Относительная диэлектрическая проницаемость

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ (диэлектрическая постоянная ) - физическая величина, характеризующая способность вещества уменьшать силы электрического взаимодействия в этом веществе по сравнению с вакуумом. Т. о., Д. п. показывает, во сколько раз силы электрического взаимодействия в веществе меньше, чем в вакууме.

Д. п.- характеристика, зависящая от строения вещества-диэлектрика. Электроны, ионы, атомы, молекулы или их отдельные части и более крупные участки какого-либо вещества в электрическом поле поляризуются (см. Поляризация), что приводит к частичной нейтрализации внешнего электрического поля. Если частота электрического поля соизмерима с временем поляризации вещества, то в определенном диапазоне частот имеет место дисперсия Д. п., т. е. зависимость ее величины от частоты (см. Дисперсия). Д. п. вещества зависит как от электрических свойств атомов и молекул, так и от их взаимного расположения, т. е. строения вещества. Поэтому определение Д. п. или ее изменения в зависимости от окружающих условий используют при исследовании структуры вещества, и в частности различных тканей организма (см. Электропроводность биологических систем).

Различные вещества (диэлектрики) в зависимости от их строения и агрегатного состояния имеют различную величину Д. п. (табл.).

Таблица. Значение диэлектрической проницаемости некоторых веществ

Особое значение для мед.-биол, исследований имеет изучение Д. и. в полярных жидкостях. Типичным их представителем является вода, состоящая из диполей, которые в электрическом поле ориентируются благодаря взаимодействию между зарядами диполя и полем, что приводит к возникновению дипольной или ориентационной поляризации. Высокая величина Д. п. воды (80 при t° 20°) определяет высокую степень диссоциации в ней различных хим. веществ и хорошую растворимость солей, к-т, оснований и других соединений (см. Диссоциация , Электролиты). С увеличением концентрации электролита в воде величина ее Д. п. уменьшается (напр., для одновалентных электролитов Д. п. воды уменьшается на единицу при увеличении концентрации соли на 0,1 М).

Большинство биол, объектов относится к гетерогенным диэлектрикам. При взаимодействии ионов биол, объекта с электрическим полем существенное значение имеет поляризация границ раздела (см. Мембраны биологические). При этом величина поляризации тем больше, чем меньше частота электрического поля. Т. к. поляризация границ раздела биол, объекта зависит от их проницаемости (см.) для ионов, то очевидно, что эффективная Д. п. в большей степени определяется состоянием мембран.

Т. к. поляризация такого сложного гетерогенного объекта, как биологический, имеет различную природу (концентрационная, макроструктурная, ориентационная, ионная, электронная и др.), то становится понятным тот факт, что с возрастанием частоты изменение Д. п. (дисперсия) резко выражено. Условно выделяют три области дисперсии Д. п.: альфа-дисперсия (на частотах до 1 кгц), бета-дисперсия (частота от нескольких кгц до десятков мгц) и гамма-дисперсия (частоты выше 10 9 гц); в биол, объектах четкой границы между областями дисперсии обычно нет.

При ухудшении функц, состояния биол, объекта дисперсия Д. п. на низких частотах уменьшается вплоть до полного исчезновения (при отмирании тканей). На высоких частотах величина Д. п. существенно не изменяется.

Д. п. измеряют в широком диапазоне частот и в зависимости от диапазона частот существенно изменяются и методы измерения. При частотах электрического тока менее 1 гц измерение производят с помощью метода заряда или разряда конденсатора, заполненного исследуемым веществом. Зная зависимость зарядного или разрядного тока от времени, можно определить не только величину электрической емкости конденсатора, но и потери в нем. На частотах от 1 до 3 10 8 гц для измерения Д. и. применяют специальные резонансные и мостовые методы, которые позволяют комплексно исследовать изменения Д. п. различных веществ наиболее полно и разносторонне.

В мед.-биол, исследованиях чаще всего используют симметричные мосты переменного тока с непосредственным отсчетом измеряемых величин.

Библиография: Высокочастотный нагрев диэлектриков и полупроводников, под ред. А. В. Нетушила,М. -Л., 1959, библиогр.; С едунов Б. И. и Фран к-К а м е-н e ц к и й Д. А. Диэлектрическая проницаемость биологических объектов, Усп. физич. наук, т. 79, в. 4, с. 617, 1963, библиогр.; Электроника и кибернетика в биологии и медицине, пер. с англ., под ред. П. К. Анохина, с. 71, М., 1963, библиогр.; Э м e Ф. Диэлектрические измерения, пер. с нем., М., 1967, библиогр.

