Геномная головоломка: открой в себе мозаика. Мозаицизм: симптомы и лечение Что такое соматический мозаицизм

65. Как возникает хромосомный мозаицизм?

Мозаицизм - наличие в одном организме линий клеток с разным хромосом­ным набором. В большинстве случаев мозаицизм касается половых хромосом и возникает вследствие ошибки при удвоении или расхождении хромосом во вре­мя одного из делений клеток на ранней стадии эмбриогенеза. При нормальном митозе хромосомы удваиваются, и каждая из образовавшихся в результате деле­ния получает полный их набор. Мозаицизм возникает при нерасхождении хромосом или нарушении их миграции к полюсам клетки (анафазном лаге). Как правило, чем больше доля клеток с аномальным хромосомным набором, тем резче выражен аномальный фенотип. В свою очередь, чем раньше в процессе эмбрио­нального развития возникает мозаицизм, тем доля клеток с аномальным хромо­сомным набором больше.

66. Какова причина химериама?

Слово «химера» взято из греческой мифологии. Гомер описал это сказочное существо с головой льва, телом козла и хвостом дракона. Цитогенетики называют химеризмом наличие в одном и том же организме двух и более линий клеток, про­исходящих от разных зигот. Чаще всего химеризм возникает вследствие смеше­ния клеток крови разнояйцевых разнополых близнецов. В этом случае химерный! организм имеет кариотип 46,xx/46,xy. Причиной химеризма может быть и попа­дание клеток нежизнеспособного близнеца к жизнеспособному. Реже имеет место инкорпорация двух зигот в один эмбрион.

КЛЮЧЕВЫЕ МОМЕНТЫ: РИСК ПОВТОРЕНИЯ НАСЛЕДСТВЕННЫХ ДЕФЕКТОВ

Если Хромосомный мозаицизм, химериама являются оба родителя, риск его повторения равен 25%.

Число уже имеющихся у данной родительской пары больных детей роли, не играет. Так как каждая Процесс вынашивания зародыша в организме женщины или самок живородящих животных, включающий оплодотворение, перемещение оплодотворённого яйца по яйцеводу, имплантацию в стенку матки, рост и развитие плода за счёт питательных веществ, получаемых от матери через плаценту; завершается родами.

" data-tipmaxwidth="500" data-tiptheme="tipthemeflatdarklight" data-tipdelayclose="1000" data-tipeventout="mouseout" data-tipmouseleave="false" class="jqeasytooltip jqeasytooltip3" id="jqeasytooltip3" title="Беременность">беременность является независимым событием; после рождения 3 детей с наследственным дефектом риск остается равным 25%, так же как после рождения первого ребенка.

Риск амиотрофии Дюшенна у ребенка при носительстве у матери - 25%. Наследственные заболевания. Обусловленные хромосомными или генными мутациями, проявляющиеся нарушением обмена веществ или пороками развития (напр., болезнь Дауна, фенилкетонурия).

" data-tipmaxwidth="500" data-tiptheme="tipthemeflatdarklight" data-tipdelayclose="1000" data-tipeventout="mouseout" data-tipmouseleave="false" class="jqeasytooltip jqeasytooltip5" id="jqeasytooltip5" title="Наследственные заболевания">Наследственные заболевания , сцепленные с Х-хромосомой, девочек не по­ражают вообще, а мальчиков - в 50% случаев.

У всех больных синдромом Дауна следует определять кариотип, чтобы исключить наследственную транслокацию 21-й хромосомы, так как она сопровождается высоким риском повторного рождения больного ребенка^ той же родительской пары.

67. Каков риск передачи рецессивно наследуемого заболевания, если родители являются двоюродными или троюродными братом и сестрой?

Двоюродные брат и сестра могут быть носителями более одного рецессивно наследуемого заболевания. У них 1/8 генов идентична, поэтому ребенок окажется гомозиготным по 1/16 генных локусов. У троюродных брата и сестры идентична только 1/32 генов. Риск рождения ребенка с тяжелым или смертельным наслед­ственным дефектом в браке двоюродных сестры и брата равен 6%, троюродных сестры и брата - 1%.

Если вы до сих думаете, что у всех клеток вашего организма одинаковый геном, то спешим вас разочаровать. Есть вероятность, что у индивидуума не найти и двух клеток с полностью идентичной ДНК. Грозит ли это чем-то, почему ученые с энтузиазмом изучают мозаицизм, и как видит будущее этой области известный исследователь геномных вариаций из лаборатории при Клинике Мэйо (Mayo Clinic ), чья группа недавно опубликовала новую статью по этой теме?

В организме взрослого человека примерно 10 14 клеток двухсот разных типов . С давних пор считалось, что геномы всех клеток одинаковы, а различия в их облике и функциях определяются набором «работающих» генов. Однако даже на первый взгляд всё не так просто. В половых клетках набор хромосом половинчатый, а геном иммунных клеток меняется после V(D)J-рекомбинации , чтобы закодировать великое множество вариабельных участков иммуноглобулинов В-лимфоцитов и Т-клеточных рецепторов на Т-лимфоцитах.

Сейчас же ученые выступают с еще более радикальным заявлением. Возможно, из ста триллионов клеток не найдется и двух с полностью одинаковым геномом - из-за мутаций , накапливающихся в эмбриогенезе и в течение жизни организма .

Хотя, в целом, ДНК реплицируется с довольно высокой точностью, полимераза иногда ошибается и вставляет или неправильный нуклеотид, или неправильное их количество. Частота таких ошибок - примерно одна на каждые 100 000 нуклеотидов. Вроде бы число не кажется большим, но вы только подумайте, сколько это ошибок на наш огромный геном! К счастью, подавляющее число таких дефектов исправляется благодаря неустанному труду систем репарации ДНК. Но некоторые ошибки репликации всё же ускользают от этого надзора и становятся постоянными мутациями .

По самым минимальным оценкам, только однонуклеотидных замен на весь геном здорового индивидуума окажется более 10 16 . Кроме того, вариабельность генома затрагивает и крупные его участки - бóльшие, чем одно нуклеотидное основание, - например, вставки или делеции (indels ) либо вариации количества копий генов (CNV ) . Сколько же тогда всех мутаций в одном человеке? Похоже, эта цифра просто огромна.

Что же, генетический материал всех клеток организма различается, и каждая клетка как будто играет роль отдельного пазла в общей картинке генома? И каждый человек генетически «мозаичен»? Получается, что да, и это нормальное явление, а само слово «мозаицизм » - устоявшийся научный термин. Традиционно под ним понимают сосуществование внутри одного организма как минимум двух линий клеток с различающимся геномом, встречающихся и среди соматических, и среди зародышевых клеток (рис. 1) .

Рисунок 1. Что же такое мозаицизм? В популяции нормальных клеток (с зелеными ядрами ) происходит что-то, ведущее к мутации в одной клетке, - теперь у нее схематически красное ядро . Спустя некоторое количество циклов деления популяция состоит из потомков мутировавшей клетки и нормальных клеток, что выглядит действительно как мозаика.

Хотя жизнь многоклеточного организма и начинается с одной клетки, с самых первых делений в ДНК закрадываются мутации. Даже при появлении на свет младенец уже является генетическим мозаиком - не говоря уж про взрослого человека.

«Уже при рождении мутаций в каждой клетке очень много - причем это как новые мутации, появившиеся в процессе преимплантации и эмбриогенеза, так и унаследованные от родителей , - рассказывает „Биомолекуле“ Алексей Абызов, специалист по геномным вариациям из Клиники Мэйо. - Изучение индивидуального „мозаикóма“ - совокупности всех мозаичных изменений генома отдельного человека - это не простой научный интерес, а насущная необходимость. Такая информация поможет лучше понять и состояние здоровья отдельного индивидуума, и, возможно, даже найдет применение в клинической практике ».

Выпускник МФТИ, д. ф.-м. н., с 2014 года руководит научной лабораторией в Клинике Мэйо, ассистент-профессор в медицинском колледже при Клинике Мэйо, приглашённый профессор в университете Миннесоты и Йельском университете. Специализируется на геномных вариациях (в частности, на мозаицизме) и их связи с болезнями человека.

Избранные публикации:

  • (Science, 2018);
  • (Science, 2017);
  • (Genome Res, 2017);
  • Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells, (Nature, 2012);
  • Genomic Mosaicism in Neurons and Other Cell Types (Humana Press, 2017).

Мозаичность уникальна для каждого - причем часто и отследить ее трудно, не то что предугадать исход. Ее клинические проявления зависят от множества факторов, некоторые из которых мы и рассмотрим ниже, внимательнее остановившись на мозаицизме в эмбриогенезе и немного поговорив о мозаицизме во взрослом организме .

Мозаицизм обнаружен и у многих других видов животных, помимо человека . Наглядный же пример мозаицизма - некоторые случаи гетерохромии радужки глаз (рис. 2).

Рисунок 2. Гетерохромия радужки в некоторых случаях возникает именно из-за мозаицизма. Бывает она и у людей, и у животных. На рисунке представлен случай полной гетерохромии, когда цвет глаз полностью различается.

Истоки изучения мозаицизма: рождение концепции

Эпоха исследований этого явления началась более 120 лет назад - задолго до открытия ДНК. Саму концепцию мозаицизма (без введения термина) в 1895 году предложил Альфред Блашко при обсуждении происхождения линейного эпидермального невуса (врожденного окрашенного пигментного пятна, немного выступающего над кожей и вытянутого в линию) и т.н. линий Блашко , которые, как нетрудно догадаться, назвали в его честь. То, что он был дерматологом, не удивительно: кожа - наглядный и легкодоступный для исследования орган, - и его будущие коллеги впоследствии активно изучали вариации генома кожных клеток.

