спорообразующие анаэробы, факультативно-анаэробные бесспоровые палочки. Они являются основными возбудителями порчи молочных продуктов, вызывают распад белков (протеолиз), в результате чего могут возникать различные пороки пищевых продуктов, зависящие от глубины распада белка. Антагонистами гнилостных являются молочнокислые бактерии, поэтому гнилостный процесс распада продукта возникает там, где не идет кисломолочный процесс.

Протеолиз (протеолитические свойства) изучают посевом микроорганизмов в молоко, молочный агар, мясопептонный желатин (МПЖ) и в свернутую кровяную сыворотку. Свернувшийся белок молока (казеин) под влиянием протеолитических ферментов может свертываться с отделением сыворотки (пептонизация) или растворяться (протеолиз). На молочном агаре вокруг колоний протеолитических микроорганизмов образуются широкие зоны просветления молока. В МПЖ посев производят уколом внутрь столбика среды. Посевы выращивают 5-7 сут при комнатной температуре. Микробы, обладающие протеолитическими свойствами, разжижают желатин. Микроорганизмы, не обладающие протеолитической способностью, растут в МПЖ без его разжижения. В посевах на свернутой кровяной сыворотке протеолитические микроорганизмы также вызывают разжижение, а микробы, не обладающие этим свойством, не изменяют ее консистенцию.

При изучении протеолитических свойств определяют также способность микроорганизмов образовывать индол, сероводород, аммиак, т. е. расщеплять белки до конечных газообразных продуктов. Гнилостные бактерии имеют очень широкое распространение. Они встречаются в почве, воде, воздухе, кишечнике человека и животных, на пищевых продуктах. К этим микроорганизмам относятся спорообразующие аэробные и анаэробные палочки, пигментообразующие и факультативно-анаэробные бесспоровые бактерии.

Аэробные бесспоровые палочки

Наибольшее влияние на качество пищевых продуктов оказывают следующие бактерии этой группы: Bacterium prodigiosum, Pseudomonas fluorescens, Pseudomonas pyoceanea (aeruginosa).

Bacterium prodigiosum - очень мелкая палочка (1X 0,5 мкм), подвижная, спор и капсул не образует. Строгий аэроб, на МПА вырастают мелкие, круглые, ярко-красные, блестящие, сочные колонии. Низкие температуры наиболее благоприятны для образования пигмента. Пигмент нерастворим в воде, но растворим в хлороформе, спирте, эфире, бензоле. При росте в жидких средах также образует красный пигмент. Развивается при рН 6,5. Оптимальная температура развития 25°С (может расти и при 20°С). Разжижает желатин послойно, молоко свертывает и пептонизирует; образует аммиак, иногда сероводород и индол; глюкозу и лактозу не ферментирует.

Pseudomonas fluorescens –небольшая тонкая палочка размером 1-2 X 0,6 мкм, подвижная, спор и капсул не образует, грамотрицательна. Строгий аэроб, но встречаются разновидности, которые могут развиваться и при недостатке кислорода. На МПА и других плотных питательных средах вырастают сочные, блестящие колонии, имеющие тенденцию к слиянию и образованию зеленовато-желтого пигмента, растворимого в воде; на жидких средах они также образуют пигмент. МПБ мутнеет, иногда появляется пленка. Чувствителен к кислой реакции среды. Оптимальная температура развития 25°С, но может развиваться и при 5-8 °С. Характеризуется высокой ферментативной активностью: разжижает желатин и кровяную сыворотку, свертывает и пептонизирует молоко, лакмусовое молоко синеет. Образует сероводород и аммиак, не образует индола; большинство из них способны расщеплять клетчатку и крахмал. Многие штаммы Pseudomonas fluorescens продуцируют ферменты липазу и лецитиназу; дают положительные реакции на каталазу, цитохромоксидазу, оксидазу. Pseudomonas fluorescens - сильные аммонификаторы. Глюкозу и лактозу не ферментируют.