Лекция №19

  1. Природа электропроводности газообразных, жидких и твердых диэлектриков

Диэлектрическая проницаемость

Относительная диэлектрическая проницаемость, или диэлектрическая проницаемость ε - один из важнейших макроскопических электрических параметров диэлектрика. Диэлектрическая проницаемость ε количественно характеризует способность диэлектрика поляризоваться в электрическом поле, а также оценивает степень его полярности; ε является константой диэлектрического материала при данной температуре и частоте электрического напряжения и показывает, во сколько раз заряд конденсатора с диэлектриком больше заряда конденсатора тех же размеров с вакуумом.

Диэлектрическая проницаемость определяет величину электрической емкости изделия (конденсатора, изоляции кабеля и т.п.). Для плоского конденсатора электрическая емкость С, Ф, выражается формулой (1)

где S- площадь измерительного электрода, м 2 ; h - толщина диэлектрика, м. Из формулы (1) видно, что чем больше величина ε используемого диэлектрика, тем больше электрическая емкость конденсатора при тех же габаритах. В свою очередь, электрическая емкость С является коэффициентом пропорциональности между поверхностным зарядом QК, накопленным конденсатором, и приложенным к нему электрическим на-

пряжением U (2):

Из формулы (2) следует, что электрический заряд QК, накопленный конденсатором, пропорционален величине ε диэлектрика. Зная игеометрические размеры конденсатора, можно определить ε диэлектрического материала для данного напряжения.

Рассмотрим механизм образования заряда на электродах конденсатора с диэлектриком и из каких составляющих складывается этот заряд. Для этого возьмем два плоских конденсатора одинаковых геометрических размеров: один - с вакуумом, другой - с межэлектродным пространством, заполненным диэлектриком, и подадим на них одинаковое электрическое напряжение U (рис. 1). На электродах первого конденсатора образуется заряд Q0 , на электродах второго - . В свою очередь, заряд является суммой зарядов Q0 и Q (3):

Заряд Q 0 образован внешним полем Е0 путем накопления на электродах конденсатора сторонних зарядов с поверхностной плотностью σ 0 . Q - это дополнительный заряд на электродах конденсатора, создаваемый источником электрического напряжения для компенсации связанных зарядов, образовавшихся на поверхности диэлектрика.

В равномерно поляризованном диэлектрике заряд Q соответствует величине поверхностной плотности связанных зарядов σ. Заряд σ образует поле Е сз, направленное противоположно полю Е О.

Диэлектрическую проницаемость рассматриваемого диэлектрика можно представить как отношение заряда конденсатора, заполненного диэлектриком, к заряду Q0 такого же конденсатора с вакуумом (3):

Из формулы (3) следует, что диэлектрическая проницаемость ε - величина безразмерная, и у любого диэлектрика она больше единицы; в случае вакуума ε = 1. Из рассмотренного примера также

видно, что плотность заряда на электродах конденсатора с диэлектриком в ε раз больше плотности заряда на электродах конденсатора с вакуумом, а напряженности при одинаковых напряжениях для обо

их конденсаторов одинаковы и зависят только от величины напряжения U и расстояния между электродами (Е = U /h).

Кроме относительной диэлектрической проницаемости ε различают абсолютную диэлектрическую проницаемость ε а , Ф/м, (4)

которая не имеет физического смысла и используется в электротехнике.

Относительное изменение диэлектрической проницаемости εr при повышении температуры на 1 К называется температурным коэффициентом диэлектрической проницаемости.

ТКε = 1/ εr d εr/dT К-1 Для воздуха при 20°С ТК εr = -2.10-6К-

Электрическое старение в сегнетоэлектриках выражается в уменьшении εr со временем. Причиной является перегруппировка доменов.

Особенно резкое изменение диэлектрической проницаемости со временем наблюдается при температурах, близких к точке Кюри. Нагревание сегнетоэлектриков до температуры более точки Кюри и последующее охлаждение возвращает εr к прежнему значению. Такое же восстановление диэлектрической проницаемости можно осуществить, воздействуя на сегнетоэлектрик электрическим полем повышенной напряженности.

Для сложных диэлектриков – механической смеси двух компонентов с разным εr в первом приближении: εrх = θ1 · εr1х ·θ· εr2х,где θ – обьемная концентрация компонентов смеси, εr - относительная диэлектрическая проницаемость компонента смеси.

Поляризация диэлектрика может быть вызвана: механическими нагрузками (пьезополяризация в пьезоэлектриках); нагревом (пирополяризация в пироэлектриках); светом (фотополяризация).

