Клиническая фармакология. недостаточность витаминов. Витамин B1 Витамин в1 биохимия

Ко второй половине XIX столетия было установлено, что пищевая ценность продуктов питания определяется содержанием в них белков, жиров, углеводов, минеральных солей и воды.

Однако практический опыт врачей и клинические наблюдения, а также история морских и сухопутных путешествий указывали на возникновение ряда специфических заболеваний (цинга, бери-бери), связанных с дефектами питания, хотя последнее полностью отвечало указанным выше требованиям.

Важный вклад в развитие учения о витаминах был сделан отечественным врачом Н.И. Луниным в опытах на мышах. Одна группа мышей (контрольная) получала натуральное молоко, а вторая - смесь компонентов молока: белок, жир, молочный сахар, минеральные соли и вода. Спустя некоторое время мыши опытной группы погибали, а мыши контрольной группы развивались нормально. Отсюда следовал вывод о наличии в молоке дополнительных веществ, необходимых для нормальной жизнедеятельности.

Подтверждением правильности вывода Лунина явилось установление причины бери-бери. Оказалось, что люди, употребляющие в пищу неочищенный рис, оставались здоровыми, в отличие от больных бери-бери, которые питались полированным рисом. В 1911 г. польский учёный К. Функ выделил из рисовых отрубей вещество, которое оказывало хороший лечебный эффект при этом заболевании. Поскольку это органическое вещество содержало в своём составе аминогруппу, Функ назвал это вещество витамином, или амином жизни (от лат. vita - жизнь). В настоящее время известно около двух десятков витаминов, которые обеспечивают нормальный рост организма и нормальное протекание физиологических и биохимических процессов. Многие из них входят в состав коферментов (В 1 , В 2 , РР и другие); некоторые витамины выполняют специализированные функции (витамины А, D, Е, K).

Витамины - низкомолекулярные органические соединения различной химической природы

и различного строения, синтезируемые главным образом растениями, частично - микроорганизмами. Для человека витамины - незаменимые пищевые факторы.

Недостаток поступления витаминов с пищей, нарушение их всасывания или нарушение их использования организмом приводит к развитию патологических состояний, называемых гиповитаминозами.

Основные причины гиповитаминозов

Недостаток витаминов в пище;

Нарушение всасывания в ЖКТ;

Врождённые дефекты ферментов, участвующих в превращениях витаминов;

Действие структурных аналогов витаминов (антивитамины).

Потребность человека в витаминах зависит от пола, возраста, физиологического состояния и интенсивности труда. Существенное влияние на потребность человека в витаминах оказывают характер пищи (преобладание углеводов или белков в диете, количество и качество жиров), а также климатические условия.

КЛАССИФИКАЦИЯ ВИТАМИНОВ

По химическому строению и физико-химическим свойствам (в частности, по растворимости) витамины делят на 2 группы.

А. ВОДОРАСТВОРИМЫЕ

Витамин В 1 (тиамин); Витамин В 2 (рибофлавин); Витамин РР (никотиновая кислота, нико-тинамид, витамин В 3);

Пантотеновая кислота (витамин В 5); Витамин В 6 (пиридоксин); Биотин (витамин Н); Фолиевая кислота (витамин В с, В 9); Витамин В 12 (кобаламин); Витамин С (аскорбиновая кислота); Витамин Р (биофлавоноиды).

б. жирорастворимые

Витамин А (ретинол);

Витамин D (холекальциферол);

Витамин Е (токоферол);

Витамин К (филлохинон).

Водорастворимые витамины при их избыточном поступлении в организм, будучи хорошо растворимыми в воде, быстро выводятся из организма.

Жирорастворимые витамины хорошо растворимы в жирах и легко накапливаются в организме при их избыточном поступлении с пищей. Их накопление в организме может вызвать расстройство обмена веществ, называемое гипер-витаминозом, и даже гибель организма.

а. водорастворимые витамины

1. Витамин В 1 (тиамин). Структура витамина включает пиримидиновое и тиазоловое кольца, соединённые метиновым мостиком.

Источники. Витамин В 1 - первый витамин, выделенный в кристаллическом виде К. Функом в 1912 г. Он широко распространён в продуктах растительного происхождения (оболочка семян хлебных злаков и риса, горох, фасоль, соя и др.). В организмах животных витамин В 1 содержится преимущественно в виде дифосфорного эфира тиамина (ТДФ); он образуется в печени, почках, мозге, сердечной мышце путём фосфорилирования тиамина при участии тиаминкиназы и АТФ.

Суточная потребность взрослого человека в среднем составляет 2-3 мг витамина В 1 . Но потребность в нём в очень большой степени зависит от состава и общей калорийности пищи, интенсивности обмена веществ и интенсивности работы. Преобладание уг-

леводов в пище повышает потребность организма в витамине; жиры, наоборот, резко уменьшают эту потребность. Биологическая роль витамина В 1 определяется тем, что в виде ТДФ он входит в состав как минимум трёх ферментов и ферментных комплексов: в составе пируват- и α-кетоглутаратдегидрогеназных комплексов он участвует в окислительном декарбок-силировании пирувата и α-кетоглутарата; в составе транскетолазы ТДФ участвует в пентозофосфатном пути превращения углеводов.

Основной, наиболее характерный и специфический признак недостаточности витамина В 1 - полиневрит, в основе которого лежат дегенеративные изменения нервов. Вначале развивается болезненность вдоль нервных стволов, затем - потеря кожной чувствительности и наступает паралич (бери-бери). Второй важнейший признак заболевания - нарушение сердечной деятельности, что выражается в нарушении сердечного ритма, увеличении размеров сердца и в появлении болей в области сердца. К характерным признакам заболевания, связанного с недостаточностью витамина В 1 , относят также нарушения секреторной и моторной функций ЖКТ; наблюдают снижение кислотности желудочного сока, потерю аппетита, атонию кишечника. 2. Витамин В 2 (рибофлавин). В основе структуры витамина В 2 лежит структура изоаллоксазина, соединённого со спиртом рибитолом.

Рибофлавин представляет собой кристаллы жёлтого цвета (от лат. flavos - жёлтый), слабо растворимые в воде.

Главные источники витамина В 2 - печень, почки, яйца, молоко, дрожжи. Витамин содержится также в шпинате, пшенице, ржи. Частично человек получает витамин В 2 как продукт жизнедеятельности кишечной микрофлоры.

Суточная потребность в витамине В 2 взрослого человека составляет 1,8-2,6 мг.

Биологические функции. В слизистой оболочке кишечника после всасывания витамина происходит образование коферментов FMN и FАD по схеме:

Коферменты FАD и FMN входят в состав флавиновых ферментов, принимающих участие в окислительно-восстановительных реакциях (см. разделы 2, 6, 9, 10).

Клинические проявления недостаточности рибофлавина выражаются в остановке роста у молодых организмов. Часто развиваются воспалительные процессы на слизистой оболочке ротовой полости, появляются длительно незаживающие трещины в углах рта, дерматит носогубной складки. Типично воспаление глаз: конъюнктивиты, васкуля-ризация роговицы, катаракта. Кроме того, при авитаминозе В 2 развиваются общая мышечная слабость и слабость сердечной мышцы.

3. Витамин РР (никотиновая кислота, никотина-мид, витамин В 3)

Источники. Витамин РР широко распространён в растительных продуктах, высоко его содержание в рисовых и пшеничных отрубях, дрожжах, много витамина в печени и почках крупного рогатого скота и свиней. Витамин РР может образовываться из триптофана (из 60 молекул триптофана может образоваться

1 молекула никотинамида), что снижает потребность в витамине РР при увеличении количества триптофана в пище. Суточная потребность в этом витамине составляет для взрослых 15-25 мг, для детей - 15 мг.

Биологические функции. Никотиновая кислота в организме входит в состав NAD и NADP, выполняющих функции коферментов различных дегидрогеназ (см. раздел 2). Синтез NAD в организме протекает в 2 этапа:


NADP образуется из NAD путём фосфорили-рования под действием цитоплазматической NAD-киназы.