Pseudomonas pyoceanea. Небольшая палочка (2- 3 X 0,6 мкм), подвижна, спор и капсул не образует, грамотрицательна. Аэроб, на МПА дает расплывчатые, непрозрачные, окрашенные в зеленовато-синий или бирюзово-синий цвет колонии вследствие образования пигментов, растворимых в хлороформе. Вшывает помутнение МПБ (иногда появления пленки) и образование пигментов (желтого - флюоресцина и голубого - пиоцианина). Как и все гнилостные бактерии, чувствителен к кислой реакции среды. Оптимальная температура развития 37°С. Быстро разжижает желатин и свернутую кровяную сыворотку, свертывает и пептонизирует молоко; лакмус синеет, образует аммиак и сероводород, не образует индола Обладает липолитической способностью; дает положительные реакции на каталазу, оксидазу, цигохромоксидазу (эти свойства присущи представителям рода Pseudomonas). Некоторые штаммы расщепляют крахмал и клетчатку. Лактозу и сахарозу не ферментирует.

Спорообразующие анаэробы

Наиболее часто вызывает порчу пищевых продуктов clostridium putrificus, Clostridium sporogenes, Closntridium perfringens.

Clostridium putrificus. Длинная палочка (7 - 9 X 0,4 - 0,7 мкм), подвижна (иногда образует цепочки), формирует шаровидные споры, размер которых превышает диаметр вегетативной формы. Термоустойчивость спор довольно высокая; капсул не образует; по Граму красится положительно. Анаэроб, колонии на агаре имеют вид клубка волос, непрозрачные, вязкие; вызывает помутнение. МПБ. Протеолитические свойства ярко выражены. Разжижает желатин и кровяную сыворотку, молоко свертывает и пептонизирует, образует сероводород, аммиак, индол, вызывает почернение мозговой среды, на кровяном агаре образует зону гемолиза, обладает липолитическими свойствами; не обладает сахаролитическими свойствами.

Clostridium sporogenes. Крупная палочка с закругленными концами, размером 3 - 7 X 0,6 - 0,9 мкм, располагается отдельными клетками и в виде цепочек, подвижна, очень быстро образует споры. Споры Clostridium sporogenes сохраняют жизнеспособность после 30-минутного нагревания на водяной бане, а также после 20-минутного выдерживания в автоклаве при 120°С. Капсул не образует. По Граму красится положительно, Анаэроб, колонии на агаре мелкие, прозрачные, в дальнейшем становятся непрозрачными. Clostridium sporogenes обладает очень сильными протеолитическими свойствами, обусловливающими гнилостный распад белков с образованием газов. Разжижает желатин и кровяную сыворотку; вызывает пептонизацию молока и почернение мозговой среды; образует сероводород; разлагает с образованием кислоты и газа галактозу, мальтозу, декстрин, левулезу, глицерин, маннит, сорбит. Оптимальная температура роста 37°С, но может расти и при 50°С.

Факультативно-анаэробные бесспоровые палочки

К факультативно-анаэробным бесспоровым палочкам относятся Proteus vulgaris и Escherichia coli. В 1885 г. Эшерих открыл микроорганизм, который получил название Escherichia coli (кишечная палочка). Этот микроорганизм является постоянным обитателем толстого отдела кишечника человека и животных. Кроме Е. coli в группу кишечных бактерий входят эпифитные и фитопатогенные виды, а также виды, экология (происхождение) которых пока не установлена. Морфология - это короткие (длина 1-3 мкм, ширина 0,5-0,8 мкм) полиморфные подвижные и неподвижные грамотрицательные палочки, не образующие спор.

Культуральные свойства. Бактерии хорошо растут на простых питательных средах: мясопептонном бульоне (МПБ), мясопептонном агаре (МПА). На МПБ дают обильный рост при значительном помутнении среды; осадок небольшой, сероватого цвета, легко разбивающийся. Образуют пристеночное кольцо, пленка на поверхности бульона обычно отсутствует. На МПА колонии прозрачные с серовато-голубым отливом, легко сливающиеся между собой. На среде Эндо образуют плоские красные колонии средней величины. Красные колонии могут быть с темным металлическим блеском (Е. соli) или без блеска (Е.аеrogenes).Для лактозоотрицательных вариантов кишечной палочки (В.раrасоli) характерны бесцветные колонии. Им свойственна широкая приспособительная изменчивость, в результате которой возникают разнообразные варианты, что усложняет их классификацию.

Биохимические свойства. Большинство бактерий не разжижают желатина, свертывают молоко, расщепляют пептоны с образованием аминов, аммиака, сероводорода, обладают высокой ферментативной активностью в отношении лактозы, глюкозы и других сахаров, а также спиртов. Обладают оксидазной активностью. По способности расщеплять лактозу при температуре 37°С БГКП делят на лактозоотрицательные и лактозоположительные кишечные палочки (ЛКП), или колиформные, которые нормируются по международным стандартам. Из группы ЛКП выделяются фекальные кишечные палочки (ФКП), способные ферментировать лактозу при температуре 44,5°С. К ним относится Е. соli, не растущая на цитратной среде.