Поляризованное состояние диэлектрика в электрическом поле Е характеризуется электрическим моментом единицы объема, поляризованностью Р, Кл/м2, которая связана с его относительной диэлектрической проницаемостью eг: Р = e0 (eг - 1)Е, где e0 = 8,85∙10-12 Ф/м. Произведение e0∙eг =e, Ф/м, называют абсолютной диэлектрической проницаемостью. В газообразных диэлектриках eг мало отличается от 1,0, в неполярных жидких и твердых достигает 1,5 - 3,0, в полярных имеет большие значения; в ионных кристаллах eг - 5-МО, а в имеющих перовскитовую кристаллическую решетку достигает 200; в сегнетоэлектриках eг - 103 и больше.

В неполярных диэлектриках с ростом температуры eг незначительно уменьшается, в полярных изменения связаны с преобладанием того или иного вида поляризации, в ионных кристаллах увеличивается, в некоторых сегнетоэлектриках при температуре Кюри достигает 104 и больше. Температурные изменения eг характеризуют температурным коэффициентом. Для полярных диэлектриков характерным является уменьшение eг в области частот, где время т на поляризацию соизмеримо с Т/2.


Похожая информация.


Емкость конденсатора зависит, как показывает опыт, не только от размера, формы и взаимного расположения составляющих его проводников, но также и от свойств диэлектрика, заполняющего пространство между этими проводниками. Влияние диэлектрика можно установить при помощи следующего опыта. Зарядим плоский конденсатор и заметим показания электрометра, измеряющего напряжение на конденсаторе. Вдвинем затем в конденсатор незаряженную эбонитовую пластинку (рис. 63). Мы увидим, что разность потенциалов между обкладками заметно уменьшится. Если удалить эбонит, то показания электрометра делаются прежними. Это показывает, что при замене воздуха эбонитом емкость конденсатора увеличивается. Взяв вместо эбонита какой-нибудь иной диэлектрик, мы получим сходный результат, но только изменение емкости конденсатора будет иным. Если – емкость конденсатора, между обкладками которого находится вакуум, а – емкость того же конденсатора, когда все пространство между обкладками заполнено, без воздушных зазоров, каким-либо диэлектриком, то емкость окажется в раз больше емкости , где зависит лишь от природы диэлектрика. Таким образом, можно написать

Рис. 63. Емкость конденсатора увеличивается при вдвигании эбонитовой пластинки между его обкладками. Листки электрометра спадают, хотя заряд остается прежним

Величина называется относительной диэлектрической проницаемостью или просто диэлектрической проницаемостью среды, которой заполнено пространство между обкладками конденсатора. В табл. 1 приведены значения диэлектрической проницаемости некоторых веществ.

Таблица 1. Диэлектрическая проницаемость некоторых веществ

Вещество

Вода (чистая)

Керамика (радиотехническая)

Сказанное справедливо не только для плоского конденсатора, но и для конденсатора любой формы: заменяя воздух каким-либо диэлектриком, мы увеличиваем емкость конденсатора в раз.

Строго говоря, емкость конденсатора увеличивается в раз только в том случае, если все линии поля, идущие от одной обкладки к другой, проходят в данном диэлектрике. Это будет, например, у конденсатора, который целиком погружен в какой-либо жидкий диэлектрик, налитый в большой сосуд. Однако если расстояние между обкладками мало по сравнению с их размерами, то можно считать, что достаточно заполнить только пространство между обкладками, так как именно здесь практически сосредоточено электрическое поле конденсатора. Так, для плоского конденсатора достаточно заполнить диэлектриком лишь пространство между пластинами.

Помещая между обкладками вещество с большой диэлектрической проницаемостью, можно сильно увеличить емкость конденсатора. Этим пользуются на практике, и обычно в качестве диэлектрика для конденсатора выбирают не воздух, а стекло, парафин, слюду и другие вещества. На рис. 64 показан технический конденсатор, у которого диэлектриком служит пропитанная парафином бумажная лента. Его обкладками являются станиолевые листы, прижатые, с обеих сторон к парафинированной бумаге. Емкость таких конденсаторов нередко достигает нескольких микрофарад. Так, например, радиолюбительский конденсатор размером со спичечную коробку имеет емкость 2 мкФ.

Рис. 64. Технический плоский конденсатор: а) в собранном виде; б) в частично разобранном виде: 1 и 1" – станиолевые ленты, между которыми проложены ленты парафинированной тонкой бумаги 2. Все ленты вместе складываются «гармошкой» и вкладываются в металлическую коробку. К концам лент 1 и 1" припаиваются контакты 3 и 3" для включения конденсатора в схему

Понятно, что для изготовления конденсатора пригодны только диэлектрики с очень хорошими изолирующими свойствами. В противном случае заряды будут утекать через диэлектрик. Поэтому вода, несмотря на ее большую диэлектрическую проницаемость, совсем не годится для изготовления конденсаторов, ибо только исключительно тщательно очищенная вода является достаточно хорошим диэлектриком.