NAD + + АТФ → NADP + + АДФ

Недостаточность витамина РР приводит к заболеванию «пеллагра», для которого характерны 3 основных признака: дерматит, диарея, деменция («три Д»). Пеллагра проявляется в виде симметричного дерматита на участках кожи, доступных действию солнечных лучей, расстройств ЖКТ (диарея) и воспалительных поражений слизистых оболочек рта и языка. В далеко зашедших случаях пеллагры наблюдают расстройства ЦНС (деменция): потеря памяти, галлюцинации и бред. 4. Пантотеновая кислота (витамин В) Пантотеновая кислота состоит из остатков D-2,4-дигидрокси-3,3-диметилмасляной кислоты и β-аланина, соединённых между собой амидной связью:

Пантотеновая кислота - белый мелкокристаллический порошок, хорошо растворимый в воде. Она синтезируется растениями и микроорганизмами, содержится во многих продуктах животного и растительного происхождения (яйцо, печень, мясо, рыба, молоко, дрожжи, картофель, морковь, пшеница, яблоки). В кишечнике человека пантотеновая кислота в небольших количествах продуцируется кишечной палочкой. Пантотеновая кислота - универсальный витамин, в ней или её производных нуждаются человек, животные, растения и микроорганизмы.

Суточная потребность человека в пантотеновой

кислоте составляет 10-12 мг. Биологические функции. Пантотеновая кислота используется в клетках для синтеза кофер-ментов: 4-фосфопантотеина и КоА (рис. 3-1). 4-фосфопантотеин - кофермент пальми-тоилсинтазы. КоА участвует в переносе ацильных радикалов в реакциях общего

пути катаболизма (см. раздел 6), активации жирных кислот, синтеза холестерина и кетоновых тел (см. раздел 8), синтеза ацетилглюкозаминов (см. раздел 15), обезвреживания чужеродных веществ в печени (см. раздел 12). Клинические проявления недостаточности витамина. У человека и животных развиваются дерматиты, дистрофические изменения желёз внутренней секреции (например, надпочечников), нарушение деятельности нервной системы (невриты, параличи), дистрофические изменения в сердце, почках, депигментация и выпадение волос и шерсти у животных, потеря аппетита, истощение. Низкий уровень пантотената в крови у людей часто сочетается с другими гиповитаминозами (В 1 , В 2) и проявляется как комбинированная форма гиповитаминоза.

Рис. 3-1. Строение КоА и 4"-фосфопантотеина. 1 - тиоэтаноламин; 2 - аденозил-3"-фосфо-5"-дифосфат; 3 - пантотеновая кислота; 4 - 4"-фосфопантотеин (фосфорилированная пантотеновая кислота, соединённая с тиоэтаноламином).

5. Витамин В 6 (пиридоксин, пиридоксаль, пиридок-самин)

В основе структуры витамина В 6 лежит пиридиновое кольцо. Известны 3 формы витамина В 6 , отличающиеся строением замещающей группы у атома углерода в п-положении к атому азота. Все они характеризуются одинаковой биологической активностью.

Все 3 формы витамина - бесцветные кристаллы, хорошо растворимые в воде.

Источники витамина В 6 для человека - такие продукты питания, как яйца, печень, молоко, зеленый перец, морковь, пшеница, дрожжи. Некоторое количество витамина синтезируется кишечной флорой.

Суточная потребность составляет 2-3 мг.

Биологические функции. Все формы витамина В 6 используются в организме для синтеза кофер-ментов: пиридоксальфосфата и пиридокса-минфосфата. Коферменты образуются путём фосфорилирования по гидроксиметильной группе в пятом положении пиридинового кольца при участии фермента пиридоксаль-киназы и АТФ как источника фосфата.

Пиридоксалевые ферменты играют ключевую роль в обмене аминокислот: катализируют реакции трансаминирования и декарбокси-лирования аминокислот, участвуют в специфических реакциях метаболизма отдельных аминокислот: серина, треонина, триптофана, серосодержащих аминокислот, а также в синтезе гема (см. разделы 9, 12).

Клинические проявления недостаточности витамина. Авитаминоз В 6 у детей проявляется

повышенной возбудимостью ЦНС, периодическими судорогами, что связано, возможно, с недостаточным образованием тормозного медиатора ГАМК (см. раздел 9), специфическими дерматитами. У взрослых признаки гиповитаминоза В 6 наблюдают при длительном лечении туберкулёза изониа-зидом (антагонист витамина В 6). При этом возникают поражения нервной системы (полиневриты), дерматиты. 6. Биотин (витамин Н)

В основе строения биотина лежит тиофено-вое кольцо, к которому присоединена молекула мочевины, а боковая цепь представлена валерьяновой кислотой.

Источники. Биотин содержится почти во всех продуктах животного и растительного происхождения. Наиболее богаты этим витамином печень, почки, молоко, желток яйца. В обычных условиях человек получает достаточное количество биотина в результате бактериального синтеза в кишечнике.

Суточная потребность биотина у человека не превышает 10 мкг.

Биологическая роль. Биотин выполняет кофер-ментную функцию в составе карбоксилаз: он участвует в образовании активной формы

В организме биотин используется в образовании малонил-КоА из ацетил-КоА (см. раздел 8), в синтезе пуринового кольца (см. раздел 10), а также в реакции карбоксилирования пирувата с образованием оксалоацетата (см. раздел 6).

Клинические проявления недостаточности биотина у человека изучены мало, поскольку бактерии кишечника обладают способностью синтезировать этот витамин в необходимых

количествах. Поэтому картина авитаминоза проявляется при дисбактериозах кишечника, например, после приёма больших количеств антибиотиков или сульфамидных препаратов, вызывающих гибель микрофлоры кишечника, либо после введения в рацион большого количества сырого яичного белка. В яичном белке содержится гликопротеин авидин, который соединяется с биотином и препятствует всасыванию последнего из кишечника. Авидин (молекулярная масса 70 000 кД) состоит из четырёх идентичных субъединиц, содержащих по 128 аминокислот; каждая субъединица связывает по одной молекуле биотина. При недостаточности биотина у человека развиваются явления специфического дерматита, характеризующегося покраснением и шелушением кожи, а также обильной секрецией сальных желёз (себорея). При авитаминозе витамина Н наблюдают также выпадение волос и шерсти у животных, поражение ногтей, часто отмечают боли в мышцах, усталость, сонливость и депрессию. 7. Фолиевая кислота (витамин В с витамин В 9) Фолиевая кислота состоит из трёх структурных единиц: остатка птеридина (I), параамино-бензойной (II) и глутаминовой (III) кислот.

Витамин, полученный из разных источников, может содержать 3-6 остатков глутаминовой кислоты. Фолиевая кислота была выделена в 1941 г. из зелёных листьев растений, в связи с чем и получила своё название (от лат. folium - лист).

Источники. Значительное количество этого витамина содержится в дрожжах, а также в печени, почках, мясе и других продуктах животного происхождения.

Суточная потребность в фолиевой кислоте колеблется от 50 до 200 мкг; однако вследствие плохой всасываемости этого витамина рекомендуемая суточная доза - 400 мкг.

Биологическая роль фолиевой кислоты определяется тем, что она служит субстратом

для синтеза коферментов, участвующих в реакциях переноса одноуглеродных радикалов различной степени окисленности: метильных, оксиметильных, формильных и других. Эти коферменты участвуют в синтезе различных веществ: пуриновых нуклеотидов, превращении dУМФ в dГМФ, в обмене глицина и серина (см. разделы 9, 10). Наиболее характерные признаки авитаминоза фолиевой кислоты - нарушение кроветворения и связанные с этим различные формы малокровия (макроцитарная анемия), лейкопения и задержка роста. При гиповитаминозе фолиевой кислоты наблюдают нарушения регенерации эпителия, особенно в ЖКТ, обусловленные недостатком пуринов и пи-римидинов для синтеза ДНК в постоянно делящихся клетках слизистой оболочки. Авитаминоз фолиевой кислоты редко проявляется у человека и животных, так как этот витамин в достаточной степени синтезируется кишечной микрофлорой. Однако использование сульфаниламидных препаратов для лечения ряда заболеваний может вызвать развитие авитаминозов. Эти препараты - структурные аналоги параамино-бензойной кислоты, ингибирующие синтез фолиевой кислоты у микроорганизмов (см. раздел 2). Некоторые производные птери-дина (аминоптерин и метотрексат) тормозят рост почти всех организмов, нуждающихся в фолиевой кислоте. Эти препараты находят применение в лечебной практике для подавления опухолевого роста у онкологических больных. 8. Витамин В 12 (кобаламин) Витамин В 12 был выделен из печени в кристаллическом виде в 1948 г. В 1955 г. Дороти Ходжкен с помощью рентгено-структурного анализа расшифровала структуру этого витамина. За эту работу в 1964 г. ей была присуждена Нобелевская премия. Витамин В 12 - единственный витамин, содержащий в своём составе металл кобальт (рис. 3-2).