Сам термин предложил немецкий зоолог Валентин Хайкер в 1904 году при описании «мозаично-подобного распределения» характеристик разных частей тела. Генетики растений и зоологи в последующие годы использовали взаимозаменяемые термины «мозаичности» и «секторального химеризма» .

Дерматологи же работу Альфреда Блашко благополучно позабыли на полвека: упоминания появились лишь в двух голландских учебниках, один из которых впоследствии перевели на немецкий. Об исследователе вновь вспомнили лишь в 70-х годах. Роберт Джексон и Рудольф Хэппл независимо друг от друга в 1976 году обнаружили его работу и линии Блашко, и второй предложил связать идею с инактивацией X-хромосомы в эмбриогенезе . Вскоре после этого концепция мозаицизма прочно вошла в профессиональную жизнь дерматологов.

В 1983 году, с развитием технологий, Хуан Хемке (Juan Chemke ) с коллегами увидел мозаичную форму трисомии 18 , при которой часть клеток содержат по две 18-х хромосомы, а часть - по три. Позже мозаицизм был зафиксирован при различных кожных заболеваниях .

Сейчас мозаицизм изучается очень активно, причем учеными руководит не только прикладной интерес. «Давно было понятно, что мозаичность может иметь фундаментальное значение для понимания того, как работает наш организм. Но изучение этого процесса, помимо очевидного отношения к здоровью, представляет эстетический научный интерес. Изучать мозаицизм клетки, этой минимальной единицы жизни, еще и необычайно увлекательно », - делится Алексей Абызов.

Откуда берется соматический мозаицизм?

В появлении соматического мозаицизма в нормальных клетках могут быть «повинны» следующие молекулярные механизмы:

Какие бывают структурные варианты при мозаицизме?

  • SNV (Single Nucleotide Variant ) - однонуклеотидные варианты, когда происходит изменение одного нуклеотида в определенном положении.
  • Indels (in sertion or del etion ) - короткая вставка или удаление в геноме.
  • MEI (Mobile Element Insertion ) - вставка ретротранспозонов в геном, у человека это ALU, LINE1, HERV и SVA.
  • CNA (Copy Number Alteration ) - это хромосомная перестройка, когда часть генома оказывается с бóльшим или меньшим количеством копий по сравнению с другими геномными областями у того же объекта исследования. Термин чаще используется для описания масштабных соматических изменений в геноме, но применим к любым вариациям, которые больше indels .
  • LOH (Loss of Heterozygocity ) - утратагетерозиготности. Это потеря одного варианта гена в том участке генома, который в норме был гетерозиготным, то есть содержал два варианта одного гена.
  • Инверсия - хромосомная перестройка, когда участок генома переворачивается на 180 градусов.
  • Транслокация - перегруппировка, ведущая к соединению ДНК двух разных хромосом.
  • Хромосомная анеуплоидия - изменение количества копий хромосомы или ее плеч.
  • Мультиплоидия - глобальное изменение плоидности генома.

Рисунок 3. Генетические вариации в организме человека - из чего складывается их общая сумма? Красная горизонтальная стрелка на рисунке - временнáя шкала от зиготы до смерти. Боковые входящие стрелки - накопление различных вариаций в течение жизни: вариации клеток зародышевой линии (GV ), варианты de novo (DNV ), постзиготические вариации (PZV ) и микрохимеризм , наличие небольшого количества клеток от другого организма, (MC ). Боковые исходящие стрелки - процессы, приводящие к уменьшению генетического разброса: ревертантный - обратный - мозаицизм (), когда клетка возвращается в нормальное состояния из-за обратной мутации патологического варианта/мутации, и истощение клеток с генетическими вариациями (CD ). Итого, общее количество генетических изменений в соматической клетке можно записать следующим уравнением: SUM = GV + DNVs + PZV + MC - RM - CD. Подробнее о GWAS рассказано в главе «Клинические последствия после рождения: мозаицизм - это хорошо или плохо? ».

Мозаицизм в эмбриогенезе - что нам известно?

Серьезные хромосомные аномалии на ранних стадиях эмбриогенеза у человека встречаются очень часто. Однако понимание того, как и с какой скоростью это происходит, довольно ограничено. Проводили исследования на здоровых эмбрионах мышей, где ученые оценивали накопление мутаций и вклад эмбриональных клеток в дифференцированные ткани взрослого животного . Однако, к сожалению, просто взять и перенести эти данные на человека оказалось нельзя: они не совпадают. Так, скорости как мутаций зародышевой линии, так и соматических мутаций значительно выше у мышей, чем у людей .

К счастью, с появлением новых технологий изучать эти события становится все проще. Например, британские ученые исследуют буквально первые дни развития человеческого эмбриона с привлечением CRISPR-Cas9 . Возможно, в ближайшем будущем проявятся более точные данные и по скорости накопления мутаций в эмбриогенезе человека. Нельзя забывать, что младенцу передаются несколько десятков (50–100) мутаций половых клеток его родителей (рис. 4). Как было показано при анализе геномов 78 семей из двух родителей и ребенка, в одном поколении средняя скорость мутаций de novo составляет 1,20 × 10 –8 на нуклеотид, а этих нуклеотидов в каждой клетке, на секундочку, 3 миллиарда .

Что же мы сейчас знаем? Мозаицизм - нередкое явление на стадии преимплантации. В этом случае любая мутация способна оказать значительное влияние на весь организм: определенный мозаичный генотип потенциально может в итоге оказаться во многих клетках. Кроме того, на стадии преимплантации частота мозаичности колеблется - по крайней мере, так показывают исследования эмбрионов, созданных при помощи искусственного оплодотворения (возможно, при естественном зачатии процессы идут несколько иначе). Есть предположения, что это объясняется естественным отбором против мозаичного эмбриона в зависимости от количества анеуплоидных клеток в нем . (Эта и другие модели - на рисунке 5.)

Рисунок 5. Согласно исследованиям эмбрионов, созданных при помощи искусственного оплодотворения, частота мозаичности снижается от стадии дробления к стадии бластоцисты , и несколько моделей объясняют, почему это так. Слева . Естественный отбор против мозаичных эмбрионов может вызывать смерть плода на основании доли анеуплоидных клеток в нем. В центре. Модель «клонального истощения» включает апоптоз или уменьшение распространения доли анеуплоидных клеток у мозаичных эмбрионов. Справа. Наконец, третья модель описывает механизмы, с помощью которых при моносомии и трисомии анеуплоидные клетки могут при делении давать и клетки с нормальным количеством хромосом.

В первые дни эмбрионального развития, по некоторым оценкам, на каждое деление на одну клетку приходится три мутации с заменой нуклеотидных оснований. При этом клетки на этом этапе часто делятся асимметрично и, соответственно, вносят разный вклад в клеточный состав в более взрослом организме .

Появление геномных вариантов на более поздних стадиях ведет к мозаицизму, ограниченному определенной областью тела . Как показывают многие исследования, частота соматических мутаций значительно выше, чем в клетках зародышевой линии .

Клинические последствия после рождения: мозаицизм - это хорошо или плохо?

Мы уже разобрались, что мозаицизм - естественное и крайне распространенное явление в человеческом организме. Но каковы же его последствия?

Как уже было упомянуто, это зависит от множества факторов. Многие клинические последствия мозаичности трудно «поймать» и объяснить. Кроме того, важно учитывать распространенность и количество клеток с определенной вариацией генома .

Есть предположения, что в некоторых случаях соматический мозаицизм может играть на руку организму. К примеру, частота мозаичности в нейронах крайне высока . Существует теория, что это специальный эволюционный механизм для того, чтобы создать многообразие нейронов и, собственно, разнообразить количество выполняемых ими функций (подробнее о мозаичности в головном мозге читайте ниже) .

Другой пример - это полиплоидия гепатоцитов в печени у взрослых людей. Хотя у животных это явление более редкое, чем у растений, но все же и у них встречаются клетки с увеличенным количеством хромосом . Некоторое количество полиплоидных клеток печени образуется при развитии печени в эмбриогенезе . Однако с возрастом и при наличии некоторых заболеваний, приводящих к повреждению и регенерации печени, распространенность полиплоидных гепатоцитов увеличивается - преимущественно в перицентральных зонах печеночных долек. Исследователи предполагают, что такой генотип может оказаться полезным, поскольку способен задержать повреждение ДНК, а дополнительные копии генов помогут нивелировать последствия мутаций потери функции .

Однако в большинстве случаев мозаицизм ассоциируют с очевидно негативными последствиями. Его тесно связывают со случаями выкидышей, появлением врожденных дефектов, задержками и расстройствами развития . В частности, на мозаичную трисомию 21 приходится 2–4% случаев синдрома Дауна . В отличие от полной трисомии, проявления синдрома, связанные с общим развитием организма и интеллектуальными способностями, в случае мозаицизма могут быть выражены мягче. Мозаичный синдром Шерешевского-Тернера , или же мозаичная моносомия по X-хромосоме, может тоже проявляться менее тяжело, чем его полная форма. Еще один пример нарушения мозаичной формы - это синдром Маккьюна-Олбрайта , связанный с эмбриональной потенциально летальной мутацией в гене GNAS1 . Синдром Протея может быть вызван ранними мозаичными мутациями в онкогене AKT1 , которые вовлечены в формирование солидных опухолей.

Эмбриональные мозаичные мутации в генах IDH1 и IDH2 связывают с болезнью Олье и синдромом Маффуччи . Ранние мозаичные мутации в генах HRAS , KRAS и NRAS оказались ассоциированы с синдромом невуса сальных желез (nevus sebaceous ), синдромом Шиммельпеннинга и синдромом кератиноцитарного эпидермального невуса .