Устойчивость. Бактерии групп кишечных палочек обезвреживаются обычными методами пастеризации (65 - 75 °С). При 60 С кишечная палочка погибает через 15 минут. 1% раствор фенола вызывает гибель микроба через 5-15 минут, сулема в разведении 1:1000 - через 2 мин., устойчивы к действию многих анилиновых красителей.

Аэробные споровые палочки

Гнилостные аэробные споровые палочки Bacillus сеreus, Bacillus mycoides, Bacillus mesentericus, Bacillus megatherium, Bacillus subtilis, наиболее часто вызывают пороки пищевых продуктов. Bacillus cereus-палочка длиной 8-9 мкм, шириной 0,9-1,5 мкм, подвижная, образует споры. Грамположительная. Отдельные штаммы этого микроба могут образовывать капсулу.

Bacillus cereus

Культуральные свойства. Bacillus cereus-аэроб, но может развиваться и при недостатке кислорода воздуха. На МПА вырастают крупные, распластанные, серовато-беловатые колонии с изрезанными краями, некоторые штаммы образуют розовато-коричневый пигмент, на кровяном агаре-колонии с широкими, резко очерченными зонами гемолиза; на МПБ-образует нежную пленку, пристеночное кольцо, равномерное помутнение и хлопьевидный осадок на дне пробирки. Все штаммы Bacillus cereus интенсивно растут при рН от 9 до 9,5; при рН 4,5-5 прекращают своё развитие. Оптимальная температура развития 30-32 С, максимальная 37-48С, минимальная 10С.

Ферментативные свойства. Bacillus cereus свертывает и пептонизирует молоко, вызывает быстрое разжижение желатина, способен образовывать ацетилметилкарбинол, утилизировать цитратные соли, ферментирует мальтозу, сахарозу. Некоторые штаммы способны расщеплять лактозу, галактозу, дульцит, инулин, арабинозу, глицерин. Манит не расщепляет ни один штамм.

Устойчивость. Bacillus cereus является спорообразующим микробом, поэтому обладает значительной устойчивостью к нагреванию, высушиванию, высоким концентрациям поваренной соли и сахара. Так, Bacillus cereus часто обнаруживают в пастеризованном молоке (65-93С), в консервах. В мясо она попадает при убое скота и разделке туш. Особенно активно палочка цереус развивается в измельченных продуктах (котлеты, фарш, колбаса), а также в кремах. Микроб может развиваться при концентрации поваренной соли в субстрате до 10-15%, а сахара-до 30-60%. Кислая среда действует на него неблагоприятно. Наиболее чувствителен этот микроорганизм к уксусной кислоте.

Патогенность. Белые мыши гибнут при введении больших доз палочки цереус. В отличие от возбудителя сибирской язвы Bacillus anthracis палочка цереус непатогенна для морских свинок и кроликов. Она может вызывать мастит у коров. Некоторые разновидности этого микроорганизма выделяют фермент лекцитиназу (фактор вирулентности).

Диагностика. Учитывая количественный фактор в патогенезе пищевых отравлений, вызываемых Bacillus cereus, на первом этапе микробиологического исследования проводят микроскопию мазков (окраска мазков по Граму). Наличие в мазках грамположительных палочек толщиной 0,9 мкм позволяет поставить ориентировочный диагноз: «споровый аэроб группы Iа». По современной классификации в группу Iа входят Bacillus аnthracis и Bacillus cereus. При выяснении этиологии пищевых отравлений большое значение имеет дифференциация Bacillus cereus и Bacillus аnthracis, так как кишечная форма сибирской язвы, вызываемая Bacillus аnthracis, по клиническим признакам может быть принята за пищевое отравление. Второй этап микробиологического исследования проводят в том случае, если количество обнаруженных при микроскопии палочек достигает в 1 г продукта 10.

Затем по результатам микроскопии патологический материал высевают на кровяной агар в чашки Петри и инкубируют при 37С в течение 1 сут. Наличие широкой, резко очерченной зоны гемолиза позволяет поставить предварительный диагноз на присутствие Bacillus cereus. Для окончательной идентификации производят посев выросших колоний в среду Козера и углеводную среду с маннитом. Ставят пробу на лецитиназу, ацетилметилкарбинол и проводят дифференциацию Bacillus аnthracis и других представителей рода Bacillus Bacillus аnthracis отличается от Bacillus cereus рядом характерных признаков: рост в бульоне и желатине, способность образовывать капсулу в организме и на средах, содержащих кровь или кровяную сыворотку.