Источники. Ни животные, ни растения не способны синтезировать витамин В 12 . Это единственный витамин, синтезируемый почти исключительно микроорганизмами: бактериями, актиномицетами и сине-зелёными водорослями. Из животных тканей наиболее богаты витамином В печень и

почки. Недостаточность витамина в тканях животных связана с нарушением всасывания кобаламина из-за нарушения синтеза внутреннего фактора Касла, в соединении с которым он и всасывается. Фактор Кас-ла синтезируется обкладочными клетками желудка. Это - гликопротеин с молекулярной массой 93 000 Д. Он соединяется с витамином В 12 при участии ионов кальция. Гипоавитаминоз В 12 обычно сочетается с понижением кислотности желудочного сока, что может быть результатом повреждения слизистой оболочки желудка. Гипоавитами-ноз В 12 может развиться также после тотального удаления желудка при хирургических операциях.

Суточная потребность в витамине В 12 крайне мала и составляет всего 1-2 мкг.

Витамин В 12 служит источником образования двух коферментов: метилкобаламина в цитоплазме и дезоксиаденозилкобаламина в митохондриях (рис. 3-2).

Метил-В 12 - кофермент, участвующий в образовании метионина из гомоцистеина. Кроме того, метил-В 12 принимает участие в превращениях производных фолиевой кислоты, необходимых для синтеза нуклео-тидов - предшественников ДНК и РНК.

Дезоксиаденозилкобаламин в качестве ко-фермента участвует в метаболизме жирных кислот с нечётным числом углеродных атомов и аминокислот с разветвлённой углеводородной цепью (см. разделы 8, 9).

Основной признак авитаминоза В 12 - макроци-тарная (мегалобластная) анемия. Для этого заболевания характерны увеличение размеров эритроцитов, снижение количества эритроцитов в кровотоке, снижение концентрации гемоглобина в крови. Нарушение кроветворения связано в первую очередь с нарушением обмена нуклеиновых кислот, в частности синтеза ДНК в быстроделящихся клетках кроветворной системы. Помимо нарушения кроветворной функции, для авитаминоза В 12 специфично также расстройство деятельности нервной системы, объясняемое токсичностью метилмалоновой кислоты, накапливающейся в организме при распаде жирных кислот с нечётным числом углеродных атомов, а также некоторых аминокислот с разветвлённой цепью.

9. Витамин С (аскорбиновая кислота)

Аскорбиновая кислота - лактон кислоты, близкой по структуре к глюкозе. Существует в двух формах: восстановленной (АК) и окисленной (дегидроаскорбиновой кислотой, ДАК).

Обе эти формы аскорбиновой кислоты быстро и обратимо переходят друг в друга и в качестве коферментов участвуют в окислительно-восстановительных реакциях. Аскорбиновая кислота может окисляться кислородом воздуха, перок-сидом и другими окислителями. ДАК легко восстанавливается цистеином, глутатионом, сероводородом. В слабощелочной среде происходят разрушение лактонового кольца и потеря биологической активности. При кулинарной обработке пищи в присутствии окислителей часть витамина С разрушается.

Источники витамина С - свежие фрукты,

овощи, зелень (табл. 3-1). Суточная потребность человека в витамине С

составляет 50-75 мг. Биологические функции. Главное свойство аскорбиновой кислоты - способность легко окисляться и восстанавливаться. Вместе с ДАК она образует в клетках окислительно-восстановительную пару с редокс-потенци-алом +0,139 В. Благодаря этой способности аскорбиновая кислота участвует во многих реакциях гидроксилирования: остатков Про и Лиз при синтезе коллагена (основного белка соединительной ткани), при гидрок-силировании дофамина, синтезе стероидных гормонов в коре надпочечников (см. разделы

В кишечнике аскорбиновая кислота восстанавливает Fе 3+ в Fe 2+ , способствуя его всасыванию, ускоряет освобождение железа из ферритина (см. раздел 13), способствует превращению фолата в коферментные формы. Аскорбиновую кислоту относят к природным антиоксидантам (см. раздел 8).

Рис. 3-2. Структура витамина В 12 (1) и его коферментные формы - метилкобаламин (2) и 5-дезоксиаде-нозилкобаламин (3).

Таблица 3-1. Содержание аскорбиновой кислоты в некоторых пищевых продуктах и растениях

Большое значение этой роли витамина С придавал известный американский учёный Л. Полинг, дважды лауреат Нобелевской премии. Он рекомендовал использовать для профилактики и лечения ряда заболеваний (например, простудных) большие дозы аскорбиновой кислоты (2-3 г). Клинические проявления недостаточности витамина С. Недостаточность аскорбиновой кислоты приводит к заболеванию, называемому цингой (скорбут). Цинга, возникающая у человека при недостаточном содержании в пищевом рационе свежих фруктов и овощей, описана более 300 лет назад, со времени проведения длительных морских плаваний и северных экспедиций. Это заболевание связано с недостатком в пище витамина С. Болеют цингой только человек, приматы и

морские свинки. Главные проявления авитаминоза обусловлены в основном нарушением образования коллагена в соединительной ткани. Вследствие этого наблюдают разрыхление дёсен, расшатывание зубов, нарушение целостности капилляров (сопровождающееся подкожными кровоизлияниями). Возникают отёки, боль в суставах, анемия. Анемия при цинге может быть связана с нарушением способности использовать запасы железа, а также с нарушениями метаболизма фолиевой кислоты. 10. Витамин Р (биофлавоноиды) В настоящее время известно, что понятие «витамин Р» объединяет семейство биофлавоноидов (катехины, флавононы, флавоны). Это очень разнообразная группа растительных полифеноль-ных соединений, влияющих на проницаемость сосудов сходным образом с витамином С.

Наиболее богаты витамином Р лимоны, гречиха, черноплодная рябина, чёрная смородина, листья чая, плоды шиповника.

Суточная потребность для человека точно не

установлена. Биологическая роль флавоноидов заключается в стабилизации межклеточного матрик-са соединительной ткани и уменьшении проницаемости капилляров. Многие представители группы витамина Р обладают гипотензивным действием. Клиническое проявление гипоавитаминоза витамина Р характеризуется повышенной кровоточивостью дёсен и точечными подкожными кровоизлияниями, общей слабостью, быстрой утомляемостью и болями в конечностях. В таблице 3-2 перечислены суточные потребности, коферментные формы, основные биологические функции водорастворимых витаминов, а также характерные признаки авитаминозов.

Б. ЖИРОРАСТВОРИМЫЕ ВИТАМИНЫ

1. Витамин А (ретинол) - циклический, ненасыщенный, одноатомный спирт.

Источники. Витамин А содержится только в животных продуктах: печени крупного рогатого скота и свиней, яичном желтке, молочных

Строение провитамина А (1), витамина А (2) и его производных (3, 4)

Таблица 3-2. Водорастворимые витамины

продуктах; особенно богат этим витамином рыбий жир. В растительных продуктах (морковь, томаты, перец, салат и др.) содержатся каротиноиды, являющиеся провитаминами А. В слизистой оболочке кишечника и клетках печени содержится специфический фермент каротиндиоксигеназа, превращающий кароти-ноиды в активную форму витамина А. Суточная потребность витамина А взрослого человека составляет от 1 до 2,5 мг витамина или от 2 до 5 мг β-каротинов. Обычно активность витамина А в пищевых продуктах выражается в международных единицах; одна международная единица (МЕ) витамина А эквивалентна 0,6 мкг β-каротина и 0,3 мкг витамина А.

Биологические функции витамина А. В организме ретинол превращается в ретиналь и ретиное-вую кислоту, участвующие в регуляции ряда функций (рост и дифференцировка клеток); они также составляют фотохимическую основу акта зрения.

Наиболее детально изучено участие витамина А в зрительном акте (рис. 3-3). Светочувствительный аппарат глаза - сетчатка. Падающий на сетчатку свет адсорбируется и трансформируется пигментами сетчатки в другую форму энергии. У человека сетчатка содержит 2 типа рецепторных клеток: палочки и колбочки. Первые реагируют на слабое (сумеречное) освещение, а колбочки - на хорошее освещение (дневное зрение).

Рис. 3-3. Схема зрительного цикла. 1 - цис-ретиналь в темноте соединяется с белком опсином, образуя родопсин; 2 - под действием кванта света происходит фотоизомеризация 11-цис-ретиналя в транс-ретиналь; 3 - транс-ретиналь-опсин распадается на транс-ретиналь и опсин; 4 - поскольку пигменты встроены в мембраны светочувствительных клеток сетчатки, это приводит к местной деполяризации мембраны и возникновению нервного импульса, распространяющегося по нервному волокну; 5 - заключительный этап этого процесса - регенерация исходного пигмента. Это происходит при участии ретинальизомеразы через стадии: транс-ретиналь - трансретинол - цис-ретинол - цис-ретиналь; последний вновь соединяется с опсином, образуя родопсин.