Если пространство между обкладками плоского конденсатора заполнено средой с диэлектрической проницаемостью , то формула (34.1) для плоского конденсатора принимает вид

То обстоятельство, что емкость конденсатора зависит от окружающей среды, указывает, что электрическое поле внутри диэлектриков изменяется. Мы видели, что при заполнении конденсатора диэлектриком с диэлектрической проницаемостью емкость увеличивается в раз. Это значит, что при тех же самых зарядах на обкладках разность потенциалов между ними уменьшается в раз. Но разность потенциалов и напряженность поля связаны между собой соотношением (30.1). Поэтому уменьшение разности потенциалов означает, что напряженность поля в конденсаторе при его заполнении диэлектриком делается меньше в раз. В этом и состоит причина увеличения емкости конденсатора. раз меньше, чем в вакууме. Отсюда заключаем, что закон Кулона (10.1) для точечных зарядов, помещенных в диэлектрике, имеет вид

Электрическая проницаемость

Электрическая проницаемость является величиной, характеризующей емкость диэлектрика, помещенного между обкладками конденсатора. Как известно, емкость плоского конденсатора зависит от величины площади обкладок (чем больше площадь обкладок, тем больше емкость), расстояния между обкладками или толщины диэлектрика (чем толще диэлектрик, тем меньше емкость), а также от материала диэлектрика, характеристикой которого служит электрическая проницаемость.

Численно электрическая проницаемость равна отношению емкости конденсатора с каким-либо диэлектриком такого же воздушного конденсатора. Для создания компактных конденсаторов необходимо применять диэлектрики с высокой электрической проницаемостью. Электрическая проницаемость большинства диэлектриков составляет несколько единиц.

В технике получены диэлектрики с высокой и со сверхвысокой электрической проницаемостью. Основная их часть - рутил (двуокись титана).

Рисунок 1. Электрическая проницаемость среды

Угол диэлектрических потерь

В статье "Диэлектрики " мы разбирали примеры включения диэлектрика в цепи постоянного и переменного тока. Оказалось, что реальном диэлектрике при работе его в электрическом поле, образованным переменным напряжением, происходит выделение тепловой энергии. Мощность, поглощаемая при этом, называется диэлектрическими потерями. В статье "Цепь переменного тока, содержащая емкость" будет доказано, что в идеальном диэлектрике емкостной ток опережает напряжение на угол, меньший 90°. В реальном диэлектрике емкостной ток опережает напряжение на угол, меньший 90°. На уменьшение угла оказывает влияние ток утечки, называемый иначе током проводимости.

Разность между 90° и углом сдвига между напряжением и током, проходящим в цепи с реальным диэлектриком, называется углом диэлектрических потерь или углом потерь и обозначается δ (дельта). Чаще определяют не сам угол, а тангенс этого угла - tg δ.

Установлено, что диэлектрические потери пропорциональны квадрату напряжения, частоте переменного тока, емкости конденсатора и тангенсу угла диэлектрических потерь.

Следовательно, чем больше тангенс угла диэлектрических потерь, tg δ, тем больше потери энергии в диэлектрике, тем хуже материал диэлектрика. Материалы с относительно большим tg δ (порядка 0,08 - 0,1 и более) являются плохими изоляторами. Материалы с относительно малым tg δ (порядка 0,0001) являются хорошими изоляторами.

ВИРТУАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА №3 ПО

ФИЗИКЕ ТВЕРДОГО ТЕЛА

Методические указания к выполнению лабораторной работы №3 по разделу физики «Твердого тела» для студентов технических специальностей всех форм обучения

Красноярск 2012

Рецензент

Кандидат физико-математических наук, доцент О.Н. Бандурина

(Сибирский государственный аэрокосмический университет

имени академика М.Ф. Решетнева)

Печатается по решению методической комиссии ИКТ

Определение диэлектрической проницаемости полупроводников. Виртуальная лабораторная работа №3 по физике твердого тела: Методические указания к выполнению лабораторной работы №3 по разделу физики «Твердого тела» для студентов техн. спец. всех форм обучения / сост.: А.М. Харьков; Сиб. гос. аэрокосмич. ун-т. – Красноярск, 2012. – 21 с.