Кроме вышеописанных методов применяют экспресс-методы дифференциации Bacillus аnthracis от Bacillus cereus, Bacillus аnthracoides и др.:феномен «ожерелья», пробу с сибиреязвенным бактериофагом, реакцию преципитации-и проводят люминесцентную микроскопию. Можно использовать также цитопатогенный эффект фильтрата Bacillus cereus на клетки культур тканей (фильтрат Bacillus аnthracis такого эффекта не оказывает). От других сапрофитных споровых аэробов Bacillus cereus отличается по ряду свойств: способность образования лецитиназы, ацетилметилкарбинола, утилизация цитратных солей, ферментация маннита и рост в анаэробных условиях на среде с глюкозой. Особенно важное значение придают лецитиназе. Образование на кровяном агаре зон гемолиза не является постоянным признаком у Bacillus cereus, так как некоторые штаммы и разновидности Bacillus cereus (например Var. sotto) не вызывает гемолиза эритроцитов, в то время как многие другие виды споровых аэробов обладают этим свойством.

Bacillus mycoides

Bacillus mycoides является разновидностью Bacillus сеreus. Палочки (иногда образует цепочки) длиной 1,2-6 мкм, шириной 0,8 мкм, подвижны до начала спорообразования (признак характерен для всех гнилостных спорообразующих аэробов), образуют споры, капсул не образуют, по Граму красятся положительно (некоторые разновидности Bacillus mycoides грамотрицательны). Аэроб, на МПА вырастают корневидные колонии серо-белого цвета, напоминающие мицелий гриба Некоторые разновидности (например, Bacillus mycoides roseus) образуют красный или розовато-коричневый пигмент, при росте на МПБ все разновидности Bacillus mycoides образуют пленку и трудно разбивающийся осадок, бульон при этом остается прозрачным. Диапазон рН, при котором возможно размножение Bacillus mycoides широк. В интервале рН от 7 до 9,5 интенсивный рост дают все без исключения штаммы этого микроорганизма. Кислая среда приостанавливает развитие. Температурный оптимум для их развития 30-32°С. Могут развиваться в широком диапазоне температур (от 10 до 45°С). Ферментативные свойства Bacillus mycoides ярко выражены: разжижает желатин, вызывает коагуляцию и пептонизацию молока. Выделяет аммиак, иногда сероводород. Индола не образует. Вызывает гемолиз эритроцитов и гидролиз крахмала, ферментирует углеводы (глюкозу, сахарозу, галактозу, лактозу, дульцит, инулин, арабинозу), но не расщепляет маннита. Расщепляет глицерин.

Bacillus mesentericus

Грубая палочка с закругленными концами длиной 1,6-6 мкм, шириной 0,5-0,8 мкм,подвижна, образует споры, капсул не образует, грамположительна. Аэроб, на МПА вырастают сочные, с морщинистой поверхностью, слизистые колонии матового цвета (серо-белые) с волнистым краем. Отдельные штаммы Bacillus mesentericus образуют серо-бурый, бурый или коричневый пигмент; вызывает слабое помутнение МПБ и образование пленки; в бульоне с кровью гемолиз отсутствует. Оптимальная реакция рН 6,5-7,5, при рН 5,0 жизнедеятельность приостанавливается. Оптимальная температура роста 36-45°С. Разжижает желатин, свертывает и пептонизирует молоко. При разложении белков выделяет много сероводорода. Индол не образует. Вызывает гидролиз крахмала. Не ферментирует глюкозу и лактозу.

Bacillus megatherium

Грубая палочка размером 3,5- 7X1,5-2 мкм. Располагается одиночно, попарно или цепочками, подвижна Формирует споры, капсул не образует, грамположительна. Аэроб, на МПА вырастают колонии матового цвета (серо-белые). Гладкие, блестящие, с ровными краями; вызывает помутнение МПБ с появлением незначительного осадка. Микроб чувствителен к кислой реакции среды. Оптимальная температура развития 25-30°С. Быстро разжижает желатин, свертывает и пептонизирует молоко. Выделяет сероводород, аммиак, но не образует индола. Вызывает гемолиз эритроцитов и гидролизует крахмал. На средах с глюкозой и лактозой дает кислую реакцию.