Ретиноевая кислота, подобно стероидным гормонам, взаимодействует с рецепторами в ядре клеток-мишеней. Образовавшийся комплекс связывается с определёнными участками ДНК и стимулирует транскрипцию генов (см. раздел 4). Белки, образующиеся в результате стимуляции генов под влиянием ретиноевой кислоты, влияют на рост, дифференцировку, репродукцию и эмбриональное развитие (рис. 3-4).

Основные клинические проявления гиповитаминоза А. Наиболее ранний и характерный признак недостаточности витамина А у людей и экспериментальных животных - нарушение сумеречного зрения (гемералопия, или «куриная» слепота). Специфично для авитаминоза А поражение глазного яблока - ксерофталь-мия, т.е. развитие сухости роговой оболочки глаза как следствие закупорки слёзного канала в связи с ороговением эпителия. Это, в свою очередь, приводит к развитию конъюнктивита, отёку, изъязвлению и размягчению роговой оболочки, т.е. к кератома-ляции. Ксерофтальмия и кератомаляция при отсутствии соответствующего лечения могут привести к полной потере зрения.

У детей и молодых животных при авитаминозе А наблюдают остановку роста костей, кератоз эпителиальных клеток всех органов и, как следствие этого, избыточное ороговение кожи, поражение эпителия ЖКТ, мочеполовой системы и дыхательного аппарата. Прекращение роста костей черепа приводит к повреждению тканей ЦНС, а также к повышению давления спинномозговой жидкости. 2. Витамины группы D (кальциферолы) Кальциферолы - группа химически родственных соединений, относящихся к производным стеринов. Наиболее биологически активные витамины - D 2 и D 3 . Витамин D 2 (эргокальцифе-рол), производное эргостерина - растительного стероида, встречающегося в некоторых грибах, дрожжах и растительных маслах. При облучении пищевых продуктов УФО из эргостерина получается витамин D 2 , используемый в лечебных целях. Витамин D 3 , имеющийся у человека и животных, - холекальциферол, образующийся в коже человека из 7-дегидрохолестерина под действием УФ-лучей (рис. 3-5).

Витамины D 2 и D 3 - белые кристаллы, жирные на ощупь, нерастворимые в воде, но хорошо растворимые в жирах и органических растворителях.

Источники. Наибольшее количество витамина D 3 содержится в продуктах животного происхождения: сливочном масле, желтке яиц, рыбьем жире.

Рис. 3-4. Действие ретиноидов в организме. Вещества (названия в рамках) - компоненты пищи.

Рис. 3-5. Схема синтеза витаминов D 2 и D 3 . Провитамины D 2 и D 3 - стерины, у которых в кольце В две двойные связи. При воздействии света в процессе фотохимической реакции происходит расщепление кольца В. А - 7-дегидрохолестерин, провитамин D 3 (синтезируется из холестерина); Б - эргостерин - провитамин D 2 .

Суточная потребность для детей 12-25 мкг (500-1000 МЕ), для взрослого человека потребность значительно меньше.

Биологическая роль. В организме человека витамин D 3 гидроксилируется в положениях 25 и 1 и превращается в биологически активное соединение 1,25-дигидроксихолекальцифе-рол (кальцитриол). Кальцитриол выполняет гормональную функцию, участвуя в регуляции обмена Са 2+ и фосфатов, стимулируя всасывание Са 2+ в кишечнике и кальцифи-

кацию костной ткани, реабсорбцию Са 2+ и фосфатов в почках. При низкой концентрации Са 2+ или высокой концентрации D 3 он стимулирует мобилизацию Са 2+ из костей (см. раздел 11). Недостаточность. При недостатке витамина D у детей развивается заболевание «рахит», характеризуемое нарушением кальцифика-ции растущих костей. При этом наблюдают деформацию скелета c характерными изменениями костей (Х- или о-образная форма

ног, «чётки» на рёбрах, деформация костей черепа, задержка прорезывания зубов). Избыток. Поступление в организм избыточного количества витамина D 3 может вызвать гипервитаминоз D. Это состояние характеризуется избыточным отложением солей кальция в тканях лёгких, почек, сердца, стенках сосудов, а также остеопорозом с частыми переломами костей. 3. Витамины группы Е (токоферолы) Витамин Е был выделен из масла зародышей пшеничных зёрен в 1936 г. и получил название токоферол. В настоящее время известно семейство токоферолов и токотриенолов, найденных в природных источниках. Все они - метильные производные исходного соединения токола, по строению очень близки и обозначаются буквами греческого алфавита. Наибольшую биологическую активность проявляет α-токоферол.

Токоферолы представляют собой маслянистую жидкость, хорошо растворимую в органических растворителях.

α-Токоферол (5,7,8-триметилтокол)

Источники витамина Е для человека - растительные масла, салат, капуста, семена злаков, сливочное масло, яичный желток.

Суточная потребность взрослого человека в витамине примерно 5 мг.

Биологическая роль. По механизму действия токоферол является биологическим анти-оксидантом. Он ингибирует свободноради-кальные реакции в клетках и таким образом препятствует развитию цепных реакций перекисного окисления ненасыщенных жирных кислот в липидах биологических мембран и других молекул, например ДНК (см. раздел 8). Токоферол повышает биологическую активность витамина А, защищая от окисления ненасыщенную боковую цепь.

Клинические проявления недостаточности витамина

Е у человека до конца не изучены. Известно положительное влияние витамина Е при ле-

чении нарушения процесса оплодотворения, при повторяющихся непроизвольных абортах, некоторых форм мышечной слабости и дистрофии. Показано применение витамина Е для недоношенных детей и детей, находящихся на искусственном вскармливании, так как в коровьем молоке в 10 раз меньше витамина Е, чем в женском. Дефицит витамина Е проявляется развитием гемолитической анемии, возможно из-за разрушения мембран эритроцитов в результате ПОЛ. 4. Витамины K (нафтохиноны) Витамин К существует в нескольких формах в растениях как филлохинон (К 1), в клетках кишечной флоры как менахинон (К 2).

пуста, шпинат, корнеплоды и фрукты) и животные (печень) продукты. Кроме того, он синтезируется микрофлорой кишечника. Обычно авитаминоз К развивается вследствие нарушения всасывания витамина К в кишечнике, а не в результате его отсутствия в пище.

Суточная потребность в витамине взрослого человека составляет 1-2 мг.

Биологическая функция витамина К связана с его участием в процессе свёртывания крови (рис. 3-6). Он участвует в активации факторов свёртывания крови: протромбина (фактор II), проконвертина (фактор VII), фактора Кристмаса (фактор IX) и фактора Стюарта (фактор X). Эти белковые факторы синтезируются как неактивные предшественники. Один из этапов активации - их карбоксилирование по остаткам глутами-новой кислоты с образованием γ-карбок-сиглутаминовой кислоты, необходимой для связывания ионов кальция (см. раздел 13).

Рис. 3-6. Роль витамина К в свёртывании крови.

Витамин К участвует в реакциях карбокси-лирования в качестве кофермента. Для лечения и предупреждения гиповитаминоза К используют синтетические производные нафтохинона: менадион, викасол, синкавит.

Основное проявление авитаминоза К - сильное кровотечение, часто приводящее к шоку и гибели организма. В таблице 3-3 перечислены суточные потребности и биологические функции жирорастворимых витаминов, а также характерные признаки авитаминозов.

Таблица 3-3. Жирорастворимые витамины


Для цитирования: Нурмухаметова Е. КЛИНИЧЕСКАЯ ФАРМАКОЛОГИЯ. НЕДОСТАТОЧНОСТЬ ВИТАМИНОВ // РМЖ. 1998. №18. С. 10

Витамины играют важную роль в патогенезе некоторых заболеваний человека. Причинами дефицита витаминов могут быть общая недостаточность питания, пищевые извращения, мальабсорбция и алкоголизм, проведение гемодиализа, полное парентеральное питание и врожденные дефекты метаболизма.