Сибирский государственный аэрокосмический

университет имени академика М.Ф. Решетнева, 2012

Введение……………………………………………………………………………...4

Допуск к лабораторной работе……………………………………………………...4

Оформление лабораторной работы к защите……………………………………...4

Определение диэлектрической проницаемости полупроводников…………........5

Теория метода……………………………………………………………………......5

Методика измерения диэлектрической проницаемости…………………..……..11

Обработка результатов измерений………………………..………………………16

Контрольные вопросы…………..………………………………………………….17

Тест………………………………………………………………………………….17

Список литературы…………………………………………………………………20

Приложение…………………………………………………………………………21

ВВЕДЕНИЕ

Данные методические указания содержат описания к лабораторным работам, в которых используются виртуальные модели из курса «Физика твердого тела».

Допуск к лабораторной работе:

Проводится преподавателем по группам с персональным опросом каждого студента. Для допуска:



1) Каждый студент предварительно оформляет свой персональный конспект данной лабораторной работы;

2) Преподаватель индивидуально проверяет оформление конспекта и задает вопросы по теории, методике измерений, установке и обработке результатов;

3) Студент отвечает на заданные вопросы;

4) Преподаватель допускает студента к работе и ставит свою подпись в конспекте студента.

Оформление лабораторной работы к защите:

Полностью оформленная и подготовленная к защите работа должна соответствовать следующим требованиям:

Выполнение всех пунктов: все расчеты требуемых величин, заполнены чернилами все таблицы, построены все графики и т.д.

Графики должны удовлетворять всем требованиям преподавателя.

Для всех величин в таблицах должна быть записана соответствующая единица измерения.

Записаны выводы по каждому графику.

Выписан ответ по установленной форме.

Записаны выводы по ответу.

ОПРЕДЕЛЕНИЕ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ПОЛУПРОВОДНИКОВ

Теория метода

Поляризация – это способность диэлектрика под действием электрического поля поляризоваться, т.е. изменять в пространстве расположение связанных заряженных частиц диэлектрика.

Важнейшим свойством диэлектриков является их способность к электрической поляризации, т.е. под влиянием электрического поля происходит направленное смещение заряженных частиц или молекул на ограниченное расстояние. Под действие электрического поля смещаются заряды, как в полярных, так и неполярных молекулах.

Существует более десятка различных видов поляризации. Рассмотрим некоторые из них:

1. Электронная поляризация – это смещение электронных орбит относительно положительно заряженного ядра. Оно происходит во всех атомах любого вещества, т.е. во всех диэлектриках. Электронная поляризация устанавливается за время 10 -15 –10 -14 с.

2. Ионная поляризация – смещение относительно друг друга разноименно заряженных ионов в веществах с ионными связями. Время ее установления 10 -13 –10 -12 с. Электронная и ионная поляризация относятся к числу мгновенных или деформационных видов поляризации.

3. Дипольная или ориентационная поляризация обусловлена ориентацией диполей в направлении электрического поля. Дипольной поляризацией обладают полярные диэлектрики. Время ее установления 10 -10 –10 -6 с. Дипольная поляризация относится к числу медленных или релаксационных видов поляризации.

4. Миграционная поляризация наблюдается в неоднородных диэлектриках, в которых электрические заряды накапливаются на границе радела неоднородностей. Процессы установления миграционной поляризации очень медленны и могут протекать на протяжении минут и даже часов.

5. Ионно-релаксационная поляризация обусловлена избыточным перебросом слабо связанных ионов под действием электрического поля на расстояния, превышающие постоянную решетки. Ионно-релаксационная поляризация проявляется в некоторых кристаллических веществах при наличии в них примесей в виде ионов или неплотной упаковке кристаллической решетки. Время ее установления 10 -8 –10 -4 с.

6. Электронно-релаксационная поляризация возникает за счет возбужденных тепловой энергией избыточных «дефектных» электронов или «дырок». Этот вид поляризации, как правило, обуславливает высокое значение диэлектрической проницаемости.

7. Спонтанная поляризация – самопроизвольная поляризация, возникающая в некоторых веществах (например, сегнетовой соли) в определенной области температур.

8. Упруго-дипольная поляризация связана с упругим поворотом диполей на небольшие углы.

9. Остаточная поляризация – поляризация, которая остается в некоторых веществах (электретах) в течение продолжительного времени после снятия электрического поля.

10. Резонансная поляризация . Если частота электрического поля близка к собственной частоте колебаний диполей, то колебания молекул могут возрасти, что приведет к появлению резонансной поляризации в дипольном диэлектрике. Резонансная поляризация наблюдается при частотах лежащих в области инфракрасного света. Реальный диэлектрик может одновременно обладать несколькими видами поляризации. Возникновение того или иного вида поляризации определяется физико-химическими свойствами вещества и диапазоном используемых частот .