Bacillus subtilis

Короткая палочка с закругленными концами, размером 3-5X0,6 мкм, иногда располагается цепочками, подвижна, образует споры, капсул не образует, грамположительна. Аэроб, при росте на МПА формируются сухие бугристые колонии матового цвета. В жидких средах на поверхности появляется морщинистая беловатая пленка, МПБ вначале мутнеет, а затем становится прозрачным. Вызывает посинение лакмусового молока. Микроб чувствителен к кислой реакции среды. Оптимальная температура развития 37°С, но может развиваться и при температурах несколько выше 0°С. Характеризуется высокой протеолитической активностью: разжижает желатин и свернутую кровяную сыворотку; свертывает и пептонизирует молоко; выделяет большое количество аммиака, иногда сероводород, но не образует индола. Вызывает гидролиз крахмала, разлагает глицерин; дает кислую реакцию на средах с глюкозой, лактозой, сахарозой.



В группу гнилостных бактерий входят микроорганизмы, вызыва­ющие глубокий распад белков. При этом образуется ряд веществ, обладающих неприятным запахом, вкусом, нередко и ядовитыми свой­ствами. Гнилостные бактерии могут быть как аэробы, так и анаэро­бы, споровые и бесспоровые.

К факультативно аэробным бесспоровым гнилостным бактериям часто встречающимся в молоке, относятся грамотрицательные па­лочки Proteus vulgaris (протей), способные активно пептонизировать молоко с выделением газа. При развитии этих микроорганизмов в молоке кислотность его вначале несколько повышается (вследствие образования жирных кислот), а затем снижается в результате на­копления щелочных продуктов. Бесспоровые бактерии, например Proteus vulgaris, могут попадать в молоко с оборудования, из воды и других источников. При пастеризации молока Proteus vulgaris по­гибают.

К аэробным споровым бактериям относятся Вас. subtilis (сеннаяая палочка), Вас. mesentericus (картофельная палочка), Вас. mycoides, Вас. megatherium и пр. Все они подвижны, красятся по Граму положительно, быстро развиваются в молоке, активно разлагая белки. При этом сна­чала молоко свертывается без существенного повышения кислотно­сти, затем с поверхности сгустка наступает пептонизация молока. У некоторых споровых палочек (например, сенной) пептонизацпя молока начинается без предварительного свертывания казеина. Из анаэробных споровых гнилостных бактерий в молоке встре­чаются Вас. putrificus и Вас. polymyxa.

Вас. putrificus - подвижная палочка, разлагающая белки с обиль­ным образованием газов (аммиака, углекислоты, водорода, серово­дорода), Вас. polymyxa - подвижная палочка, образующая в молоке газ, кислоты (уксусную, муравьиную), этиловый и бутиловый спир­ты и другие продукты.

Высокая чувствительность к понижению реакции среды харак­терна для всех гнилостных бактерий. Этой особенностью определя­ются крайне ограниченные возможности для развития данной груп­пы бактерий при производстве кисломолочных продуктов. Очевидно, что во всех случаях, когда молочнокислый процесс развивается ак­тивно, жизнедеятельность гнилостных бактерий прекращается. В производстве кисломолочных продуктов развитие гнилостных бактерий возможно только в исключительных случаях (в результа­те развития бактериофага полностью пли в значительной мере ос­тановлен молочнокислый процесс, утрачена активность закваски и т. д.). Споры многих гнилостных бактерий могут содержаться в пасте­ризованном молоке. Однако практически они не играют роли при производстве и хранении этого продукта. Это объясняется тем, что основную остаточную микрофлору после пастеризации составляют молочнокислые бактерии, они же обсеменяют молоко при розливе, поэтому на фоне развития (хотя и слабого, из-за низких температур


хранения) молочнокислого процесса возможность размножения спо­ровых микроорганизмов в пастеризованном молоке ничтожна. При производстве же и хранении стерилизованного молока спо­ровые бактерии играют немаловажную роль. Даже незначительные нарушения режимов стерилизации могут привести к попаданию спор в стерилизованное молоко и вызвать в последующем его пор­чу при хранении.

ДРОЖЖИ

В основу классификации дрожжей положены различия в харак­тере их вегетативного размножения (деление, почкование). спорообразования, а также морфологические и физиологические признаки.

По способности к спорообразованию дрожжи делят на спорообразующие и неспорообразующие. В кисломолочных продуктах из спорообразующих встречаются дрожжи родов Saccharomyces, Zygosacc-haromyces, Fabospora и Debaromyces, из неспоровых - родов Torulopsis it Candida. С. А.