Опасность того, что вредоносная мутация произойдет в клетках с большим потенциалом к делению, существует не только в эмбриогенезе. Соматические вариации генома накапливаются в течение всей жизни человека . Мозаицизм отдельных органов человека, например, мозга и кожи, уже изучают несколько групп исследователей (подробнее об этом пойдет речь ниже). Скорости накопления мутаций, как уже было сказано выше, измерены у мышей и некоторых типов клеток человека. Однако технические методы пока не совершенны, и ответить на вопрос, насколько же взрослый человек - мозаик, пока трудно .

Тем не менее, уже удалось связать некоторые типы клеточного мозаицизма и состояние здоровья взрослого человека. В частности, ученые проследили, как дочерние клетки стволовых клеток взрослого человека наследуют опасные изменения генома своей предшественницы. Постепенное же накопление генетических мутаций в этих клетках связывают с процессами старения, различными возрастными и онкологическими заболеваниями , . Информации о связи учащения мозаицизма в пожилом возрасте уже собрано немало. Недавнее исследование, включавшее в себя анализ генома почти 130 000 человек, в очередной раз подтвердило, что частота мозаицизма увеличивается со старением - особенно у мужчин (про гендерное неравенство читайте во врезке ниже).

Пожалуй, еще одно из самых изучаемых клинических последствий мозаицизма - это его связь с развитием рака. Информации по этой теме уже накоплено немало, хотя всё еще недостаточно. Так до конца и не ясно: рак - это следствие мозаичности, или же у больных раком больше мозаичных клеток или больше мутаций на клетку.

В одном из исследований ученые проанализировали материал от 31 717 пациентов с раком и 26 136 здоровых людей без него. Они набрали такое огромное количество из 13 других работ с использованием полногеномного поиска ассоциаций - GWAS (genome-wide association studies ). Этот метод помогает установить связи между различными вариантами генов и их фенотипическими проявлениями. Мозаичные аномалии встречались чаще у пациентов с сóлидными опухолями, причем связь была сильнее, если образец для анализа брали до постановки диагноза и начала лечения. Клональный мозаицизм оказался обычным явлением для тех, чью ДНК собирали по меньшей мере за год до постановки диагноза «лейкемия» - по сравнению с людьми без рака . Соматический мозаицизм по мутациям в гене HRAS у человека связан с уротелиальными раками .

Гендерное неравенство: такой разный мозаицизм

Неудивительно, что у женщин и мужчин мозаицизм может проявляться по-разному. Например, мозаицизм Х-хромосомы встречается в четыре раза чаще, чем аутосомный мозаицизм .

Однако с точки зрения ученого мутация гораздо интереснее для мужской хромосомы Y - особенно когда она теряется. Не секрет, что мужчины живут меньше, чем женщины, даже в развитых странах с хорошей системой здравоохранения. Однако четкого ответа, почему так происходит, нет. Помочь в решении этого вопроса отчасти может LOY - мозаичная потеря Y-хромосомы, которая встречается почти у каждого пятого мужчины старше 70 лет в некоторых клетках.

Было показано, что LOY в клетках крови чаще обнаруживается у курильщиков, чем у некурящих , и что курение оказывает временное и дозозависимое мутагенное действие на геном клеток .

Более того, ученые показали, что LOY может играть роль в патогенезе редких аутоиммунных заболеваний у мужчин. Обнаружение же этого отклонения в клетках крови коррелирует с повышенным риском развития болезни Альцгеймера, множества типов рака (например, предстательной железы, толстой кишки, простаты и мочевого пузыря) и смертности от всех причин .

Мозаицизм отдельных органов

Клетки всех органов взрослого человека без исключения должны обладать мозаичным геномом. Некоторые из них ученые изучают более пристально - например, клетки головного мозга и кожи. О том, что нам стало известно из таких работ, мы и поговорим ниже.

Мозаичный мозг

Для изучения мозаичности мозг - один из самых интересных органов, поскольку нейроны живут долго по сравнению со многими другими типами клеток. По-видимому, их мозаичность - это очень частое событие, и, скорее всего, геном отдельно взятого нейрона отличается от окружающих его клеток (на «Биомолекуле» даже выходила специальная по этой теме ). Исследованы уже и накопление мутаций с возрастом, и в развивающемся мозге до рождения , . Для этого ученые используют метод изучения одиночных нейронов.

Среди факторов развития мутаций ученые называют, например, и присутствие свободных радикалов, и электромагнитное излучение, и миграцию транспозонов . Частота анеуплоидии и ретротранспозиции в нейронах даже выше, чем в других исследованных тканях.

Как было упомянуто выше, высокая частота мозаичности в нервных клетках приводит к их большому разнообразию и, возможно, даже выполняет эволюционную функцию . Мозаицизм нейронов может влиять на предрасположенность человека к некоторым болезням в дальнейшей жизни. В частности, исследователи называют онкологические заболевания, пороки развития мозга, эпилепсию . Результат всего лишь одного измененного нуклеотида - это конститутивная активация гена AKT2 и последующее развитие тяжелой формы мегалэнцефалии с эпилепсией .

Сейчас активно исследуют связь мозаицизма нейронов и психиатрических расстройств . Это довольно сложная задача: многое остается неизвестно и о самих болезнях, и об их генетической составляющей. По этой причине по инициативе Национального института психического здоровья (NIMH) США был создан специальный проект , чтобы как можно быстрее получить информацию по этой теме (рис. 6).

Рисунок 6. Конечный геном одного нейрона формируют все те изменения, которые мы обсуждали во врезке «Откуда берется соматический мозаицизм» : в частности, это однонуклетотидные варианты (SNV ), вставки-делеции (indel ), структурные варианты CNV , ретроэлементы типа L1 . Цель проекта Brain Somatic Mosaicism Network - связать эти вариации с их многочисленными потенциальными последствиями, как находящимися в пределах нормы, так и ассоциированными с заболеваниями.

Мы изучали геномные мутации в клетках мозга эмбриона. Для этой цели мы вырастили клональные колонии из одиночных нейронных предшественников. Так, мутации, присутствующие у клетки-предшественницы, будут во всех клетках выращенной из нее колонии, и, следовательно, могут быть легко обнаружены секвенированием колонии.

Однако секвенирование определяет и все унаследованные вариации. Чтобы разделить их и приобретенные мутации, мы провели сравнение геномов колоний, выращенных из клеток одного и того же эмбриона. В результате мы определили, что уже в середине беременности в одной-единственной клетке мозга эмбриона присутствует около 400 однонуклеотидных вариантов SNV. Хотя такой результат в какой-то мере был ожидаем, при этом он крайне важен: ранее это не было продемонстрировано в опыте.

Далее, по общим мутациям в разных клетках одного мозга мы установили родственность этих клеток (то есть выяснили, у каких были общие клетки-прародители) и восстановили дерево первых пяти дроблений зиготы. Наша лаборатория - первая, подробно воссоздавшая картину дроблений у человека. Ранее это проделывали только на мышах. При этом анализе мутации использовали как метки дробления. При дроблении в каждой новой клетке появляется в среднем по одной новой мутации-метке. В совокупности с другими данными эти метки позволяют очень точно определить историю на ранней стадии развития эмбриона.

Наконец, мы показали, что скорость мутагенеза и типы накапливаемых мутаций отличаются при дроблении и нейрогенезе. Хоть это тоже не стало сюрпризом для нас, это новое крайне важное наблюдение.

,
заведующий научной лабораторией в Клинике Мэйо,
о своей последней работе по нейрогенезу,
опубликованной в Science .

Лоскутное одеяло кожного мозаицизма

Как уже было упомянуто в исторической сводке, ученые давно занимаются изучением мозаицизма в кожных покровах. «Главное преимущество исследований кожи в том, что её образец легко получить , - рассказывает Алексей Абызов о других работах своей лаборатории. - Мы работали с кожными фибробластами, поскольку они легко доступны, и существуют отработанные методы их извлечения, выращивания и перепрограммирования. Опять же, методы разработали из-за лёгкой доступности фибробластов ». Соматические вариации числа копий генов (CNV) обнаружили почти у каждого третьего фибробласта . В одном-единственном же кожном фибробласте при рождении можно обнаружить тысячу однонуклеотидных замен! Интересно, однако, что паттерн мозаичности кардинально отличается от, например, наблюдаемого в нейронах .

Неудивительно, что в клетках кожи, подверженных воздействию ультрафиолетового излучения, мутаций обнаруживается больше, чем в клетках покрытых одеждой зон . Оказывается, что даже нормальная здоровая кожа, отлично выполняющая свои функции, но попавшая под солнечные лучи, вообще напоминает лоскутное одеяло из тысяч клеточных клонов. Больше четверти из них несут мутации, повышающие риск развития рака.

Как изучить мозаицизм

Как же исследуют постзиготические изменения генома, например, мозаицизм? Для этого обычно используют один из четырех основных дизайнов эксперимента:

  • анализ различных образцов одного и того же объекта, например, различные ткани или различные популяции клеток;
  • сравнительный анализ монозиготных (идентичных) близнецов;
  • анализ образцов одного и того же объекта, но собранных в разное время, например, через определенные промежутки времени в течение жизни одного и того же человека;
  • детальный анализ образца одного и того же объекта для выявления очень маленьких субпопуляций генетически различающихся клеток.

Что касается методов исследования, то для выявления постзиготических мутаций наиболее часто используют следующие три:

«Общих подходов к изучению мозаичности всего два: изучение одиночных клеток и изучение групп клеток. При анализе одиночных клеток необходимы методики, определяющие мутации с высочайшей степенью достоверности. Это, например, FISH, который позволяет определять большие изменения и перестановки в геноме , - комментирует Алексей Абызов. - На данный момент практически все остальные методики требуют умножения ДНК из одиночной клетки.