Основные параметры:

ε – диэлектрическая проницаемость – мера способности материала к поляризации; это величина, показывающая во сколько раз сила взаимодействия электрических зарядов в данном материале меньше, чем в вакууме. Внутри диэлектрика возникает поле, направленное противоположно внешнему.

Напряженность внешнего поля ослабевает по сравнению с полем тех же зарядов в вакууме в ε раз, где ε – относительная диэлектрическая проницаемость.

Если вакуум между обкладками конденсатора заменяется на диэлектрик, то в результате поляризации емкость возрастает. На этом основано простое определение диэлектрической проницаемости:

где C 0 – емкость конденсатора, между обкладками которого – вакуум.

C d – емкость того же конденсатора с диэлектриком.

Диэлектрическая проницаемость ε изотропной среды определяется отношением:

(2)

где χ – диэлектрическая восприимчивость.

D = tg δ – тангенс угла диэлектрических потерь

Диэлектрические потери – потери электрической энергии, обусловленные протеканием токов в диэлектриках. Различают ток сквозной проводимости I ск.пр, вызванный наличием в диэлектриках небольшого количества легкоподвижных ионов, и поляризационные токи. При электронной и ионной поляризации поляризационный ток называется током смещения I см, он очень кратковременный и не регистрируется приборами. Токи, связанные с замедленными (релаксационными) видами поляризации, называются токами абсорбции I абс. В общем случае суммарный ток в диэлектрике определяется как: I=I абс +I ск.пр. После установления поляризации суммарный ток будет равен: I=I ск.пр. Если в постоянном поле поляризационные токи возникают в момент включения и выключения напряжения, и суммарный ток определяется в соответствии с уравнением: I=I ск.пр, то в переменном поле поляризационные токи возникают в момент смены полярности напряжения. Вследствие этого потери в диэлектрике в переменном поле могут быть значительными, особенно если полупериод приложенного напряжения приближается к времени установления поляризации.

На рис. 1(a) приведена схема, эквивалентная конденсатору с диэлектриком, находящемуся в цепи переменного напряжения. В этой схеме конденсатор с реальным диэлектриком, который обладает потерями, заменен идеальным конденсатором C с параллельно включенным активным сопротивлением R. На рис. 1(б) приведена векторная диаграмма токов и напряжений для рассматриваемой схемы, где U – напряжения в цепи; I ак – активный ток; I р – реактивный ток, который опережает по фазе на 90° активную составляющую; I ∑ - суммарный ток. При этом: I а =I R =U/R и I р =I C =ωCU, где ω – круговая частота переменного поля.

Рис. 1. (а) – схема; (б) – векторная диаграмма токов и напряжений

Углом диэлектрических потерь называется угол δ, дополняющий до 90° угол сдвига фаз φ между током I ∑ и напряжением U в емкостной цепи. Потери в диэлектриках в переменном поле характеризуются тангенсом угла диэлектрических потерь: tg δ=I а /I р.

Предельные значения тангенса угла диэлектрических потерь для высокочастотных диэлектриков не должны превышать (0,0001 – 0,0004), а для низкочастотный – (0,01 – 0,02).

Зависимости ε и tg δ от температуры T и частоты ω

Диэлектрические параметры материалов в различной степени зависят от температуры и частоты. Большое количество диэлектрических материалов не позволяет охватить особенности всех зависимостей от указанных факторов.

Поэтому на рис. 2 (a, б) изображены общие тенденции, характерные для некоторых основных групп т.е. приведены типичные зависимости диэлектрической проницаемости ε от температуры T (а) и от частоты ω (б).

Рис. 2. Частотная зависимость действительной (εʹ) и мнимой (εʺ) частей диэлектрической проницаемости при наличии ориентационного механизма релаксации

Комплексная диэлектрическая проницаемость. При наличии процессов релаксации диэлектрическую проницаемость удобно записывать в комплексном виде. Если для поляризуемости справедлива формула Дебая:

(3)

где, τ – время релаксации, α 0 – статистическая ориентационная поляризуемость. То, полагая локальное поле равным внешнему, получим (в СГС):

Графики зависимости εʹ и εʺ от произведения ωτ приведены на рис. 2. Заметим, что уменьшение εʹ (действительной части ε) имеет место вблизи максимума εʺ (мнимой части ε).

Такой ход изменения εʹ и εʺ с частотой служит частым примером более общего результата, согласно которому εʹ(ω) от частоты влечет за собой также и зависимость εʺ(ω) от частоты. В системе СИ следует заменить 4π на 1/ε 0 .