Королев (1932) разделил дрожжи, встречающиеся в молоч­ных продуктах, по их биохимическим свойствам на три группы.

Первая группа - дрожжи, не способные к спиртовому брожению, хотя и потребляющие некоторые углеводы путем непосредственного окисления; к ним относятся виды Mycoderma, цветные бесспоровые дрожжи Tornla.

Вторая группа - дрожжи, не сбраживающие лактозу, но сбражи­вающие другие сахара; могут развиваться лишь в совместной культу­ре с микроорганизмами, обладающими ферментом лактазой, гпдролизующей молочный сахар на моносахара; к ним относятся отдель­ные виды дрожжей рода Saccharomyces. Как показали исследования В. И. Кудрявцева (1954) и A.M. Скородумовой (1969), в кисломолочных продуктах, приготовленных на естественных заквасках, основ­ными представителями этого рода являются дрожжи вида Sacch. cartilaginosus, сбраживающие мальтозу и галактозу. По мнению В. И. Кудрявцева, дрожжи этой группы могут положительно влиять на вкус и аромат кисломолочных продуктов, однако при чрезмерном их развитии возникает порок - вспучивание. Они относятся к так называемым диким дрожжам и при производстве кисломолочных продуктов их не применяют. Однако возможно, что среди дрожжей этой группы могут быть найдены производственно-ценные куль­туры.

Третья группа - дрожжи, сбражнвающпе лактозу. Исследования А. М. Скородумовой (1969) показали, что среди дрожжей, выделен­ных из кисломолочных продуктов (приготовленных на естественной закваске), число дрожжей, самостоятельно сбраживающих лактозу, сравнительно невелико - из 150 штаммов - 32 (21%). Наибольший процент дрожжей, сбражпвающих лактозу, был выделен из кефир ных грибков и закваски (34,1%). Дрожжи, сбраживающие лактозу, были идентифицированы А. М. Скородумовой как Fabospora fragilis, Saccharomyces lactis, реже Zygosaccharomyces lactis. Способностью сбраживать лактозу обладают также некоторые ви­ды Candida и Torulopsis - Candida pseudotropicalis var. lactosa, Torulopsis kefir, Torylopsis sphaerica, выделенные из кефир­ного грибка (В. И. Буканова, 1955).

Исследования, проводившиеся в Японии Т. Наканиши и Дж. Араи (1968, 1969), показали также, что наиболее распространенны­ми видами лактозосбраживающих дрожжей, выделенных из сырого молока, являются Saccharomyces lactis, Torulopsis versatilis, Toru­lopsis sphaerica, Candida pseudotropicalis.

Для установления отношения дрожжей к сахарам культуры па­раллельно высевают в молочно-пептонную сыворотку, содержащую только лактозу, и на сусло, содержащее мальтозу. После выдержки при оптимальной температуре отмечают наличие пли отсутствие га­за.

Оптимальная температура развития дрожжей 25-30° С, что следует учитывать при выборе температуры для созревания продук­тов, в состав микрофлоры которых они входят. По данным В. II. Букановой (1955) основным фактором, регулирующим развитие дрож­жей разных видов в кефире, является температура. Так, повышен­ная температура (30-32° С) стимулирует развитие Torulopsis sphaerica п дрожжей, не сбраживающих лактозу. Дрожжи, сбраживающие лактозу, достаточно хорошо развиваются и при 18-20° С, однако повышение температуры до 25 и 30° С, как правило, стимулирует их размножение.

Большинство дрожжей предпочитает для своего развития кислую реакцию среды. Следовательно, в кисломолочных продуктах условия для них благоприятны.

Дрожжи очень широко распространены в кисломолочных продук­тах и могут быть обнаружены почти в любом образце продукта, при­готовленного на естественных заквасках. Однако дрожжи развива­ются гораздо медленнее, чем молочнокислые бактерии, поэтому в кис­ломолочных продуктах они обнаруживаются в меньшем количестве, чем молочнокислые бактерии.

Роль дрожжей и производстве кисломолочных продуктов исклю­чительно велика. Обычно дрожжи рассматривают главным образом как возбудителей спиртового брожения. Но эта функция, по-види­мому, не основная. Дрожжи активизируют развитие молочнокис­лых бактерий, витаминизируют продукты (С. Аскалонов, 1957). Дрожжи, сбраживающие лактозу и другие сахара, способны выра­батывать антибиотические вещества, активные против туберкулез­ной палочки и других микроорганизмов (А. М. Скородумова, 1951, 1954; В. И. Буканова, 1955).

