Вещественная часть комплексного числа. Комплексные числа: определение и основные понятия

Напомним необходимые сведения о комплексных числах.

Комплексное число - это выражение вида a + bi , где a , b - действительные числа, а i - так называемая мнимая единица , символ, квадрат которого равен –1, то есть i 2 = –1. Число a называется действительной частью , а число b - мнимой частью комплексного числа z = a + bi . Если b = 0, то вместо a + 0i пишут просто a . Видно, что действительные числа - это частный случай комплексных чисел.

Арифметические действия над комплексными числами те же, что и над действительными: их можно складывать, вычитать, умножать и делить друг на друга. Сложение и вычитание происходят по правилу (a + bi ) ± (c + di ) = (a ± c ) + (b ± d )i , а умножение - по правилу (a + bi ) · (c + di ) = (ac bd ) + (ad + bc )i (здесь как раз используется, что i 2 = –1). Число = a bi называется комплексно-сопряженным к z = a + bi . Равенство z · = a 2 + b 2 позволяет понять, как делить одно комплексное число на другое (ненулевое) комплексное число:

(Например, .)

У комплексных чисел есть удобное и наглядное геометрическое представление: число z = a + bi можно изображать вектором с координатами (a ; b ) на декартовой плоскости (или, что почти то же самое, точкой - концом вектора с этими координатами). При этом сумма двух комплексных чисел изображается как сумма соответствующих векторов (которую можно найти по правилу параллелограмма). По теореме Пифагора длина вектора с координатами (a ; b ) равна . Эта величина называется модулем комплексного числа z = a + bi и обозначается |z |. Угол, который этот вектор образует с положительным направлением оси абсцисс (отсчитанный против часовой стрелки), называется аргументом комплексного числа z и обозначается Arg z . Аргумент определен не однозначно, а лишь с точностью до прибавления величины, кратной 2π радиан (или 360°, если считать в градусах) - ведь ясно, что поворот на такой угол вокруг начала координат не изменит вектор. Но если вектор длины r образует угол φ с положительным направлением оси абсцисс, то его координаты равны (r · cos φ ; r · sin φ ). Отсюда получается тригонометрическая форма записи комплексного числа: z = |z | · (cos(Arg z ) + i sin(Arg z )). Часто бывает удобно записывать комплексные числа именно в такой форме, потому что это сильно упрощает выкладки. Умножение комплексных чисел в тригонометрической форме выглядит очень просто: z 1 · z 2 = |z 1 | · |z 2 | · (cos(Arg z 1 + Arg z 2) + i sin(Arg z 1 + Arg z 2)) (при умножении двух комплексных чисел их модули перемножаются, а аргументы складываются). Отсюда следуют формулы Муавра : z n = |z | n · (cos(n · (Arg z )) + i sin(n · (Arg z ))). С помощью этих формул легко научиться извлекать корни любой степени из комплексных чисел. Корень n-й степени из числа z - это такое комплексное число w , что w n = z . Видно, что , а , где k может принимать любое значение из множества {0, 1, ..., n – 1}. Это означает, что всегда есть ровно n корней n -й степени из комплексного числа (на плоскости они располагаются в вершинах правильного n -угольника).

§1. Комплексные числа

1°. Определение. Алгебраическая форма записи.

Определение 1 . Комплексными числами называются упорядоченные пары действительных чисели, если для них определены понятие равенства, операции сложения и умножения, удовлетворяющие следующим аксиомам:

1) Два числа
и
равны тогда и только тогда, когда
,
, т.е.


,
.

2) Суммой комплексных чисел
и

и равное
, т.е.


+
=
.

3) Произведением комплексных чисел
и
называется число, обозначаемое
и равное, т.е.

∙=.

Множество комплексных чисел обозначаетсяC .

Формулы (2),(3) для чисел вида
принимают вид

откуда следует, что операции сложения и умножения для чисел вида
совпадают со сложением и умножением для вещественных чисел комплексное число вида
отождествляется с вещественным числом.

Комплексное число
называетсямнимой единицей и обозначается , т.е.
Тогда из (3)

Из (2),(3)  что и значит

Выражение (4) называется алгебраической формой записи комплексного числа.