Под действием приложенного поля молекулы в неполярном диэлектрике поляризуются, становясь диполями с индуцированным дипольным моментом μ и , пропорциональным напряженности поля:

(5)

В полярном диэлектрике дипольный момент полярной молекулы μ в общем случае равен векторной сумме собственного μ 0 и индуцированного μ и моментов:

(6)

Напряженности поля, создаваемого этими диполями, пропорциональны дипольному моменту и обратно пропорциональны кубу расстояния.

Для неполярных материалов обычно ε = 2 – 2,5 и не зависит от частоты до ω ≈10 12 Hz. Зависимость ε от температуры обусловлена у них тем, что при ее изменении изменяются линейные размеры твердых и объемы жидких и газообразных диэлектриков, что изменяет число молекул n в единице объема

и расстояния между ними. Используя известные из теории диэлектриков соотношения F=n\ μ и и F= ε 0 (ε- 1)Е, где F – поляризованность материала, для неполярных диэлектриков имеем:

(7)

При E=const также μ и = const и температурное изменение ε обусловлено только изменением n, которое является линейной функцией температуры Θ, зависимость ε = ε(Θ) также является линейной. Для полярных диэлектриков аналитических зависимостей нет, и обычно пользуются эмпирическими.

1)С возрастанием температуры объем диэлектрика увеличивается и диэлектрическая проницаемость немного уменьшается. Особенно заметно уменьшение ε в период размягчения и плавления неполярных диэлектриков, когда их объем существенно возрастает. Ввиду высокой частоты обращения электронов на орбитах (порядка 10 15 –10 16 Hz) время установления равновесного состояния электронной поляризации очень мало и проницаемость ε неполярных диэлектриков не зависит от частоты поля в обычно используемом диапазоне частот (до 10 12 Hz).

2) При повышении температуры ослабевают связи между отдельными ионами, что облегчает их взаимодействие под действием внешнего поля и это приводит к увеличению ионной поляризации и диэлектрической проницаемости ε. Ввиду малости времени установления состояния ионной поляризации (порядка 10 13 Hz, что соответствует собственной частоте колебания ионов в кристаллической решетке) изменение частоты внешнего поля в обычных рабочих диапазонах практически не отражается на величине ε в ионных материалов.

3) Диэлектрическая проницаемость полярных диэлектриков сильно зависит от температуры и частоты внешнего поля. С возрастанием температуры увеличивается подвижность частиц и уменьшается энергия взаимодействия между ними, т.е. облегчается их ориентация под действием внешнего поля – возрастает дипольная поляризация и диэлектрическая проницаемость. Однако этот процесс продолжается лишь до определенной температуры. При дальнейшем возрастании температуры проницаемость ε уменьшается. Так как ориентация диполей по направлению поля осуществляется в процессе теплового движения и посредством теплового движения, то установление поляризации требует значительного времени. Это время настолько велико, что в переменных полях высокой частоты диполи не успевают ориентироваться по полю, и проницаемость ε падает .

Методика измерения диэлектрической проницаемости

Емкость конденсатора. Конденсатор – это система из двух проводников (обкладок), разделенных диэлектриком, толщина которого мала по сравнению с линейными размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные слоем диэлектрика, образуют конденсатор (рис. 3).

Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность электрического поля между пластинами будет в два раза больше, чем напряженность поля у одной пластины:

(8)

где ε – диэлектрическая проницаемость диэлектрика, заполняющего пространство между пластинами.

Физическая величина, определяемая отношением заряда q одной из пластин конденсатора к разности потенциалов Δφ между обкладками конденсатора, называется электроемкостью конденсатора :

(9)

Единица электроемкости СИ – Фарад (Ф). Емкостью в 1 Ф обладает такой конденсатор, разность потенциалов между обкладками которого равна 1 В при сообщении обкладкам разноименных зарядов по 1 Кл: 1 Ф = 1 Кл/1 В.

Емкость плоского конденсатора. Формулу для вычисления электроемкости плоского конденсатора можно получить, используя выражение (8). В самом деле, напряженность поля: Е = φ/εε 0 = q/εε 0 S , где S – площадь пластины. Поскольку поле однородное, то разность потенциалов между обкладками конденсатора равна: φ 1 – φ 2 = Еd = qd /εε 0 S , где d – расстояние между обкладками. Подставив в формулу (9), получим выражение для электроемкости плоского конденсатора:

(10)

где ε 0 – диэлектрическая проницаемость воздуха; S – площадь пластины конденсатора, S=hl , где h – ширина пластины, l – ее длина; d – расстояние между пластинами конденсатора.