Интенсивное развитие дрожжей незаквасочного происхождения нередко приводит к вспучиванию и изменению вкуса таких продук­тов, как сметана, творог и сладкие творожные изделия. Излишнее развитие дрожжей, содержащихся в кефирной закваске при наруше­нии технологических режимов, также может вызвать газообразова­ние в кефире (“глазки”) и даже его вспучивание.

Возникает гнилостная инфекция только в тех ранах, в которых присутствуют омертвевшая ткань, подвергающаяся распаду в результате активности гнилостных бактерий. Подобный патологический процесс является осложнением обширных поражений мягких тканей, пролежней и открытых переломов. Гнилостная природа связана с активной жизнедеятельностью неклостридиальных анаэробов, присутствующих в области слизистой оболочки желудочно-кишечного тракта, женских органов мочеполовой системы и дыхательных путей.

Гнилостный распад тканей представляет собой анаэробный окислительный процесс белкового субстрата. В развитии этой патологии принимают участие такие микробы гниения, как грамотрицательные палочки (Fusobacterium, Bactericides), грамположительные палочки (Eubacterium, Propionibacterium, Actinomyces), протей, кишечная палочка и Veilonella.

Многие специалисты утверждают, что только 10% хирургических инфекций не относятся к эндогенному происхождению. Это связано с тем, что практически вся микрофлора человека состоит из анаэробов. Анаэробная и смешанная флора и является составляющим наиболее значительных форм гнойно-воспалительных болезней в организме человека. Особенно часто такие процессы присутствуют в развитии гинекологических, абдоминальных и стоматологических заболеваний. Инфекции мягких тканей появляются аналогично при наличии смешанной или анаэробной микрофлоры.

Смешанная микрофлора является не простой совокупностью бактерий, потому как большинство патологических процессов прогрессируют только тогда, когда соединяются два участника ассоциации.

Не только аэробы создают подходящие условия для жизнедеятельности анаэробов. Обратный эффект также возможен. В качестве активаторов подавляющего большинства анаэробных патологических процессов инфекционного характера выступают полимикробы. Именно поэтому положительный результат от проводимого лечения достигается только при воздействии на каждую разновидность микроорганизмов.

Чаще всего гнилостные очаги возникают при следующих поражениях:

  • заражение мягких тканей;
  • заболевание легких;
  • болезни брюшины.

Существует несколько гнилостных микробов, которые могут спровоцировать развитие подобной инфекции в качестве самостоятельного заболевания. Обратить внимание следует на сочетание Spirochete bucallis и Bac. fusiformis. Совокупность данных микроорганизмов называется фузоспириллярным симбиозом. Самой грозной формой патологического процесса считается гнилостная флегмона, которая развивается на дне ротовой полости и называется также ангиной Людовика.

Симптоматика гнилостно процесса

В качестве самостоятельного процесса гнилостная инфекция развивается в области поражения мягких тканей достаточно редко, чаще она присоединяется к развитым анаэробным и гнойным инфекционным процессам. Именно поэтому клиническая картина подобного осложнения практически во всех случаях нечеткая и сливается с проявлениями гнойных или анаэробных очагов.

Гнилостная форма инфекции протекает в сопровождении следующей симптоматики:

  • ярко выраженного подавленного состояния;
  • характерного снижения аппетита;
  • появления сонливости в дневное время;
  • скороспешного развития анемии.

В качестве самого раннего признака наличия в организме человека гнилостного распада выступает появление внезапного озноба. Наличие экссудата (зловония) также считается важным первичным признаком развития патологических изменений в организме. Неприятный резковатый запах является ничем иным, как последствием жизнедеятельности гнилостных бактерий.

Не все разновидности анаэробов способствуют образованию веществ, вызывающих зловонный запах. Чаще всего причиной тому является строгий и факультативный вид микроорганизмов. Отсутствие зловонности наблюдается иногда и при сочетании аэробов с анаэробами. Именно поэтому отсутствие столь неприятного симптома не может указывать на то, что инфекция имеет не гнилостное происхождение!