При обсуждении физиологии витаминов важно учитывать следующее:
. Неспособность организма синтезировать органические соединения является результатом мутаций, произошедших на различных этапах эволюции; поэтому поставка витаминов извне в составе продуктов питания представляет собой разновидность заместительной терапии при врожденных дефектах метаболизма.
. Количественная потребность в витаминах значительно ниже по сравнению с таковой для аминокислот и эссенциальных жирных кислот. Это связано с тем, что витамины не являются строительным или энергетическим субстратом, а чаще всего служат лишь катализаторами различных биохимических реакций.
. Изолированная недостаточность некоторых витаминов (например, пантотеновой кислоты) у человека не описана. Возможно, это обусловлено их широкой распространенностью в различных продуктах или способностью организма эффективно сохранять данные вещества.
. Недостаточность витаминов при алкоголизме обусловлена многими факторами: сниженным их потреблением, нарушением абсорбции, генетической предрасположенностью.
. Для распознавания роли дефицита витаминов в развитии заболеваний необходимы знание проявлений дефицита и высокая настороженность врача в этом отношении; подтверждением правильности трактовки служит эффективность заместительной терапии, поскольку возможности биохимически доказать недостаточность того или иного витамина весьма ограничены.

Недостаточность ниацина (никотиновой кислоты, B 5 ) или пеллагра

Биохимия

Ниацин (никотиновая кислота и ее производные) в определенном смысле не является витамином, так как возможен его синтез из триптофана (в среднем из 60 мг триптофана образуется 1 мг ниацина). Это обстоятельство необходимо учитывать при определении диетических норм. Многие пищевые продукты, например злаки, содержат связанную форму ниацина, которая не усваивается организмом. Витамин быстро абсорбируется из кишечника; примерно 1/5 его часть подвергается декарбоксилированию с образованием никотин-мочевой кислоты, остальное количество экскретируется с мочой в метилированном виде.

Механизм действия

Ниацин входит в состав никотинамидадениндинуклеотида (НАД) и никотинамидадениндинуклеотидфосфата (НАДФ), которые служат кофакторами многих окислительно-восстановительных реакций.

Потребность

Потребность в ниацине составляет 5 - 20 мг/сут в зависимости от возраста и пола и в отличие от многих других витаминов не увеличивается при беременности.

Клинические проявления

Ранее пеллагра существовала в качестве эндемического заболевания в Южной Америке и многих других регионах мира. Ее развитие обычно связывают с высоким потреблением кукурузы и сорго, однако патогенез пеллагры, вероятно, более сложен. Определенную роль может играть процесс помола злаков, который ингибирует высвобождение связанного ниацина. Как бы то ни было, эндемическая пеллагра исчезла благодаря просветительской деятельности в отношении питания и обогащению хлебных злаков ниацином. Пеллагра может служить проявлением карциноидного синдрома, при котором меняется метаболизм триптофана, или болезни Хартнупа (врожденная патология, при которой резко снижается абсорбция некоторых аминокислот, в том числе триптофана).
Для пеллагры характерны следующие клинические проявления:
. дерматит (гиперкератоз, гиперпигментация, десквамация, повышенная фоточувствительность кожи);
. психические нарушения (деменция, сонливость, апатия, галлюцинации, потеря памяти, психозы, парестезия, полиневрит);
. диарея;
. поражения слизистых (ахлоргидрия, глоссит, стоматит, вагинит).
Диагноз основывается на клинических проявлениях и эффективности заместительной терапии. Характерно снижение экскреции с мочой метаболитов никотиновой кислоты и триптофана и содержания НАД и НАДФ в эритроцитах и триптофана в плазме.
При эндемической пеллагре могут быть назначены достаточно небольшие (10 мг/сут) дозы ниацина при адекватном содержании в рационе триптофана. При болезни Хартнупа и карциноидном синдроме необходимо использовать большие дозы ниацина - 40 - 200 мг/сут.

Недостаточность тиамина B 1 — бери-бери

Биохимия

Тиамин синтезируется различными растениями и микроорганизмами (в том числе населяющими желудочно-кишечный тракт). В теле человека содержится 25 - 30 мг этого витамина: 80% - в форме дифосфата (пирофосфата), 20% - в виде трифосфата и монофосфата. Большие количества тиамина содержат скелетная мускулатура, сердце, печень, почки и мозг.

Механизм действия

Тиамин служит коферментом для нескольких реакций, в ходе которых происходит разрыв углеродных связей - окислительного декарбоксилирования a -кетокислот (пирувата и a -кетоглутарата), реакций пентозного цикла и др. Предполагается, что тиамин играет также определенную роль в функционировании нейронов, так как он был обнаружен в аксональных мембранах; кроме того, электрическая стимуляция нервов сопровождается высвобождением дифосфата и трифосфата тиамина.

Потребность

Суточная потребность в тиамине обеспечивается приемом 0,5 - 1,5 мг этого вещества. Витамин содержится во многих пищевых продуктах (мясе, овощах, оболочках злаков), но отсутствует в растительном масле, жирах и рафинированном сахаре. Ряд факторов может повышать потребность в тиамине (пища, содержащая тиаминазы, повышенное потребление углеводов, беременность, лактация, тиреотоксикоз, высокая температура). Потери витамина возрастают при применении мочегонных препаратов, проведении гемодиализа, перитонеального диализа и при диарее. Мальабсорбция, алкоголизм, дефицит фолатов приводят к нарушению абсорбции тиамина.

Клинические проявления

При дефиците тиамина поражаются сердечно-сосудистая (влажная форма бери-бери) и нервная (сухая форма бери-бери) системы.
Влажная форма бери-бери подразделяется на острую и хроническую. Острая протекает по типу сердечно-сосудистого коллапса, а для хронической характерны повышение артериального давления, отеки, тахикардия.
Для сухой формы бери-бери типичны следующие проявления:
. периферическая нейропатия (чаще всего симметричное поражение голеней - нарушение чувствительности, двигательных функций и рефлексов);
. синдром Корсакова (спутанность сознания, ретроградная амнезия, конфабуляция);
. энцефалопатия Вернике (нистагм, офтальмоплегия, кома).
Для лабораторной диагностики дефицита тиамина может быть использовано определение активности транскеталазы в эритроцитах, которая понижена, но возрастает после добавления тиаминпирофосфата (ТПФ-эффект). Диагностическое значение имеет повышение активности этого фермента на 15% и более.
При подозрении на бери-бери показано срочное назначение тиамина в дозе 50 мг/сут внутримышечно в течение нескольких дней, после чего в дозе 2,5 - 5 мг/сут per os в течение еще месяца.

Врожденные тиаминзависимые нарушения метаболизма

К таким состояниям относятся мегалобластная анемия, возникающая при снижении клеточного транспорта тиамина; лактоацидоз, обусловленный низкой активностью печеночной пируватдегидрогеназы, и кетоацидурия вследствие низкой активности дегидрогеназы кетокислот с разветвленной цепью. При этих состояниях эффективны терапевтические дозы тиамина.

Недостаточность пиридоксина (витамин В 6 )

Биохимия

Термин “витамин В6” объединяет группу соединений - пиридоксин, пиридоксаль и пиридоксамин. Активной формой витамина В6 является пиридоксальфосфат. Этот витамин содержится практически во всех продуктах питания; мясо, печень, овощи, злаки - наилучшие его источники.

Механизм действия

Пиридоксальфосфат как кофермент трансаминаз, синтетаз и гидроксилаз участвует во многих реакциях метаболизма аминокислот (триптофана, глицина, серина, глутамина и серосодержащих), в синтезе предшественников гема (d-аминолевуленовой кислоты), в некоторых процессах в центральной нервной системе.

Потребность

Потребность в этом витамине составляет 0,5 - 2 мг/сут. Она возрастает при беременности и приеме эстрогенов, повышенном потреблении белков, повторном гемо- и перитонеальном диализе. Метаболиты этанола способствуют разрушению пиридоксина.

Клинические проявления

Многие препараты (изониазид, циклосерин, пеницилламин) выступают как антагонисты пиридоксина, приводя к его недостаточности. Клинически это проявляется дерматозом, глосситом, хейлозом, тошнотой, рвотой, судорогами.
Лабораторная диагностика данного гиповитаминоза основывается на определении экскреции с мочой метаболитов триптофана после нагрузки триптофаном, экскреции пиридоксина и его метаболитов, измерении активности различных аминотрансфераз в крови. Наиболее точным тестом на сегодня считается определение in vitro изменения активности глутамат- и пируват-трансаминаз эритроцитов при добавлении пиридоксальфосфата.
Получение с продуктами питания 30 мг/сут витамина В 6 приводит к нормализации обмена триптофана при беременности, приеме оральных контрацептивов и изониазида. Потребность пациентов, получающих пеницилламин, может достигать 100 мг/сут.
Пиридоксинзависимые заболевания
Существует несколько генетических аномалий, при которых нарушается метаболизм витамина В6. Для них характерны такие симптомы, как судороги, умственная отсталость, сидеробластная анемия, цистатионинурия, ксантуреновая ацидурия.