В алгебраической форме записи операции сложения и умножения принимают вид:

Комплексное число обозначают
,– вещественная часть,– мнимая часть,– чисто мнимое число. Обозначение:
,
.

Определение 2 . Комплексное число
называетсясопряженным с комплексным числом
.

Свойства комплексного сопряжения.

1)

2)
.

3) Если
, то
.

4)
.

5)
– вещественное число.

Доказательство проводится непосредственным вычислением.

Определение 3 . Число
называетсямодулем комплексного числа
и обозначается
.

Очевидно, что
, причем


. Также очевидны формулы:
и
.

2°. Свойства операций сложения и умножения.

1) Коммутативность:
,
.

2) Ассоциативность:,
.

3) Дистрибутивность: .

Доказательство 1) – 3) проводится непосредственными вычислениями на основе аналогичных свойств для вещественных чисел.

4)
,
.

5) , C ! , удовлетворяющее уравнению
. Такое

6) ,C , 0, ! :
. Такое находится умножением уравнения на



.

Пример. Представим комплексное число
в алгебраической форме. Для этого умножим числитель и знаменатель дроби на число, сопряженное знаменателю. Имеем:

3°. Геометрическая интерпретация комплексных чисел. Тригонометрическая и показательная форма записи комплексного числа.

Пусть на плоскости задана прямоугольная система координат. Тогда
C можно поставить в соответствие точку на плоскости с координатами
.(см. рис. 1). Очевидно, что такое соответствие является взаимно однозначным. При этом действительные числа лежат на оси абсцисс, а чисто мнимые ­− на оси ординат. Поэтому ось абсцисс называютдействительной осью , а ось ординат − мнимой осью . Плоскость, на которой лежат комплексные числа, называется комплексной плоскостью .

Отметим, что и
симметричны относительно начала координат, аисимметричны относительноOx.

Каждому комплексному числу (т.е. каждой точке на плоскости) можно поставить в соответствие вектор с началом в точке O и концом в точке
. Соответствие между векторами и комплексными числами является взаимно однозначным. Поэтому вектор, соответствующий комплексному числу, обозначается той же буквой

Длина вектора
соответствующего комплексному числу
, равна
, причем
,
.

С помощью векторной интерпретации можно видеть, что вектор
− сумма векторови, а
− сумма векторови
.(см. рис. 2). Поэтому справедливы неравенства: ,

Наряду с длиной векторавведем в рассмотрение уголмежду вектороми осьюOx, отсчитываемый от положительного направления оси Ox: если отсчет ведется против часовой стрелки, то знак величина угла рассматривается положительной, если по часовой стрелке – то отрицательной. Этот угол называется аргументом комплексного числа и обозначается
. Уголопределяется не однозначно, а с точностью
… . Для
аргумент не определяется.

Формулы (6) задают так называемую тригонометрическую форму записи комплексного числа.

Из (5) следует, что если
и
то

,
.

Из (5)
что поикомплексное число определяется однозначно. Обратное неверно: а именно, по комплексному числуего модульнаходится однозначно, а аргумент, в силу (7), − с точностью
. Также из (7) следует, что аргументможет быть найден как решение уравнения

Однако не все решения этого уравнения являются решениями (7).

Среди всех значений аргумента комплексного числа выбирается одно, которое называется главным значением аргумента и обозначается
. Обычно главное значение аргумента выбирается либо в интервале
, либо в интервале

В тригонометрической форме удобно производить операции умножения и деления.

Теорема 1. Модуль произведения комплексных чисел и равен произведению модулей, а аргумент – сумме аргументов, т.е.

, а .

Аналогично

,

Доказательство. Пусть ,. Тогда непосредственным умножением получаем:

Аналогично

.■

Следствие (формула Муавра). Для
справедлива формула Муавра

Пример. Пусть Найдем геометрическое местоположение точки
. Из теоремы 1 следует, что .

Поэтому для ее построение необходимо вначале построить точку , являющуюся инверсией относительно единичной окружности, а затем найти точку, симметричную ей относительно оси Ox.

Пусть
,т.е.
Комплексное число
обозначается
, т.е.R справедлива формула Эйлера

Так как
, то
,
. Из теоремы 1
что с функцией
можно работать как с обычной показательной функцией, т.е. справедливы равенства

,
,
.