Данная инфекция имеет такие вторичные симптомы, как гнилостный характер повреждения мягких тканей. В очагах поражения присутствуют омертвевшие ткани, ограниченные правильными очертаниями. Чаще всего серо-зеленый или серый бесструктурный детрит заполняет межтканевые щели или же приобретает разнообразные формы. Окраска экссудата чаще неоднородная и в некоторых случаях варьируется до коричневого цвета. В нем содержатся небольшие капельки жира.

Гнилостная инфекционная природа раны может давать такие симптомы, как большое скопление гноя. В данном случае экссудат в клетчатке разжижается. При поражении мышечной ткани его количество мизерно и в основном наблюдается в качестве диффузной пропитки поврежденной ткани. Если присутствует аэробная инфекция, то гной приобретает густую консистенцию. Цвет его варьируется от белого до желтого, окрас однородный, запах нейтральный.

Следует также обратить внимание на такие симптомы, как отсутствие отечности, гнойного заплыва, газообразования и крепитации на начальных развитиях патологического процесса. Часто внешние признаки поражения мягкой ткани не соответствуют его глубине. Отсутствие гиперемии кожи приводит в замешательство многих хирургов, поэтому своевременная хирургическая обработка патологического очага может быть проведена несвоевременно.

Гнилостная инфекция начинает распространяться в области подкожной клетчатки, переходя в межфасциальное пространство. При этом происходит некроз мышц, сухожилий и фасций.

Гнилостная инфекция развивается в трех формах:

  • присутствуют симптомы шоковых явлений;
  • отмечается бурно прогрессирующее течение;
  • отмечается вялое течение.

При первых двух формах инфекция протекает в сопровождении общей интоксикации: повышения температуры, появления озноба, развития почечной или печеночной недостаточности и снижения артериального давления.

Как справиться с данной патологией

Инфекция гнилостной природы является серьезной угрозой для здоровья человека, поэтому лечение прогрессирующего процесса должно быть начато как можно раньше. Для эффективного устранения подобного заболевания проводятся следующие мероприятия:

  • создаются неблагоприятные условия для жизнедеятельности бактерий (удаление омертвевшей ткани, проведение антибактериальной терапии и широкого дренирования тканей);
  • назначение детоксикационной терапии;
  • проведение коррекции иммунного статуса и гемостаза.

Прогрессирующая инфекция гнилостного характера требует удаления пораженных тканей. Лечение практически всегда требует хирургического вмешательства в связи с анатомическим расположением, особенностью течения и распространением патогенных микроорганизмов, радикальных результатов добиться получается не во всех случаях. При низкой эффективности ранее принятых мер лечение проводится при помощи широких разрезаний гнойных очагов, иссечения некротизированной ткани, местного введения антисептиков и дренирования раны. Профилактика распространения гнилостного процесса в области здоровых тканей заключается в осуществлении ограничивающих хирургических разрезов.

Если инфекция имеет анаэробный характер, то лечение осуществляется при помощи постоянной перфузии или орошения раны растворами, содержащими перманганат калия и перекись водорода. Эффективно в данном случае использование мазей, имеющих полиэтиленоксидную основу (Левомеколь, Левосин). Данные средства способствуют эффективному всасыванию экссудата, что сопровождается быстрым очищением раны.

Лечение антибиотиками проводится под контролем антибиотикограммы. Такое заболевание, как гнилостное поражение мягких тканей, может быть вызвано микроорганизмами, обладающими устойчивостью перед антибактериальной терапией. Именно поэтому подобное лечение должно осуществляться также и под наблюдением врача.

Медикаментозное лечение такого состояния, как инфекция гнилостно характера проводится при помощи следующих средств:

  • антибиотики – линкомицин, тиенам, рифампицин;
  • метронидазоловые противомикробные препараты – метрагил, метронидазол, тинидазол.

Лечение и профилактика детоксикации и гомеостаза назначается и проводится индивидуально в соответствии с симптоматикой и характером течения патологического процесса для каждого случая. При бурном септическом течении принимают интракорпоральные детоксикационные меры: проводят эндолимфатическую терапию и назначают гемоинфузионную детоксикацию. В обязательном порядке показано проведение таких процедур, как УФОК (ультрафиолетового облучения крови) и ВЛОКА (внутривенного лазерного облучения крови). Рекомендуется проведение аппликационной сорбации, которая подразумевает наложение сорбентов, антибиотиков и иммобилизированных ферментов на пораженный участок тканей. В случае развития осложнений в виде печеночной недостаточности назначается гемодиализ и применяется плазмаферез и гемсорбация.

Последствия

Похожие публикации