Недостаточность рибофлавина (B 2 )

Рибофлавин в составе флавинмононуклеотида (ФМН) или флавинадениндинуклеотида (ФАД) участвует во многих окислительно-восстановительных реакциях. Рекомендуемая суточная доза - 0,5 - 1,5 мг. Недостаточность рибофлавина может развиваться при рибофлавиндефицитной диете (с низким содержанием белков животного происхождения) или при приеме антагонистов рибофлавина (галактофлавин). Проявления недостаточности - ангулярный стоматит, хейлоз, глоссит, себорейный дерматит, нормохромная нормоцитарная анемия. Эти явления подвергаются обратному развитию при приеме рибофлавина. Дефицит рибофлавина практически всегда возникает на фоне недостаточности других водорастворимых витаминов. Потребность в нем возрастает у пациентов, находящихся на гемо- и перитонеальном диализе.

Недостаточность витамина С (цинга)

Биохимия

В отличие от большинства животных человеческий организм не способен синтезировать витамин С из глюкозы в связи с дефектностью необходимого для этого фермента (L-глюконолактоноксидазы) и нуждается во введении его извне. В организме человека содержится 1,5 - 3 г витамина С.

Механизм действия

Витамин С (аскорбиновая кислота) является сильным восстановителем и, обратимо окисляясь и легко восстанавливаясь, функционирует как клеточная окислительно-восстановительная система. Этот витамин необходим для образования коллагена и способствует сохранению целостности тканей мезенхимального происхождения - соединительной (в том числе стенки сосудов), остеоидной и дентина зубов. Витамин С служит протектором редуктазы фолиевой кислоты, участвует в распределении и накоплении железа.

Потребность

Суточная потребность - 30-60 мг. Витамин содержится в молоке, мясе, фруктах и овощах. Однако он частично (примерно на 50%) разрушается при длительном хранении фруктов и овощей и при приготовлении пищи. Потребность в витамине возрастает во время беременности, лактации, при тиреотоксикозе, ахлоргидрии и диарее.

Клинические проявления

Первыми симптомами являются слабость, раздражительность, неопределенные боли в мышцах и суставах. Затем появляются опухание, кровоточивость десен, петехии, экхимозы на коже и кровоизлияния во внутренние органы, выпадают зубы. Старые рубцы расходятся, новые раны не заживают. Характерен гиперкератоз волосяных фолликулов с гиперемией и кровоизлияниями вокруг них. Распространена нормохромная нормоцитарная анемия, но примерно у 20% больных анемия макроцитарная или мегалобластная из-за сопутствующего дефицита фолата.
В некоторых лабораториях для диагностики недостаточности витамина С используют определение уровня аскорбиновой кислоты в тромбоцитах; содержание витамина в плазме менее информативно. У пациентов часто повышен уровень билирубина и положительна эндотелиальная проба.
Терапевтическая доза аскорбиновой кислоты для взрослых - по 100 мг 3-5 раз в день в течение месяца, затем - 100 мг/сут. Детям назначают обычно по 10 - 25 мг 3 раза в день. Одновременно должна проводиться корректировка диеты.

Недостаточность биотина

Биотин представляет собой кофермент карбоксилаз. Рекомендуемая норма потребления - 150 - 300 мкг/сут. Недостаточность биотина развивается при длительном употреблении сырого яичного белка, парентеральном питании (у больных с мальабсорбцией), не включающем биотин, при белково-энергетической недостаточности и у пациентов с множественной недостаточностью карбоксилаз. Клинические проявления недостаточности биотина напоминают таковые при дефиците эссенциальных жирных кислот: дерматит, конъюнктивит, алопеция, атаксия, задержка развития. При множественном дефиците карбоксилаз могут развиться неврологическая симптоматика и органическая ацидурия.
Диагностика основана на снижении экскреции биотина с мочой и уменьшении клинических проявлений в ответ на введение биотина в дозе 100 мг/сут.

Недостаточность витамина А

Биохимия

Источники витамина А (ретинола) - печень, молоко, почки. В различных растениях содержатся b -каротин и другие кератиноиды, которые в клетках слизистой тонкой кишки расщепляются с образованием ретинола; последний затем эстерифицируется. Депо ретинола служит печень. В кровь он попадает связанным со специфическим белком RBP. В организме человека содержится 300 - 900 мг витамина. Экскретируется с желчью и мочой.

Механизм действия

Ретинол играет важную роль в процессах роста, репродукции, а также зрительной функции. Принимает активное участие в синтезе гликопротеинов.

Клинические проявления

Недостаточность витамина А развивается при отсутствии его в пище, при нарушении его всасывания, депонирования и транспорта (спру, анастомозы в обход двенадцатиперстной кишки, заболевания печени, протеинурия, длительное хранение растворов для парентерального питания).
Наиболее ранний признак - нарушение темновой адаптации (гемералопия), за которым следуют дегенеративные изменения сетчатки, ксероз конъюнктивы, образование бляшек Бито (“пенистые” бляшки из остатков эпителия на конъюнктиве). Эти изменения обратимы при назначении витамина А. В более серьезных случаях развиваются кератомаляция и перфорация роговицы, эндофтальмит и слепота. Характерны также сухость и гиперкератоз кожи.
Для диагностики могут быть использованы достаточно сложные методы - темновая адаптометрия, скотометрия и электроретинография. Но чаще всего диагноз основывается на наличии предрасполагающих факторов - пониженного питания у детей или заболеваний, обычно ассоциирующихся с гиповитаминозом А.
При гемералопии и незначительных изменениях конъюнктивы эффективен ежедневный прием 30 000 МЕ ретинола в течение недели. При поражениях роговицы необходимо срочное введение 20 000 МЕ/кг/сут витамина А в течение 5 дней. Детям из групп риска по гиповитаминозу А назначают 200 000 МЕ ретинола per os в течение двух дней.

Недостаточность витамина Е

Биохимия

К группе витаминов Е относятся восемь различных токоферолов; наиболее активный среди них - a -токоферол. После всасывания в кишечнике происходят связывание витамина с b -липопротеидами и транспортировка его в различные ткани. Экскретируется токоферол главным образом с желчью.

Механизм действия

Витамин Е действует как антиоксидант, предотвращая образование в клетках токсичных продуктов перекисного окисления липидов.

Потребность

Рекомендуемые нормы потребления токоферола - 5 - 10 мг/сут. При содержании в диете больших количеств полиненасыщенных жирных кислот потребность возрастает, а при наличии антиоксидантов - снижается. Витамин широко распространен в различных продуктах питания, поэтому изолированный дефицит практически не встречается. Потребность грудных детей в токофероле обеспечивается женским молоком.

Клинические проявления

Недостаточность обычно развивается при нарушении всасывания жиров, абеталипопротеинемии и хронических холестатических заболеваниях печени. Характерны неврологические изменения (арефлексия, дисфункция задних рогов спинного мозга, периферическая невропатия). Лечение (50 - 100 МЕ/сут в течение месяца) наиболее эффективно на ранних стадиях заболевания.

Недостаточность витамина К

Активностью витамина К обладают филлохинон (К 1 ), содержащийся в овощах, особенно в зеленых листьях, и менахинон (К 2 ), синтезируемый кишечной микрофлорой. Этот витамин является компонентом микросомальных ферментных систем различных тканей, участвующих в синтезе g -карбоксиглутаминовой кислоты, входящей в состав многих белков, в том числе факторов свертывания. От наличия витамина К зависит выработка печенью II, VII, IX и X факторов свертывания.
Для абсорбции витамина К из кишечника необходимы жиры, поэтому его недостаточность развивается при нарушениях всасывания жиров. Длительное применение антибиотиков, вызывающее нарушение кишечной микрофлоры, также может приводить к дефициту витамина К. Недостаточность витамина отмечается у новорожденных в связи с неразвитостью кишечной флоры и особенностями питания.
Перед проведением оперативных вмешательств и родами необходимо определение уровня протромбина. Пациенты, у которых этот показатель составляет менее 70% от нормы, должны получать препарат витамина К.

Литература:

Fauci AS, Braunwald E, Isselbacher KJ. Harrison’s principles of internal medicine14th edition, 1998. Chapter 79: Vitamin deficiency and excess, P. 480-7.