Умножение ДНК можно производить лабораторными методами или клонированием одиночных клеток. Лабораторное умножение далеко не идеально и приводит к множеству ошибок в производимой ДНК: например, к замене нуклеотидов, образованию химер (соединению кусков ДНК, которые в изучаемой клетке не были соединены), неравномерному умножению ДНК. Клонирование в этом плане более совершенный метод, но его применяют только на делящихся клетках. Использование искусственных стволовых клеток - способ обойти это препятствие.

В любом случае, как бы ДНК не умножалась, всегда остаётся вопрос: насколько точно мутации в умноженной ДНК совпадают с теми, которые на самом деле присутствовали в клетке? Единогласного мнения у научного сообщества по данному вопросу пока нет, но большинство учёных считает, что сейчас клонирование - это самый лучший способ. Изучение же групп клеток позволяет найти только мутации присутствующие в их существенной части».

Мозаицизм сегодня - зачем пациентам о нем знать?

Многим может показаться, что пока изучение мозаичности генома - удел только ученых в лаборатории, - и что на клиническую практику он еще не повлиял. Конечно, где-то в будущем маячит призрак того, что человеку будут считывать его собственный мозаикóм и, опираясь на эту информацию, улучшать его здоровье (про персонализированную медицину «Биомолекула» уже писала: «От медицины для всех - к медицине для каждого! » ). Но как вовлечь это знание в клиническую практику сегодня, в 2018 году?

На самом деле, уже сейчас исследователи активно пытаются присовокупить исследования мозаицизма эмбрионов к преимплантационному генетическому скринингу и диагностике (ПГД), выявлению некоторых генетических аномалий у эмбриона, - например, при проведении экстракорпорального оплодотворения (ЭКО) до «подсадки» эмбриона матери . Для получения результатов обычно используют, например, полярное тельце , клетку эмбриона на стадии третьего дня дробления либо несколько клеток из трофобласта бластоцисты. Как уже говорилось выше, мозаицизм хромосом присутствует даже на этих ранних стадиях развития, так что этот материал можно было бы использовать .

Обычно для «подсадки» предпочитают эуплоидных эмбрионов, но иногда таких просто не оказывается в текущем цикле. Сейчас проводят работы по отслеживанию результатов беременностей при переносе анеуплоидных и мозаичных эмбрионов: закончилось ли это выкидышем, нарушением развития ребенка или рождением живого и здорового младенца .

Клинический результат мозаицизма бывает очень разным, и из некоторых эмбрионов-мозаиков вырастают абсолютно здоровые дети. Возможности или желания пойти на следующий цикл ЭКО у пациента может не быть - это недешевая процедура, изматывающая физически и эмоционально. В таких случаях можно обсудить с доктором перенос мозаичного эмбриона, который уже есть.

Какие же эмбрионы точно нельзя выбирать? Больше всего риск при наличии мозаичных трисомий 2, 7, 13, 14, 15, 16, 18 и 21 - у ребенка с высокой вероятностью разовьется соответствующий синдром. Однако риски большие и при обнаружении мозаичных моносомий и других трисомий. При некоторых видах мозаичности, как уже обсуждалось, повышается риск ранней потери беременности.

Уже сейчас появляются рекомендации о том, как должны проводиться консультации врача с пациентами относительно мозаичности эмбриона. Приходится учитывать и то, что, несмотря на потенциальную клиническую пользу от такого анализа, некоторые пациенты могут не хотеть ее получить .

Поскольку ЭКО, сопутствующие анализы и неуспешные беременности и так сопровождаются эмоциональной и финансовой нагрузкой для пациента , новые данные о клинической значимости мозаицизма для рождения живых и здоровых детей необходимы - как и стандартизация отчетов о мозаицизме в ПГД .

Заключение

Хотя наука уже прошла долгий путь в расследовании мозаицизма, самая захватывающая часть ждет впереди. Нам повезло жить на заре эпохи изучения мозаицизма, когда еще столько аспектов этого явления остаются неизученными. Пока что не хватает масштабных когортных исследований , и все еще мало данных по динамике и частоте мозаицизма во многих тканях организма даже у здорового человека - что уж тут говорить о взаимосвязи мозаицизма и рисков развития определенных заболеваний.

«Мы хотели бы разобраться, если будет финансирование, как и какая мозаичность образуется в разных органах до рождения, как она меняется при жизни , - делится планами на будущую работу лаборатории Алексей Абызов. - Используя мутации как метки, хочется понять, как происходит специализация клеток. Например, сколько и каких клеток образуют внутреннюю и внешнюю (трофобласт) массу клеток в бластомере, сколько и каких клеток образуют зародышевые листки и каждый орган ».

Возможно, благодаря усовершенствованию и развитию технологий мы сможем создавать индивидуальные карты генома для каждого и использовать генетический мозаицизм в качестве биомаркера риска некоторых болезней , но пока что это дело будущего. «Есть мечта довести экспериментальную и аналитическую технологии до такого уровня , - продолжает Алексей, - чтобы можно было относительно дешево получить картину раннего развития и общие параметры мозаичности для каждого человека. Возможно, это поможет лучше спрогнозировать здоровье каждого человека и в таком случае будет частью личной медицинской карточки ».

К счастью, серьезных научных групп по изучению мозаицизма уже немало. Особое внимание Алексей Абызов уделяет работам британской лаборатории в Сэнгеровском институте (Wellcome Sanger Institute) под руководством Майкла Стрэттона , а из соотечественников - Дмитрию Горденину из американского Национального института наук об экологии и здоровье (NIEHS).

«Очевидно, что мы никогда не сможем измерить все процессы и мутации во всех клетках даже одного человека. Это связано не с развитием технологий, а с фундаментальными физико-биологическими изменениями , - завершает разговор с „Биомолекулой“ Алексей Абызов. - При исследованиях одиночных клеток мы сталкиваемся с тем, что я называю „принцип неопределённости“ - по аналогии с принципом неопределённости Гейзенберга в квантовой физике. То есть невозможно узнать всё о микрочастице (читай - клетке) без применения воздействия на нее. При текущем уровне развития технологий для изучения клеток мы их должны разрушить. Возможно, в будущем мы сможем изучать их, не разрушая, но в любом случае воздействие на клетку будет сильным.

С другой стороны, в изучении всех клеток нет смысла. Задача науки - находить природные закономерности и улучшать окружающую среду и человеческое общество на их основе. Это, я считаю, нам вполне по силам. Я думаю, что персональный мозаикóм и связанные с ним вещи найдут свое применение в медицине уже на нашем веку ».

Литература

  1. Michael J. McConnell, John V. Moran, Alexej Abyzov, Schahram Akbarian, Taejeong Bae, et. al.. (2017). Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network . Science . 356 , eaal1641;
  2. Gilad D. Evrony, Xuyu Cai, Eunjung Lee, L. Benjamin Hills, Princess C. Elhosary, et. al.. (2012). Single-Neuron Sequencing Analysis of L1 Retrotransposition and Somatic Mutation in the Human Brain . Cell . 151 , 483-496;
  3. Pray L. (2008). DNA replication and causes of mutation . Nat. Education. 1 , 214;
  4. Lars A. Forsberg, David Gisselsson, Jan P. Dumanski. (2017). Mosaicism in health and disease - clones picking up speed . Nat Rev Genet . 18 , 128-142;
  5. Kevin B Jacobs, Meredith Yeager, Weiyin Zhou, Sholom Wacholder, Zhaoming Wang, et. al.. (2012). Detectable clonal mosaicism and its relationship to aging and cancer . Nat Genet . 44 , 651-658;
  6. Tyl H. Taylor, Susan A. Gitlin, Jennifer L. Patrick, Jack L. Crain, J. Michael Wilson, Darren K. Griffin. (2014). The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans . Human Reproduction Update . 20 , 571-581;
  7. T. Xu, G. M. Rubin. (2012). The effort to make mosaic analysis a household tool . Development . 139 , 4501-4503;
  8. Rudolf Happle. (2017). The Molecular Revolution in Cutaneous Biology: Era of Mosaicism . Journal of Investigative Dermatology . 137 , e73-e77;
  9. David Mittelman Stress-Induced Mutagenesis — Springer New York, 2013;
  10. Rajiv C. McCoy. (2017). Mosaicism in Preimplantation Human Embryos: When Chromosomal Abnormalities Are the Norm . Trends in Genetics . 33 , 448-463;
  11. Young Seok Ju, Inigo Martincorena, Moritz Gerstung, Mia Petljak, Ludmil B. Alexandrov, et. al.. (2017). Somatic mutations reveal asymmetric cellular dynamics in the early human embryo . Nature . 543 , 714-718;
  12. Родословная нейронов: как носить в себе множество мутаций и выглядеть совершенно здоровым ;
  13. Luca Comai. (2005). The advantages and disadvantages of being polyploid . Nat Rev Genet . 6 , 836-846;
  14. Géraldine Gentric, Chantal Desdouets. (2014). Polyploidization in Liver Tissue . The American Journal of Pathology . 184 , 322-331;
  15. Mitchell J Machiela, Stephen J Chanock. (2017). The ageing genome, clonal mosaicism and chronic disease . Current Opinion in Genetics & Development . 42 Smoking is associated with mosaic loss of chromosome Y . Science . 347 , 81-83;
  16. Je H. Lee. (2018). Tracing single-cell histories . Science . 359 , 521-522;
  17. Taejeong Bae, Livia Tomasini, Jessica Mariani, Bo Zhou, Tanmoy Roychowdhury, et. al.. (2018). Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis . Science . 359 , 550-555;
  18. M. A. Lodato, M. B. Woodworth, S. Lee, G. D. Evrony, B. K. Mehta, et. al.. (2015). Somatic mutation in single human neurons tracks developmental and transcriptional history . Science . 350 , 94-98;
  19. Alexej Abyzov, Livia Tomasini, Bo Zhou, Nikolaos Vasmatzis, Gianfilippo Coppola, et. al.. (2017). One thousand somatic SNVs per skin fibroblast cell set baseline of mosaic mutational load with patterns that suggest proliferative origin . Genome Res. . 27 , 512-523;
  20. Alexej Abyzov, Jessica Mariani, Dean Palejev, Ying Zhang, Michael Seamus Haney, et. al.. (2012). Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells . Nature . 492 . Fertility and Sterility . 107 , 6-11;
  21. Ariel Weissman, Gon Shoham, Zeev Shoham, Simon Fishel, Milton Leong, Yuval Yaron. (2017). Chromosomal mosaicism detected during preimplantation genetic screening: results of a worldwide Web-based survey . Fertility and Sterility . 107 , 1092-1097.