Из (8)
показательная форма записи комплексного числа

, где
,

Пример. .

4°. Корни -ой степени из комплексного числа.

Рассмотрим уравнение

,
С ,
N .

Пусть
, а решение уравнения (9) ищется в виде
. Тогда (9) принимает вид
, откуда находим, что
,
, т.е.

,
,
.

Таким образом, уравнение (9) имеет корни

,
.

Покажем, что среди (10) имеется ровно различных корней. Действительно,

различны, т.к. их аргументыразличны и отличаются меньше, чем на
. Далее,
, т.к.
. Аналогично
.

Таким образом, уравнение (9) при
имеет ровнокорней
, расположенных в вершинах правильного-угольника, вписанного в окружность радиусас центром в т.O.

Таким образом, доказана

Теорема 2. Извлечение корня -ой степени из комплексного числа
всегда возможно. Все значения корня -ой степени израсположены в вершинах правильного-угольника, вписанного в окружность с центром в нуле и радиуса
. При этом,

Следствие. Корни –ой степени из 1 выражаются формулой

.

Произведение двух корней из 1 является корнем, 1 – корень -ой степени из единицы,корня
:
.

Тема Комплексные числа и многочлены

Лекция 22

§1. Комплексные числа: основные определения

Символ вводят соотношением
и называют мнимой единицей. Другими словами,
.

Определение. Выражение вида
, где
, называется комплексным числом, при этом числоназывают вещественной частью комплексного числаи обозначают
, число– мнимой частьюи обозначают
.

Из такого определения следует, что действительные числа – это те комплексные числа, мнимая часть которых равна нулю.

Комплексные числа удобно изображать точками плоскости, на которой задана декартова прямоугольная система координат, а именно: комплексному числу
соответствует точка
и наоборот. На оси
изображаются вещественные числа и её называют вещественной осью. Комплексные числа вида

называют чисто мнимыми. Они изображаются точками на оси
, которую называют мнимой осью. Эту плоскость, служащую для изображения комплексных чисел, называют комплексной плоскостью. Комплексное число, не являющееся действительным, т.е. такое, что
, иногда называют мнимым.

Два комплексных числа называют равными тогда и только тогда, когда у них совпадают как вещественные, так и мнимые части.

Сложение, вычитание и умножение комплексных чисел производится по обычным правилам алгебры многочленов с учётом того, что

. Операцию деления можно определить как обратную к операции умножения и доказать единственность результата (если делитель отличен от нуля). Однако на практике используется другой подход.

Комплексные числа
и
называют сопряжёнными, на комплексной плоскости они изображаются точками, симметричными относительно вещественной оси. Очевидно, что:

1)

;

2)
;

3)
.

Теперь разделить наможно следующим образом:

.

Не трудно показать, что

,

где символ обозначает любую арифметическую операцию.

Пусть
некоторое мнимое число, а – вещественная переменная. Произведение двух биномов

есть квадратный трёхчлен с действительными коэффициентами.

Теперь, имея в распоряжении комплексные числа, мы сможем решить любое квадратное уравнение
.Если , то

и уравнение имеет два комплексных сопряжённых корня

.

Если
, то уравнение имеет два различных вещественных корня. Если
, то уравнение имеет два одинаковых корня.

§2. Тригонометрическая форма комплексного числа

Как говорилось выше, комплексное число
удобно изображать точкой
. Можно также такое число отождествлять с радиус-вектором этой точки
. При такой интерпретации сложение и вычитание комплексных чисел производится по правилам сложения и вычитания векторов. Для умножения и деления комплексных чисел более удобной оказывается другая форма.

Введём на комплексной плоскости
полярную систему координат. Тогда, где
,
и комплексное число
можно записать в виде:

Эту форму записи называют тригонометрической (в отличие от алгебраической формы
). В этой форме числоназывают модулем, а– аргументом комплексного числа. Они обозначаются:
,

. Для модуля имеем формулу

Аргумент числа определён неоднозначно, а с точностью до слагаемого
,
. Значение аргумента, удовлетворяющего неравенствам
, называется главным и обозначается
. Тогда,
. Для главного значения аргумента можно получить такие выражения:

,

аргумент числа
считается неопределённым.