Биологическая роль

1. ТПФ участвует в реакциях декарбоксилирования α-кетокислот;

2. ТПФ участвует в расщеплении и синтезе α-оксикислот (например, кетосахаров), т.е. в реакциях синтеза и расщепления углерод-углеродных связей, находящихся в непосредственной близости к карбонильной группе.

Тиамин-зависимые ферменты – пируватдекарбоксилаза и транскетолаза.

Авитаминоз и гиповитаминоз .

Болезнь бери-бери, нарушения функций пищеварительного тракта, изменения психики, изменения деятельности сердечно-сосудистой деятельности, развитие отрицательного азотистого баланса и т.д.

Источники: растительные продукты, мясо, рыба, молоко, бобовые растения – фасоль, горох, соя и др.

Суточная потребность: 1,2-2,2 мг.

Витамин В2 (рибофлавин, витамин роста)

Кроме самого рибофлавина в природных источниках содержатся его коферментные производные: флавинмононуклеотид (ФМН) и флавинадениндинуклеотид (ФАД). Эти коферментные формы витамина В2 количественно преобладают в большинстве животных и растительных тканей, а также в клетках микроорганизмов.

В зависимости от источника получения витамин В2 называли по разному: лактофлавин (из молока), гепафлавин (из печени), вердофлавин (из растений), овофлавин (из яичного белка).

Химическая структура: в основе молекулы рибофлавина лежит гетероциклическое соединение – изоаллоксазин (сочетание бензольного, пиразинового и пиримидинового колец), к которому в положении 9 присоединен пятиатомный спирт рибитол. Химический синтез рибофлавина осуществлен в 1935 г. Р.Куном.


Рибофлавин

Растворы витамина В2 имеют оранжево-желтую окраску и характеризуются желто-зеленой флюоресценцией.

Желтый цвет присущ окисленной форме препарата. Рибофлавин в восстановленной форме – бесцветен.

В2 хорошо растворим в воде, устойчив в кислых растворах,легко разрушается в нейтральных и щелочных растворах. В2 чувствителен к видимому и УФ-излучению, легко подвергается обратимому восстановлению, присоединяя Н2 по месту двойной связи и превращаясь в бесцветную лейкоформу. Это свойство витамина В2 легко окисляться и восстанавливаться лежит в основе его биологического действия в клеточном метаболизме.

Авитаминоз и гиповитаминоз: остановка роста, выпадение волос, воспалительные процессы слизистой оболочки языка, губ и т.д. Кроме того, общая мышечная слабость и слабость сердечной мышцы; помутнение хрусталика (катаракта).

Биологическая роль:

1. Входит в состав флавиновых коферментов ФАД, ФМН, которые являются простетическими группами флавопротеинов;

2. Участвует в составе ферментов при прямом окислении исходного субстрата с участием О2, т.е. дегидрировании. К коферментам этой группы относятся оксидазы L- и D-аминокислот;

3. В составе флавопротеинов осуществляют перенос электронов от восстановленных пиридиновых коферментов.

Источники: дрожжи, хлеб (мука грубого помола), семена злаковых, яйца, молоко, мясо, свежие овощи, молоко (в свободном состоянии), печень и почки (в составе ФАД и ФМН).

Суточная потребность: 1,7мг.

Витамин В6 (пиридоксин, антидермический)

Открыт в 1934 г. П. Дьерди. Впервые выделен из дрожжей и печени.

Химическая структура . Витамин В6 является производным 3-оксипиридина. Термином «витамин В6» по рекомендации Международной комиссии по номенклатуре биологической химии, обозначают все три производных 3-оксипиридина, обладающих одинаковой витаминной активностью: пиридоксин (пиридоксол), пиридоксаль и пиридоксамин.


пиридоксин пиридоксаль пиридоксамин

В6 хорошо растворим в воде и этаноле. Водные растворы весьма устойчивы по отношению к кислотам и щелочам, но чувствительны к свету в нейтральной зоне рН.

Авитаминозы гиповитаминоз. У человека недостаточность витамина В6 проявляется в угнетении выработки эритроцитов, дерматите, воспалительных процессах кожи, замедлении роста животных, нарушении обмена триптофана.

Биологическая роль. Все три производные 3-оксипиридина наделены витаминными свойствами, коферментные функции выполняют только фосфорилированные производные пиридоксаля и пиридоксамина:


пиридоксаминфосфат пиридоксальфосфат

Пиридоксаминфосфат как кофермент функционирует в реакциях превращения карбонильных соединений, например в реакциях образования 3,6-дтдезоксигексоз,входящих в антигены, локализованные на поверхности бактериальных клеток.

Биохимические функции пиридоксальфосфата:

1. транспортная – участие в процессе активного переноса некоторых аминокислот через клеточные мембраны;

2. каталитическая – участие в качестве кофермента в широком круге ферментативных реакций (переаминирование, декарбоксилирование, рацемизация аминокислот и др.);

3. функция регулятора скорости оборота пиридоксалевых ферментов – удлинение времени полураспада в тканях некоторых пиридоксальных апоферментов при их насыщении пиридоксальфосфатом,повышающим устойчивость апоферментов к тепловой денатурации и действию специфических протеиназ.

При недостаточности витамина В6 наблюдаются нарушения метаболизма аминокислот.

Источники: в продуктах растительного и животного происхождения (хлеб, горох, фасоль, картофель, мясо, печень и т.д.). Он также синтезируется микрофлорой кишечника!

Суточная потребность: около 2 мг.

Витамин В12 (кобаламин,антианемический)

Кобаламины – групповое название соединений, обладающих В12-витаминной активностью.

Химическая структура. Центральной частью молекулы витамина В12 является циклическая корриновая система, напоминающая по структуре порфирины (отличаются от них тем, что два пиррольных кольца плотно сконденсированы друг с другом, а не соединены через метиленовый мостик). Под плоскостью корринового кольца, в центре которого находится Со, находится присоединенный к кобальту остаток 5-дезоксиаденозина.

Авитаминоз и гиповитаминоз. Недостаток витамина В12 приводит к развитию злокачественной анемии, нарушению деятельности ЦУНС и резкому снижению кислотности желудочного сока.

Для активного процесса всасывания витамина В13 в тонком кишечнике обязательным условием является наличие в желудочном соке внутреннего фактора Касла (особого белка – гастромукопротеина), который специфически связывает витамин В12 в особый сложный комплекс и в таком виде всасывается в кишечнике.

Биологическая роль. Выявлены ферментные системы в состав которых в виде простетической группы входят кобаломидные коферменты

Химические реакции, в которых витамин В12 принимает участие как кофермент, условно делят на две группы. К первой группе относятся реакции трансметилирования, в которых метилкобаламин выполняет роль промежуточного переносчика метильной группы (реакции синтеза метионина и ацетата).

Вторая группа реакций при участии В12-коферментов заключается в переносе водорода в реакциях изомеризации.

Источники: мясо, говяжья печень, почки, рыба, молоко, яйца. Главным местом накопления витамина В12 в организме человека является печень, в которой содержится до нескольких мг витамина.

Витамин В12 является единственным витамином, синтез которого осуществляется исключительно микроорганизмами.

Синтезируется кишечной микрофлорой !

Суточная потребность 0,003 мг.

Довольно много витамина В1, содержится в пшеничном хлебе из муки грубого помола, в оболочке семян хлебных злаков, в сое, фасоли, горохе. Много его в дрожжах, меньше - в картофеле, моркови, капусте. Из продуктов животного происхождения наиболее богаты тиамином печень, нежирная свинина, почки, мозг, яичный желток. Суточная потребность в тиамине 1,1 - 1,5 мг.

Витамин В1, в форме ТПФ (тиаминпирофосфата) является составной частью ферментов, катализирующих реакции прямого и окислительного декарбоксилирования кетокислот.

Витамин В1 и его метаболиты (в основном его ацетилированное производное, а также производные тиазола и пиримидина) выводятся с мочой, причем витамин В1 секретируется почечными канальцами. Витамин В 1 быстро проникает в ткани, накапливаясь в мозге, сердце, почках, надпочечниках, печени, скелетных мышцах. Около 50% всего витамина в организме содержится в мышечной ткани.

В печени витамин В 1 превращается в активные метаболиты - тиаминтрифосфат и тиаминдифосфат (кокарбоксилаза), для этого превращения необходимы специфический АТФ-зависимый фермент тиаминпирофосфокиназа и определенное количество ионов магния. На фоне дефицита магния метаболизм витамина В 1 затруднен.

1.Участие ТПФ в реакции прямого декарбоксилирования ПВК. При декарбоксилировании ПВК с помощью пируватдекарбоксилазы образуется ацетальдегид, который под воздействием алкогольдегидрогеназы превращается в этанол. ТПФ является незаменимым кофактором пируватдекарбоксилазы. Этим ферментом богаты дрожжи.