Мозаицизм – это патологическая форма объединения разных генетических материалов. Причины данной патологии очень разнообразны, а некоторые даже недостаточно изучены. Наиболее часто формы мозаицизма провоцируют мутации и влияние на делящуюся клетку. Как и любая мутация, мозаицизм может иметь разные исходы, что зависит от его формы. Встречаются нейтральные безобидные мутации, не имеющие влияния на патогенез и жизненный прогноз или ведущие к патологиям. Такие мозаицизмы изучаются доктором – генетиком и требуют детальных исследований для предупреждения передачи подобных патологий. Нужно обозначить, что патология эта достаточно редко встречаема, но ведет к разнообразным исходам и в отдельных случаях мозаичные патологии протекают легче, чем не мозаичные, а просто хромосомные.

Чтобы говорить о мозаицизме, нужно немного повторить генетику и вспомнить, что любой многоклеточный организм, имеющий половое оплодотворение, а не деление или партеногенез, происходит от одной оплодотворенной мужским генетическим материалом яйцеклетки. В ходе роста зиготы происходит многоэтапное деление, но все клетки в организме имеют один и тот же генетический набор, то есть кариотип и генотип. Но у людей с мозаицизмом может формироваться несколько генетических наборов в силу разнообразных, как правило неблагоприятных факторов. Тогда организм имеет нормальные здоровые клетки и мутировавшие клетки.

Мозаицизм имеет происхождение из Франции и берет основы от слова мозаика. От латинского «мусивум», что обозначает посвященное музам. Такое явление формируется при наличии в клетках двух разных видов генов, клеток разного генотипа. Из мифологии имеется подобие такого существа, называется оно химерой и собрано из нескольких разных животных. Этот образ является прототипом мозаицизма, который происходит от нескольких генотипов.

Генетический мозаицизм возможен не во всех хромосомах, а лишь в отдельных наборах, что приводит к неполному и неоднородному распространению поражения.

Мозаицизм может возникать в половых клетках, при непосредственном на них воздействии неблагоприятных факторов. При этом мутация наследуется рандомно, нарушая традиционное Менделевское наследование. Это ведет к тому, что патология обнаружится не у всех детей больных родителей, а избирательно. Соматические клетки также могут подвергаться мозаицизму, но он не передается в поколении, поскольку соматические хромосомы не являются носителями генной информации для поколений, они влияют на жизнь своего носителя при их проявлении. Фенотип, то есть внешние признаки генотипа, набора хромосом, формируются зависимо от проявления патологических аллелей.

Мозаицизм хромосомный распространен при аномальных патологиях половых хромосом. При этом дает свои отдельные признаки разных мозаичных заболеваний.

Плацентарный мозаицизм является отдельной формой, возможность выявления которой появилась лишь с методами внутриутробного инвазивного исследования частей плода, детского места и околоплодных вод. Проявляет себя при внутриутробном недоразвитии крохи из-за патологии плаценты, которая у матери заложена генетически вследствие мозаицизма. При этом, у плода совершенно беспрекословно нормальный кариотип, состоящий из 23-х пар хромосом, одна из которых половая и никаких иных экстрагенитальных либо акушерских проблем не выявляется.

Мозаицизм: причины

Причины мозаицизма всегда имеют свои негативные исходы или последствия. Для их понимания требуется элементарное знание молекулярной биологии и подвидов деления клеток.

Генетический мозаицизм нередко может проявится при мейозе, делении, которое ведет к формированию гаплоидных, то есть имеющих половинный набор клеток. При этом происходит обычное удвоение материала в первым цикле деления, а в следующем не происходит. Но в отдельных случаях может произойти значимый сбой какой-то из фаз мейоза, что приведет к патологическому делению клеток. Это может произойти в нескольких фазах мейоза, поскольку мейоз имеет много фаз. В профазе происходит конъюгация, ведущая к сближению хромосом с появлением бивалентов, а в последующем кроссинговер. Именно на этапе кроссинговера возможно формирование сбоя, что приведет к созданию мозаичных клеток. Мозаицизм хромосомный формируется именно при таком исходе и возможен в каждой организменной клетке в целом. В верных исходах кроссинговер – нормальный процесс, необходимый для увеличения изменчивости организмов, но при неверном его исходе возможны нарушения, среди которых присутствует и мозаицизм.

Причин мутаций, ведущих к мозаицизму может быть множество, среди них и вредные привычки, и всевозможные подвиды излучений, и влияние мутагенов. Если мутация осуществляется на стадии зиготы, как слитых клеток или на внушительно ранних этапах дробления, то влияние имеется только на плод, а если в половых хромосомах, то влияние может быть на всех детей.

Но на профазе мейоза не заканчиваются опасности в появлении проблем с делением, при расхождении хромосом также возможны казусы, ведущие к подобным формам патологий. Такое неправильное деление хромосом происходит в клеточном ядре, ведь именно оно отвечает за воспроизведение клеток.

Зависимо от времени происхождения мутации, мозаицизм может затрагивать и весь плод, а может затрагивать лишь один из зародышевых листов. То есть поразить лишь экто-, мезо- или эндодерму. Это приведет в последующем к тому, что мозаицизм обнаружится только во всех образованиях из того листа. Например, при поражении эндодермы – это все органы, мезодермы – это мышцы, сосуды, кости и все соединительные ткани, а эктодермы – внешние оболочки и органы восприятия.

Плацентарный мозаицизм формируется в случаях трисомии зиготы по одной из пар хромосом, когда какая – та пара утроилась. Это называется анеуплоидия, поскольку хромосомный набор не кратный гаплоидному. При этом после трисомии часть клеток при исправлении ошибок остались нормальными, а часть утроенными. Это приведет к тому, что трофобласт, с помощью которого питается плод, будет иметь отличный от плода набор хромосом.

Мозаицизм: симптомы

Нет отдельных характерных симптомов для мозаицизма, они разнообразны и сильно варьируют от вида мутаций и подвергшихся этому клеток. Они могут выражаться в разнообразных хромосомных заболеваниях или же быть совершенно безобидными.

Плацентарный мозаицизм имеет такие характерные критерии: недоразвитие и задержка внутриутробного развития. Множество самопроизвольных выкидышей происходит по таким причинам. Нередко у таких детей бывает преждевременной рождение. Но по таким признакам хромосомные аномалии не отличить, нужно проводить генетические исследования: кариотипирование, амниоцентез, биопсия ворсинок хориона с цитогенетическим исследованием.

Генетический мозаицизм нередко проявляется в отдельных симптомах. Типичный пример – это разные глаза, с разным окрасом радужек. Также проявляется в асимметрии тела, неравномерности пигментации или конечностях разной длины. Для выявления делается кариотипирование, исследование культур фибробластов.

Мозаицизм хромосомный имеет в своей структуре множество генетических синдромов. Мозаичный синдром Клайнфелтера проявляется у мужчин, как правило выражен слабее полноценной формы болезни. При этом у них удваивается, а иногда и утраивается хромосома Х, что нередко ведет к женоподобности, бесплодию и проблемам по части мужского здоровья. Гермафродитизм также нередко имеет мозаическую природу и проявляется рождением ребенка с разными признаками полов, например внутренние половые органы мужские, а внешние женские. Бывают и другие более неблагоприятные совокупности. Синдром Шершевского-Тернера проявляется у девочек с нулевой Х хромосомой и ведет к бесплодию, отсутствию выраженности вторичных половых признаков и складок на шее. Мозаичная форма синдрома Дауна также гораздо легче своего полноценного собрата, но имеет те же симптомы: торможение в развитие, особый внешний вид, дополнительные патологии внутренних органов. Определение мозаичных форм затруднено, поскольку нужно просмотреть не одну клетку. Проявления также варьируют от степени пенетрантности генов. Именно поэтому между половыми генетическими синдромами и здоровыми людьми имеется множество переходных форм, которые имеют высокие шансы иметь потомство.

Мозаицизм: лечение

Мозаические патологии неизлечимы в силу видоизмененного генотипа, но все же улучшить многие симптомы возможно и делать это необходимо. Важно осознание, что таких родителей нужно обследовать у генетиков и такие патологии предупреждать с помощью кабинетов семейного планирования, в частности при наличии проблем с одним ребенком.

Лечение персон с мозаицизмом сильно варьирует зависимо от патологии, которую оно провоцирует. Поскольку выраженность симптоматики может проявить себя менее при мозаической форме патологии, то и лечение требуется менее интенсивное. При гермафродитизме родители однозначно должны определиться по желанию с полом ребенка. После этого производится оперативное вмешательство с формированием внутренних (при потребности, если они не однополые) и внешних половых органов, после чего следует заместительная половыми гормонами терапия в нужном возрастном промежутке и пожизненно, что позволить малышу жить нормальной жизнью определенного пола.

При синдроме Дауна все сфокусировано на симптоматику, ее купирование. При пороках сердца – это бета-блокаторы, Дигоксин, Фуросемид и оперативное вмешательство на сердечной системе. При синдромальных состояниях: синдромах Клайнфельтера и Шершевского – Тернера специфического лечения нет, но требуется немалое терпение с работой психолога у таких индивидов, в силу их значимой с иными персонами дифференциацией.