Условие равенства двух комплексных чисел в тригонометрической форме имеет вид: модули чисел равны, а аргументы отличаются на число кратное
.

Найдём произведение двух комплексных чисел в тригонометрической форме:

Итак, при умножении чисел их модули умножаются, а аргументы складываются.

Аналогичным образом можно установить, что при делении модули чисел делятся, а аргументы вычитаются.

Понимая возведение в степень как многократное умножение, можно получить формулу возведения комплексного числа в степень:

Выведем формулу для
– корня-ой степени из комплексного числа(не путать с арифметическим корнем из действительного числа!). Операция извлечения корня является обратной по отношению к операции возведения в степень. Поэтому
– это комплексное числотакое, что
.

Пусть
известно, а
требуется найти. Тогда

Из равенства двух комплексных чисел в тригонометрической форме следует, что

,
,
.

Отсюда
(это арифметический корень!),

,
.

Нетрудно убедиться, что может принимать лишьразличных по существу значений, например, при
. Окончательно имеем формулу:

,
.

Итак, корень -ой степени из комплексного числа имеетразличных значений. На комплексной плоскости эти значения располагаются в вершинах правильно-угольника, вписанного в окружность радиуса
с центром в начале координат. “Первый” корень имеет аргумент
, аргументы двух “соседних” корней отличаются на
.

Пример. Извлечём корень кубический из мнимой единицы:
,
,
. Тогда:

,

Тема «Комплексные числа» зачастую вызывает затруднения у учащихся, а ведь на самом деле в них нет ничего страшного, как может показаться на первый взгляд.

Итак, сейчас мы разберем и рассмотрим на простых примерах, что такое комплексное число, как обозначается и из чего состоит. Выражение z = a + bi называется комплексным числом. Это единое число, а не сложение.

Пример 1 : z = 6 + 4i

Из чего состоит комплексное число?

Комплексное число имеет действительную и мнимую часть в своем составе.

Число a называется действительной частью комплексного числа и обозначается a = Re (z) . А вот то, что стоит вместе с буквой i - т.е. число b называется коэффициентом мнимой части комплексного числа и обозначается b = Im (z) . Вместе bi образуют мнимую часть комплексного числа.

Нетрудно догадаться и легко запомнить, что сокращение «Re» происходит от слова «Real» - реальная, действительная часть. Соответственно, «Im» является сокращением слова «Imaginary» - мнимая, воображаемая часть.

Пример 2 : z = 0,5 + 9i . Здесь действительная часть a = Re (z) = 0,5 , а мнимая часть b = Im (z) = 9i

Пример 3 : z = -5 + 19i . Здесь действительная часть a = Re (z) = -5 , а мнимая часть b = Im (z) = 19 .

Чисто мнимое комплексное число

Комплексное число, в котором нет действительной части, т.е. Re (z) = 0 , называется чисто мнимым.

Пример 4 : z = 2i . Действительная часть отсутствует, a = Re (z) = 0 , а мнимая часть b = Im (z) = 2 .

Пример 5 . z = -8i . Здесь мнимая часть b = Im (z) = -8 , действительная часть a = Re (z) = 0 .

Сопряженные комплексные числа

Комплексно-сопряженное число обозначается «зэт» с чертой и используется, к примеру, для нахождения частного двух комплексных чисел, проще говоря - для реализации деления чисел. Те, кто сейчас задумался, вам сюда - читать про деление комплексных чисел .

Числа называются комплексно-сопряженными, имеют одинаковые действительные части и различаются лишь знаком мнимых частей. Рассмотрим пример:

Пример 6 . Комплексно сопряженным к числу z = 7 + 13i является число.

Мнимая единица комплексного числа

И наконец поговорим про букву i . Та самая буква, которая образует в комплексном числе мнимую составляющую. Даже если перед нами выражение z = 5 , это просто значит, что мнимая часть данного числа равна нулю, а действительная равна пяти.

Величина i называется мнимой единицей .

Мнимая единица пригодится при решении квадратных уравнений в случае, когда дискриминант меньше нуля. Мы привыкли считать, что если он отрицательный, решения нет, корней нет. Это не совсем корректно. Корни существуют, просто они комплексные. Но об этом позже. А теперь, переходим к следующей статье по изучению комплексных чисел, узнаем же, как посчитать

Похожие публикации