2.Участие ТПФ в реакциях окислительного декарбоксилирования. Окислительное декарбоксилирование ПВК катализирует пируватдегидрогеназа. В результате этой реакции ПВК, образовавшаяся при окислении глюкозы, включается в главный метаболический путь клетки - цикл Кребса, где окисляется до углекислоты и воды с выделением энергии.

3.ТПФ-кофермент транскетолазы. Транскетолаза - фермент пентозофосфатного пути окисления углеводов. Физиологическая роль этого пути заключается в том, что он является основным поставщиком NADFH*H+ и рибозо-5-фосфата.

4.Витамин В1 принимает участие в синтезе ацетилхолина, катализируя в пируватдегидрогеназной реакции образование ацетил-КоА - субстрата ацетилирования холина.

5. Помимо участия в ферментативных реакциях, тиамин может выполнять и некоферментные функции, конкретный механизм которых еще нуждается в уточнении. Полагают, что тиамин участвует в кроветворении.

Недостаток в пище тиамина (гиповитаминоз) приводит к значительному накоплению пировиноградной и α-кетоглутаровой кислот, снижению активности тиаминзависимых ферментов в крови и тканях организма.

Экспериментально доказано, что тиаминовая недостаточность сопровождается нарушением структуры и функции митохондрий.

Гипервитаминоз не описан. Избыток принятого витамина быстро выводится с мочой и не накапливаются в тканях и органах. Редкие симптомы передозировки могут проявиться в треморе, герпесе, отеках, нервозности, учащенном сердцебиении и аллергических проявлениях.

3.У ребенка 2-х месяцев увеличена печень. Сахар крови 3,0 мм/л глюкозаоксидазным методом; в моче желчные пигменты, проба Ниландера положительная; белок отсутствует. Объясните происходящие изменения.

Ребенок болеет галактоземией. В основе этого заболевания лежит недостаточность фермента га-лактозо-1-фосфат-уридилтрансферазы (ГФТ), переводящего га-лактозо-1-фосфат в уридиндифосфогалактозу и к накоплению в крови и тканях галактозы и токсического галактозо-1-фосфата. С возрастом происходит компенсаторное увеличение активности фермента уридинфосфатгалактозопирофосфорилазы, способствующего метаболизму галактозы побочным путем. Патологические изменения были связаны с высокой концентрацией галактозы в крови и тканях. Галактоза поступает в организм с пищей (лактозой). В результате недостаточности фермента ГФТ происходит накопление галактозы и галактозо-1-фосфата в крови и разных тканях, выделение их с мочой, накопление в хрусталике галактитола (производное галактозы). Позже происходит нарушение обмена глюкозы в печени, почках, головном мозге вследствие угнетения активности фермента фосфоглкжомутазы. В крови снижается содержание глюкозы, а в моче появляются аминокислоты (метио-нин, цистеин и др.).
Заболевание развивается после рождения при вскармливании младенца молоком, с которым поступает лактоза - источник неметаболизируемой галактозы. Основными симптомами заболевания являются: желтуха новорожденных, рвота и понос, приводящие к обезвоживанию организма, постепенное развитие умственной отсталости, увеличение печени и селезенки, общая дистрофия, катаракта. При лабораторном исследовании обнаруживаются галактоза и белок в моче, снижение активности галактозо-1-фосфат-уридилтрансферазы в эритроцитах. Увеличение количества галактозы наблюдается также в спинномозговой жидкости и моче, и поражаются печень, мозг, почки, развивается катаракта, желтуха, гепатомегалия, диспепсия.

B 1 содержит атомы серы , поэтому он был назван тиамином . В химической структуре его содержатся два кольца – пиримидиновое и тиазоловое, соединенных метиленовой связью. Обе кольцевые системы синтезируются отдельно в виде фосфорилированных форм, затем объединяются через четвертичный атом азота .

Тиамин хорошо растворим в воде . Водные растворы тиамина в кислой среде выдерживают нагревание до высоких температур без снижения биологической активности . В нейтральной и особенно в щелочной среде витамин B 1 , наоборот, быстро разрушается при нагревании. Этим объясняется частичное или даже полное разрушение тиамина при кулинарной обработке пищи, например выпечке теста с добавлением гидрокарбоната натрия или карбоната аммония . При окислении тиамина образуется тио-хром, дающий синюю флюоресценцию при УФ-облучении. На этом свойстве тиамина основано его количественное определение.

Витамин B 1 легко всасывается в кишечнике, но не накапливается в тканях и не обладает токсическими свойствами. Избыток пищевого тиамина быстро выводится с мочой . В превращении витамина B 1 в его активную форму – тиаминпирофосфат (ТПФ), называемый также тиамин-дифосфатом (ТДФ), участвует специфический АТФ-зависимый фермент тиаминпирофосфокиназа, содержащаяся главным образом в печени и ткани мозга. Опытами с меченным 32 Р АТФ доказан перенос на тиамин целиком пирофосфатной группы в присутствии фермента . ТПФ имеет следующее строение:

Если витамин B 1 поступает с пищей в виде ТПФ, то пирофосфатная группа отщепляется от него под действием кишечных пирофосфатаз.

При отсутствии или недостаточности тиамина развивается тяжелое заболевание – бери-бери, широко распространенное в ряде стран Азии и Индокитая, где основным продуктом питания является рис. Следует отметить, что недостаточность витамина B 1 встречается и в европейских странах, где она известна как симптом Вернике, проявляющийся в виде энцефалопатии, или синдром Вейса с преимущественным поражением сердечно-сосудистой системы. Специфические симптомы связаны с преимущественными нарушениями деятельности и сердечно-сосудистой, и нервной систем, а также пищеварительного тракта. В настоящее время пересматривается точка зрения, что бери-бери у человека является следствием недостаточности только витамина В 1 . Более вероятно, что это заболевание представляет собой комбинированный авитаминоз или полиавитаминоз, при котором организм испытывает недостаток также в рибофлавине , пиридоксине , витаминах РР , С и др. На животных и добровольцах получен экспериментальный авитаминоз B l . В зависимости от преобладания тех или иных симптомов различают ряд клинических типов недостаточности, в частности полиневритную (сухую) форму бери-бери, при которой на первый план выступают нарушения в периферической нервной системе. При так называемой отечной форме бери-бери преимущественно поражается сердечно-сосудистая система, хотя отмечаются также явления полиневрита. Наконец, выделяют остро протекающую кардиальную форму болезни, называемую пернициозной, которая приводит к летальному исходу в результате развития острой сердечной недостаточности. В связи с внедрением в медицинскую практику кристаллического препарата тиамина летальность резко сократилась и наметились рациональные пути лечения и профилактики этого заболевания.

К наиболее ранним симптомам авитаминоза В 1 относятся нарушения моторной и секреторной функций пищеварительного тракта: потеря аппетита, замедление перистальтики (атония) кишечника, а также изменения психики, заключающиеся в потере памяти на недавние события, склонности к галлюцинациям; отмечаются изменения деятельности сердечно-сосудистой системы: одышка, сердцебиение, боли в области сердца. При дальнейшем развитии авитаминоза выявляются симптомы поражения периферической нервной системы (дегенеративные изменения нервных окончаний и проводящих пучков), выражающиеся в расстройстве чувствительности, ощущении покалывания, онемения и болей по ходу нервов. Эти поражения завершаются контрактурами, атрофией и параличами нижних, а затем и верхних конечностей. В этот же период развиваются явления сердечной недостаточности (учащение ритма, сверлящие боли в области сердца). Биохимические нарушения при авитаминозе В 1 проявляются развитием отрицательного азотистого баланса, выделением в повышенных количествах с мочой аминокислот и креатина, накоплением в крови и тканях α-кетокислот, а также пентозосахаров. Содержание тиамина и ТПФ в сердечной мышце и печени у больных бери-бери в 5-6 раз ниже нормы.

Биологическая роль. Экспериментально доказано, что витамин B 1 в форме ТПФ является составной часть минимум 5 ферментов , участвующих в промежуточном обмене веществ . ТПФ входит в состав двух сложных ферментных систем – пируват - и α - кетоглутарат дегидрогеназных комплексов , катализирующих окислительное декарбоксилирование пировиноградной и α-кетоглутаровой кислот . В составе транскетолазы ТПФ участвует в переносе гликоальдегидного радикала от кетосахаров на альдосахара (см. главу 10). ТПФ является

Похожие публикации