Что такое анеуплоидия, трисомия, транслокация, мозаицизм

В каждой клетке человеческого организма находится 46 хромосом, в которых выделяют две группы: 22 пары аутосом (пронумерованных с 1 по 22, в зависимости от размера) и пара половых хромосом (XX у женщин, XY у мужчин). Каждая хромосома в паре является гомологичной другой хромосоме в паре.

В норме человек имеет диплоидный набор хромосом, то есть в каждой клетке содержится двойной комплект каждой из 23 хромосом.

Но есть ситуации, в которых клетки содержат ненормальный, не кратный 46, набор хромосом, что называется анеуплоидией. Анеуплоидия может выражаться, например, в наличии добавочной хромосомы (n + 1, 2n + 1 и т. п.) или в нехватке какой-либо хромосомы (n - 1, 2n - 1 и т. п.).

Формы анеуплоидии:

  • моносомия (наличие одной из пары хромосом, например, синдром Шерешевского-Тернера, выражающийся в наличие одной половой Х-хромосомы)
  • трисомия (наличие трех вместо 2 хромосом пары).
  • тетрасомия (4 гомологичные хромосомы вместо пары в диплоидном наборе)
  • пентасомия (5 вместо 2-х) встречаются чрезвычайно редко.

Дальше речь пойдет о самых частых хромосомных аномалиях - трисомиях. В некоторых случаях дополнительная хромосома представлена целой отдельной хромосомой (полная трисомия), а в некоторых этот генетический материал переносится на другую хромосому, что называют транслокацией.

Среди транслокаций также выделяют:

  • реципроктную транслокацию, когда неготомологичные хромосомы обмениваются участками
  • робертсоновскую транслокацию (см.рис), при которой две неготомологичные хромосомы объединяются в одну.
  • Сбалансированная транслокация не сопровождается утратой генетического материала.

Мозаицизмом называют ситуацию, когда среди всех клеток организма есть нормальные, а есть клетки с патологией (например, с трисомией). В этом случае степень отклонений зависит от количества клеток, которые имеет ненормальный генетический материал.

Хромосомы в случае синдрома Патау - Трисомия 13

Хромосомы в случае синдрома Эдвардса - Трисомия 18

Факторы риска

Основными факторами риска являются возраст (особо значимо для синдрома Дауна), а также воздействие радиации, некоторых тяжелых металлов. Следует учитывать, что даже без факторов риска плод может иметь патологию.

Как видно из графика, зависимость величины риска от возраста наиболее значима для синдрома Дауна, и менее значима для двух других трисомий.

Синдром Эдвардса

Синдром Эдвардса характеризуется трисомией по 18 хромосоме и комплексом множественных пороков развития.

В одном случае из 10 наблюдается мозаицизм, то есть лишняя хромосома есть не во всех клетках организма. Возможна и частичная трисомия с присоединением части 18 хромосомы к другой хромосоме.

Во время беременности наблюдается малый вес плода, многоводие, небольшая плацента и наличие одной артерии плаценты.

Новорожденные имеют изменение формы черепа, маленькие рот и целюсть, лицевой дисфорфизм, дефекты глаз и низкие деформированные ушные раковины. Также наблюдаются численные аномалии пальцев рук и ног, деформация стопы («стопа-качалка»).

Из дефектов внутренних органов наиболее часто встречаются пороки сердца и сосудов. У всех наблюдается гипоплазия мозжечка.

Синдром Эдвардса характеризуется умственной отсталостью и задержкой в развитии.

Большая часть детей умирает в первые месяцы жизни.

Синдром Патау

Синдром Патау обусловлен наличием лишней 13 хромосомы.

Это заболевание встречается примерно 1 на 5000-10000 родов. Частота встречаемости меняется в связи с возможностями пренатального скрининга и диагностики. Большая часть детей умирают в первые недели/месяцы жизни.

Дети с синдромом Патау небольшого роста, с микроцефалией, имеют покатый лоб, суженные глазные щели, микрофтальмия, миеломенингоцеле, помутнение роговицы, запавшая переносица и широкое основание носа, деформированные ушные раковины, расщелина верхней губы и нёба, полидактилия, короткая шея, флексорное положение кистей, сморщенная кожа задней поверхности шеи. Характерна умственная отсталость. Внутренние органы имеют дефекты: пороки сердца, сосудов, поджелудочной железы, селезенки, почек.

Во время беременности в большинстве случаев наблюдается многоводие.

Синдром Патау может быть обусловлен как простой трисомией, так и робертсоновской транслокацией. Мозаицизм и неробертсоновская транслокация встречаются редко.

Возврат к списку

Трисомия по Х хромосоме представляет собой расстройство, поражающее девочек. Это расстройство характеризуется наличием дополнительной Х-хромосомы.

Общие симптомы и проявления включают: речевые задержки, диспраксия, высокий рост, низкий мышечный тонус (гипотония) и клинодактилия.

Трисомии по Х хромосоме происходят случайным образом в результате ошибок при расхождении хромосом. Это расстройство встречается у одной девочки из 900-1000 живорожденных.

Трисомия по Х хромосоме.

Эпидемиология

Трисомия по Х хромосоме может появиться только у лиц женского пола. Существующие оценки, касающиеся частоты расстройства, указывают на то, что такая трисомия развивается у 1 из 1000 новорожденных девочек.

Но некоторые исследователи считают, что частота этого расстройства слишком занижена.

Трисомия по Х хромосоме. Причины

Трисомии по Х хромосоме представляют собой хромосомные аномалии, которые характеризуются наличием дополнительной Х-хромосомы.

Несмотря на то, что трисомия X является генетическим нарушением, она не наследуется. Наличие дополнительной Х-хромосомы является следствием ошибки при расхождении хромосом. Эти ошибки возникают случайно и без видимой причины (спорадически). В большинстве случаев, дополнительная Х-хромосома имеет материнское происхождение.

Примерно в 20 процентах случаев, нерасхождение происходит после зачатия. Исследователи считают, что симптомы и физические особенности этого расстройства связаны с сверхэкспрессией генов.

  • Синдром тетрасомия Х – редкая хромосомная аномалия, при которой у лиц женского пола имеется две дополнительные хромосомы X (48, ХХХХ).
  • Синдром пентасомия Х – редкое хромосомное расстройство, при котором у лиц женского пола имеется три дополнительные хромосомы X (49, ХХХХХ).

Трисомия по Х хромосоме.

Симптомы и проявления

Кариотип 47,ХХХ

Симптомы и физические особенности связанные с трисомией по X хромосоме существенно отличаются от одного человека к другому. Некоторые девочки вообще могут не иметь никаких симптомов и проявлений или только очень слабые проявления, в то время как другие могут иметь широкий спектр различных патологий.

Трисомии по Х хромосоме часто связаны с различными речевыми задержками и задержками в развитии.

Интеллект, как правило, в пределах нормы. IQ может быть на 10-15 пунктов ниже нормы. Девочки начинают разговаривать в возрасте около 12-18 месяцев. При чтении, родители могут обратить свое внимание на следующие недостатки: дислексия, беглое чтение, разговорные отклонения. Очень часто, девочки имеют диспраксию. Также, они могут иметь более высокий рост по сравнению с другими девочками их возраста.

В некоторых случаях, у детей с трисомией по X хромосоме могут иметься умеренные лицевые аномалии: вертикальные складки кожи охватывающие внутренние углы глаз, широко расставленные глаза (гипертелоризм) и маленькая окружность головы.

Большинство младенцев также имеют сниженный мышечный тонус (гипотония) и клинодактилию. Лица с трисомией по X хромосоме могут часто проявлять тревогу, синдром дефицита внимания и гиперактивности (СДВГ).

В некоторых случаях, такие нарушения улучшаются с возрастом. Также, некоторые девочки имеют незначительные поведенческие или эмоциональные нарушения в то время как другие имеют более серьезные проблемы, которые могут потребовать кратковременного вмешательства.

Раннее выявление и лечение таких нарушений является очень полезными для таких детей.

В большинстве случаев, половое развитие и плодородие в норме. Тем не менее, в некоторых отчетах имеется информация, согласно которой у некоторых девочек может фиксироваться неправильное развитие яичников (дисгенезия) и / или матки, задержка или наоборот, преждевременное половое созревание.

Трисомия по Х хромосоме.

Диагностика

Диагноз может быть подтвержден только хромосомным анализом. Кроме того, трисомия Х чаще всего диагностируется до рождения (пренатально) на основе того же хромосомного анализа.

Синдром 13 хромосомы. Причины

Обычно, каждая яйцеклетка и сперматозоид содержит по 23 хромосомы. Во время оплодотворения, сперматозоид и яйцеклетка объединяются и тем самым они создают клетку с 23 парами хромосом. Таким образом, ребенок получает ровно половину своего генетического материала от каждого из родителей. Но иногда, при оплодотварении возникает ошибка, при которой может появиться лишняя хромосома.

Точно так же происходит и при синдроме 13 хромосомы. Эта дополнительная хромосома 13 может появиться от любой яйцеклетки матери или от любого сперматозоида отца.

Аномалии, которые развиваются при синдроме 13 хромосомы, развиваются как раз в результате наличия этой дополнительной хромосомы 13 в каждой из клеток организма. Иногда, дополнительная хромосома 13 может быть прикреплена к другой хромосоме в яйцеклетке или в сперматозоиде, это называется транслокацией. И это является единственной формой синдрома 13 хромосомы, которая может быть унаследована в семье.

Синдром 13 хромосомы.

Симптомы и проявления

Типичные проявления синдрома 13 хромосомы

Дети с синдромом 13 хромосомы часто имеют нормальный вес при рождении, небольшую голову и широкий лоб. Нос, как правило, большой («луковичный»), низкорасположенные и необычные по форме уши. Глазные дефекты, заячья губа и расщелина нёба, а также пороки сердца тоже являются очень распространенными внешними признаками этого синдрома.

Многие дети, с синдромом 13 хромосомы, рождаются с небольшими участками отсутствующей кожи на волосистой части головы, которые своим внешним видом напоминают язвы.

Что касается головного мозга, то, как правило, основные структурные проблемы расположены именно в нем и одной из самых серьезных проблем является состояние, при котором у человека не разделяется передний мозг на два полушария. Многие дети с синдромом 13 хромосомы также имеют дополнительные пальцы рук и ног (полидактилия).

Некоторые могут иметь омфалоцеле (мешок в области пупка), который может содержать некоторые из органов брюшной полости, а также расщепление позвоночника. Девочки могут иметь аномально профилированную матку, которая называется двурогой маткой. У мальчиков иногда не спускаются яички в мошонку.

Синдром 13 хромосомы. Диагностика

Дети с синдромом 13 хромосомы имеют уникальную группу проявлений, которые могут быть диагностированы при проведении медицинского обследования.

Для подтверждения диагноза, образец крови будет проанализирован на наличие дополнительной хромосомы 13. Хромосомные аномалии также могут быть диагностированы до рождения, путем анализа клеток из амниотической жидкости, полученных при проведении амниоцентеза или из клеток, полученных при биопсии хориона. Диагноз синдрома 13 хромосомы также может быть поставлен после тщательного проведения УЗИ плода. Однако, УЗИ не является 100% по точности тестом, так как не все аномалии можно увидеть на УЗИ.

В противоположность этому, точность хромосомного анализа составляет более 99,9%.

Синдром 13 хромосомы. Прогноз

К сожалению, 90% детей, родившихся с синдромом 13 хромосомы умирают в возрасте до 1 года. Важно отметить, что от 5% до 10% детей с этим синдромом выживают в первый год жизни. Но даже если ребенок не будет иметь непосредственно угрожающих жизни аномалий, то даже тут, будет тяжело предсказать продолжительность жизни.

В современной медицинской литературе есть несколько сообщений о младенцах с синдромом 13 хромосомы, доживших до подросткового возраста. Однако, это необычно.

Синдром 13 хромосомы. Лечение

Лечение только симптоматическое и поддерживающее.

Кольцевая 22 хромосома – редкое расстройство, которое характеризуется аномалиями в 22 хромосоме. Сопутствующие симптомы и проявления могут быть очень разнообразными, от случая к случаю. Тем не менее, это расстройство, как правило, связано с развитием умственной отсталости от умеренной до тяжелой степени.

Некоторые лица могут также иметь относительно мягкие, неспецифические физические (т.е. диспластические) проявления, в то время как другие могут иметь более отличительные, потенциально серьезные физические отклонения.

Согласно информации, указанной в медицинской литературе, общие для всех пациентов проявления включают уменьшенный мышечный тонус (гипотония), нарушение координации, необычная манера ходьбы, трудности в речевой функции и / или некоторые пороки развития черепа и лицевой (черепно-лицевой) области. Такие черепно-лицевые аномалии могут включать в себя необычно маленькую голову (микроцефалия), аномальные складки кожи, которые могут охватывать внутренние углы глаз, необычно большие уши и / или другие пороки развития.

Кольцевая 22 хромосома, как правило, вызывается спонтанными или «De Novo» ошибками в самом начале развития эмбриона, которые происходят случайным образом и пока по неизвестным причинам.

Кольцевая 22 хромосома. Эпидемиология

На основании наблюдаемых случаев, кольцевая 22 хромосома развивается у женщин чаще, чем у мужчин. В медицинской литературе зарегистрировано более 50 случаев.

Кольцевая 22 хромосома.

Кольцевая 22 хромосома развивается из-за потери кусочков хромосомы на обоих концах 22 хромосомы, с последующим соединением этих концов.

У лиц с кольцевой 22 хромосомой, сопутствующие симптомы и проявления могут быть очень разнообразны, в зависимости от количества потерянного генетического материала в 22 хромосоме, стабильности кольцевой хромосомы во время последующих клеточных делений (т.е.

митоза) и от других факторов.

Кольцевая 22 хромосома, как правило, развивается из-за спонтанных или «De Novo» ошибок в самом начале развития эмбриона. В таких случаях, родители больного ребенка, как правило, имеют нормальные хромосомы. Тем ни менее, были зарегистрированы случаи, в которых кольцевые 22 хромосомы были унаследованы от родителей (семейная передачи).

В некоторых случаях, только определенный процент клеток родителя может содержать кольцевые 22 хромосомы, в то время как другие клетки могут иметь нормальные хромосомы (такое событие известно как «мозаицизм»).

Кольцевая 22 хромосома.

Симптомы и проявления

Кольцевая 22 хромосома, как правило, характеризуется развитием умственной отсталости, связанной с различными физическими проявлениями, которые могут варьироваться от относительно мягких и неспецифических до более отличительных и потенциально серьезных для здоровья.

Отчеты показывают, что физическое развитие и рост находятся норме даже у наиболее пострадавших лиц.

Девочка с кольцевой 22 хромосомой

В дополнение к умственной отсталости, общие черты, связанные с кольцевой 22 хромосомой включают низкий мышечный тонус (гипотония), плохую координацию, неуклюжую и неустойчивую походку, речевые проблемы.

Некоторые лица также могут иметь поведенческие отклонения, такие как заметно повышенная двигательная активность и аутизм.

Многие люди с кольцевой 22 хромосомой также развивают пороки черепа и пороки лицевой (черепно-лицевой) области.

Они обычно включают в себя аномально маленькую голову (микроцефалия), относительно длинное лицо, толстые, низкие брови, вертикальные складки кожи, которые могут охватывать внутренние уголки глаз и / или большие уши.

Некоторые лица также могут иметь дополнительные черепно-лицевые дефекты, такие как большой нос в форме картошки, толстые, полные губы, широко расставленные глаза и / или короткие, узкие складки век.

Другие особенности могут включать птоз, высокое нёбо и / или высунутый язык.

Некоторые лица могут также иметь нарушения рук и ног. Такие нарушения могут включать в себя срощение определенных пальцев рук или ног, особенно это касается второго и третьего пальца, недоразвитие костей, ногтей, тонкие пальцы и/или необычно большие руки и ноги.

Мальчик с кольцевой 22 хромосомой

В редких случаях могут наблюдаться другие, более серьезные физические аномалии, такие как структурные пороки развития сердца (врожденные сердечные дефекты), дефекты почек, частичное или полное закрытие анального отверстия тонкой мембраной или ненормальное накопление лимфы в тканях и связанный с ним отек (лимфедема).

В некоторых случаях, некоторые из особенностей, связанные с кольцевой 22 хромосомой, могут напоминать те, которые развиваются у людей с моносомией 22 или с синдромом кошачьего глаза.

Симптомы и проявления следующих расстройств могут быть аналогичны тем, которые развиваются у лиц с кольцевой 22 хромосомой. Сравнения могут быть полезными для дифференциальной диагностики:

Моносомия по 22 хромосоме.

Это редкое расстройство характеризуется полным отсутствием одной 22-й хромосомы или ее части. В большинстве случаев, у пациентов отсутствует длинное плечо 22-й хромосомы, а у небольшого числа пациентов только часть в этом длином плече. Нарушения могут быть переменными, всё зависит от конкретного места хромосомной делеции.

Тем не менее, многие пациенты могут иметь умственную отсталость, тяжелые задержки речи, дефицит роста, снижение мышечного тонуса (гипотония), и / или черепно-лицевые пороки развития – аномально маленькую голову (микроцефалия), большие уши, плоский носовой мост, широко разнесенные глаза (глазной гипертелоризм), вертикальные складки кожи и / или другие проявления. У некоторых пациентов также может быть отсутствие (агенезия) тимуса и паращитовидных желез.

Тимус играет важную роль в развитии иммунной системы в период от внутриутробного развития и до периода полового созревания.

Синдром Диджорджи. Этот синдром связан с делецией в локусе 22q11.2. Синдром характеризуется задержками развития, ускоренным ростом, речевыми задержками, мышечной слабостью (миотония) и мягкими структурными дефектами (дисморфизмы).

Синдром кошачьих глаз является редким хромосомным расстройством, при котором одни люди могут иметь легкие симптомы и проявления, в то время как другие могут иметь более серьезные пороки развития, особенно черепно-лицевой области, желудочно-кишечного тракта, сердца и / или почек.

Аномалии лицевой области могут включать в себя депрессию носа, косые складки век, широко расставленные глаза, односторонние или двусторонние колобомы, небольшие челюсти (микрогнатия) и / или ненормальные наросты кожи и мелкие углубления перед ушами.

Дополнительные физические аномалии могут включать структурные аномалии сердца, неразвитость (гипоплазия) и / или отсутствие (агенезия) почек, невысокий рост и / или другие особенности. Расстройство часто связано с умственной отсталостью.

Кольцевая 22 хромосома.

Диагностика

В некоторых случаях диагноз кольцевой 22 хромосомы может быть поставлен еще до рождения (пренатально) при выполнении УЗИ, амниоцентеза, и / или биопсии хориона. С помощью УЗИ можно выявить характерные проявления, которые будут свидетельствовать о хромосомных аномалиях. После чего, врачи могут провести амниоцентез (сбор околоплодной жидкости) или сбор ворсинок хориона для последующего хромосомного анализа, во время которого будет определена кольцевая структура 22 хромосомы.

Диагноз также может быть подтвержден после рождения, на основе тщательного клинического обследования, выявления характерных физических проявлений и на основе того же хромосомного анализа.

Кольцевая 22 хромосома.

Лечение этого расстройства направлено только на контроль и избавление от конкретных симптомов и проявлений. Такое лечение может потребовать скоординированных усилий команды медицинских работников, таких как педиатров, хирургов и других специалистов.

Для некоторых пациентов, лечение может включать в себя хирургическое вмешательство для исправления некоторых черепно-лицевых или других физических аномалий, потенциально связанных с этим расстройством.

Типы и количество хирургических процедур, будут зависеть от тяжести анатомических нарушений, связанных с ними симптомов и других факторов.

Раннее вмешательство может быть важным для любого из таких пациентов.

Для детей также будут полезны физическая терапия, логопедия и / или другие медицинские, социальные и / или профессиональные направления. Генетическое консультирование также будет полезным для людей с кольцевой 22 хромосомой и их семей.

Мозаицизм – комплексная патология генетического материала. Этиология различная. Причины не изучены. Процессы поражения следующие:

  • наличие мутаций;
  • влияние на делящуюся клетку

Исходы и прогноз разнообразный. Иногда мутации не имеют четкого поражения. Изучают данную патологию генетики. Имеет значимость процесс профилактики.

Встречается мозаицизм достаточно редко. Хромосомная патология имеет благоприятные исходы.

Понятие

Имеет значение в данном процессе процесс оплодотворения клетки. Генетический набор при этом односторонний. Однако генетические поражения могут быть разнообразны.

Влияют факторы внешние на процесс патологии. Страна происхождения болезни Франция. Напоминает мифическое существо химеру.

Наблюдается процесс локализации поражения в отдельном виде хромосомы. Поражение достаточно распространенное. Развивается в половой сфере под влиянием внешних факторов.

При данном поражении болезнь у детей не всегда связана с патологией у родителей. Фенотип в данном случае – набор генотипа. Развивается при патологии половых хромосом.

Методы диагностики:

  • исследования внутри утробы матери;
  • исследование детского места;
  • исследование околоплодных вод

У ребенка наблюдается недоразвитие. Причина – патология плаценты.

Этиология

Имеются следующие исходы:

  • негативный характер поражения;
  • негативные последствия

Требуется применение следующих знаний:

  • способы молекулярной биологии;
  • способы подвидов деления клетки

Встречается болезнь в следующих случаях:

  • процесс мейоза;
  • процесс деления;
  • сбой фазы деления клетки

Хромосомный тип поражения формируется в мозаичных клетках. Причины мутации клетки:

  • излучение;
  • пагубные привычки;
  • мутагены

При поражении зиготы образуется плодовое поражение. Если страдают половые клетки, то поражение затрагивает детей. Клетки отвечают за воспроизведение нового организма.

Локализация поражения:

  • плод;
  • зародышевые листки

Все органы поражаются при нарушении эндодермы. При поражении мезодермы формируется следующее:

  • поражение мышц;
  • поражение сосудов;
  • поражение костей;
  • образование соединительной ткани

При поражении внешнего слоя нарушения следующие:

  • патология внешней оболочки;
  • поражение органов восприятия

Симптомы

Симптомы разные. Зависят от следующего:

  • вид мутации;
  • степень поражения клетки

Имеют схожесть с хромосомной патологией. Признаки являются безобидными. Признаки плацентарного типа поражения:

  • недоразвитие;
  • задержка развития внутри утробы

Исход данной патологии – выкидыш. Иногда недоношенность. Методы диагностики:

  • использование амниоцентеза;
  • использование биопсии;
  • цитогенетические исследования

Признаки генетического поражения:

  • разные глаза;
  • различный цвет радужки

Возможны также следующие признаки:

  • асимметрия тела;
  • неправильная пигментация;
  • разные конечности

У мужского населения формируется тип синдрома Клайнфелтера. Признаки данного синдрома:

  • утрачивание хромосомы;
  • подобие женщины;
  • бесплодие;
  • проблемы со здоровьем

У детей наблюдается следующее:

  • разные признаки полов;
  • внешние – мужские признаки, внутренние – женские

Признаки синдрома поражения у женского пола:

  • бесплодие;
  • нет вторичных половых признаков;
  • отсутствие складок на шее

Различают мозаичного поражение при синдроме Дауна:

  • нарушение развития;
  • специфический внешний вид;
  • патология внутренних органов

Мозаичная форма диагностируется с трудом. Однако возможность к зачатию существует при влиянии здорового партнера.

Терапия

Терапия в целом не эффективная. Но можно улучшить состояние больного. Методы диагностики:

  • обследование у генетика;
  • кабинет планирование семьи

При отсутствии выраженных изменений терапия соответствующая. От родителей требуется определиться с половой принадлежностью ребенка. Затем терапия включает следующее:

  • операция;
  • формирование половых органов;
  • формирование внешних половых признаков

Широко используют заместительную терапию. Она включает заместительный способ половых гормонов. Но данный метод проводится в определенном возрасте.

Имеет пожизненное происхождение. При проведении терапии восстанавливается нормальная жизнь. Лечение синдрома Дауна включает:

  • купирование острой симптоматики;
  • восстанавливающая терапия

При явлениях порока сердца используют бета-блокаторы. При иных синдромах терапия не используются специфического типа. В данном случае используют консультацию психолога.

Продолжительность жизни

При данном заболевании продолжительность жизни снижается за счет поражения различных систем организма. Это может быть поражение сердечной системы при синдроме Дауна.

Если при данном синдроме проведено оперативное вмешательство, то способы восстановления возможны. Таким образом, длительность жизни увеличивается. Но полностью избавиться от болезни невозможно.

При формировании половых признаков можно добиться увеличения уровня жизни. Но иные признаки могут оставаться в прежнем состоянии. К примеру, бесплодие может оказаться приговором. В любом случае следует привлечь специалистов и врачей. Только врач способен определиться с дальнейшей тактикой терапии.

Причины возникновения

Может возникать в результате:

  • перераспределения (кроссинговер) в соматических клетках,
  • соматических мутаций в зиготе или на ранних стадиях дробления;
  • неправильного расхождения (сегрегации) хромосом при делении клеточного ядра (митозе).

Диагностика

Для диагностики мозаицизма исследуют кариотип крови или клеток ткани - требуется большее число клеток, чем при диагностике полных форм, так как часть клеток будут демонстрировать обычный кариотип.

С мозаичными формами генных болезней не следует путать мозаицизм гонад . Мозаицизм гонад является частным случаем органного мозаицизма, возникающего на более поздних стадиях эмбрионального развития в процессе органогенеза. Наличие его у клинически здорового индивида может обусловить рождение детей с полной формой доминантной наследственной болезни (например, гемофилии) .

Примечания

Ссылки

Литература

  • Карамышева Т. В., Матвеева В. Г., Шорина А. Р., Рубцов Н. Б. Клинический и молекулярно-цитогенетический анализ редкого случая мозаицизма по частичной моносомии 3р и частичной трисомии 10q у человека. Генетика, 2001, 37, 811-816.
  • Ворсанов С. Г., Юров Ю. Б., Александров И. А. и др. Молекулярно-цитогенетическая диагностика наследственных болезней, связанных с различными аномалиями хромосом Х. Педиатрия 1989; 1: 78-80.

Wikimedia Foundation . 2010 .

Смотреть что такое "Мозаицизм" в других словарях:

    Большой Энциклопедический словарь

    Мозаичность (от слова мозаика (франц. mosaique, от лат. musivum, греч. museion, букв. посвященное музам)), явление, отражающее присутствие у многоклеточного организма клеток разного генотипа (исключая половые клетки в процессе мейоза). Такие… … Биологический энциклопедический словарь

    мозаицизм - а, м. mosaïque. ? Наличие в тканаях растения, животного или человека или в клоне микроорганизма клеток с различной наследственной структурой. СЭС. Лекс. БСЭ 3: мозаици/зм … Исторический словарь галлицизмов русского языка

    мозаицизм - Присутствие клеток (точнее, их воспроизводящихся клонов) разного генотипа, что может приводить к возникновению в процессе соматического развития секторов тканей (клеточных популяций с отличающимся генотипом); частными случаями М. считаются… … Справочник технического переводчика

    Наличие в тканях растения, животного, человека или в клоне микроорганизма клеток с различной наследственной структурой. Возникает в результате перераспределения (рекомбинации) генов, мутаций или неправильного расхождения хромосом в процессе… … Энциклопедический словарь

    Mosaicism, variegation мозаицизм. Присутствие клеток (точнее, их воспроизводящихся клонов) разного генотипа, что может приводить к возникновению в процессе соматического развития секторов тканей (клеточных популяций с отличающимся генотипом);… … Молекулярная биология и генетика. Толковый словарь.

    мозаицизм - ПАТОЛОГИЯ ЭМБРИОГЕНЕЗА МОЗАИЦИЗМ – явление, при котором в составе многоклеточного организма имеются клетки различного генотипа. Возникает как следствие мутации в митотически делящейся клетке, в результате чего часть клеток организма приобретает… … Общая эмбриология: Терминологический словарь

    - (франц. mosaique мозаика; син. мозаичность) наличие в организме двух или более типов генетически различающихся клеток … Большой медицинский словарь

    Мозаичность, одновременное присутствие в организме двух или нескольких сортов однотипных клеток, различающихся по генетической структуре Генотипу и (или) по проявлению генов в Фенотипе. Т. о., при М. одновременно проявляются признаки,… … Большая советская энциклопедия

    Наличие в тканях растения, животного, человека или в клоне микроорганизма клеток с разл. наследств. структурой. Возникает в результате перераспределения (рекомбинации) генов, мутаций или неправильного расхождения хромосом в процессе деления… … Естествознание. Энциклопедический словарь

Похожие публикации