Выражение (10) показывает, что электроемкость конденсатора можно увеличить путем увеличения площади S его обкладок, уменьшения расстояния d между ними и применения диэлектриков с большими значениями диэлектрической проницаемости ε .

Рис. 3. Конденсатор с помещенным в него диэлектриком

Если между пластинами конденсатора поместить пластину из диэлектрика, емкость конденсатора изменится. Следует рассмотреть вариант расположения диэлектрической пластины между пластинами конденсатора.

Обозначим: d в – толщину воздушного промежутка, d м – толщину диэлектрической пластины, l В – длину воздушной части конденсатора, l м – длину части конденсатора, заполненной диэлектриком, ε м – диэлектрическую проницаемость материала. Если учесть, что l = l в + l м, а d = d в + d м, то эти варианты можно рассмотреть для случаев:

В случае l в = 0, d в = 0 мы имеем конденсатор с твердым диэлектриком:

(11)

Из уравнений классической макроскопической электродинамики, основанной на уравнениях Максвелла следует, что при помещении диэлектрика в слабое переменное поле, изменяющееся по гармоническому закону с частотой ω, тензор комплексной диэлектрической проницаемости приобретает вид:

(12)

где σ – оптическая проводимость вещества, εʹ – диэлектрическая проницаемость вещества, связанная с поляризацией диэлектрика. Выражение (12) можно привести к следующему виду:

где мнимое слагаемое отвечает за диэлектрические потери .

На практике измеряют С – емкость образца, имеющего форму плоского конденсатора. Этот конденсатор характеризуется тангенсом угла диэлектрических потерь:

tgδ=ωCR c (14)

или добротностью:

Q c =1/ tgδ (15)

где R c – сопротивление, зависящее, главным образом, от диэлектрических потерь. Для измерения этих характеристик существует ряд методов: различные мостовые методы, измерения с преобразованием измеряемого параметра во временной интервал и т.д. .

При измерениях емкости С и тангенса угла диэлектрических потерь D = tgδ в данной работе была использована методика, разработанная кампанией GOOD WILL INSTRUMENT Со Ltd. Измерения проведены на прецизионном измерителе иммитанса – LCR-819-RLC. Прибор позволяет измерять емкость в пределах 20 pF–2,083 mF, тангенс угла потерь в пределах 0,0001-9999 и подавать поле смещения. Внутреннее смещение до 2 В, внешнее смещение до 30 В. Точность измерений составляет 0,05 %. Частота тест-сигнала 12 Hz -100 kHz.

В этой работе измерения проведены на частоте 1 kHz в интервале температур 77 К < T < 270 К в нулевом магнитном поле и в поле 5 kOe. Образцы для измерений имели форму параллелепипеда с размерами 2*3*4 мм (х=0.1), где d = 2 мм – толщина образца, площадь грани S = 3*4 мм 2 .

С целью получений температурных зависимостей ячейка с образцом помещается в поток хладагента (азота) пропускаемый через теплообменник, температура которого задается нагревателем. Температура нагревателя контролируется терморегулятором. Обратная связь с измерителя температуры на терморегулятор позволяет задавать скорость измерения температуры, либо осуществлять ее стабилизацию. Для контроля температуры используется термопара. В данной работе температура изменялась со скоростью 1 град/мин. Указанный метод позволяет измерять температуру с погрешностью 0,1 град.

Измерительная ячейка с закрепленным на ней образцом помещается в проточный криостат. Связь ячейки с LCR-метром осуществляется экранированными проводами через разъем в капке криостата. Криостат размещен между полюсами электромагнита ФЛ-1. Блок питания магнита позволяет получать магнитные поля до 15 kOe. Для измерения величины напряженности магнитного поля Н используется термостабилизированный датчик Холла с блоком электроники. Для стабилизации магнитного поля между блоком питания и измерителем магнитного поля существует обратная связь.

Измеренные значения емкости С и тангенса угла потерь D = tg δ связаны со значениями искомых физических величин εʹ и εʺ следующими соотношениями:

(16)

(17)

C (pF) Re (ε’) T (°К) tg δ Q c Im (ε”) ω (Hz) σ (ω)
3,805 71,66 0,075 13,33 5,375 10 3
3,838 0,093
3,86 0,088
3,849 0,094
3,893 0,106
3,917 0,092
3,951 0,103
3,824 0,088
3,873 0,105
3,907 0,108
3,977 0,102
4,031 0,105
4,062 0,132
4,144 0,109
4,24 0,136
4,435 0,175
4,553 0,197
4,698 0,233
4,868 0,292
4,973 0,361
5,056 0,417
5,164 0,491
5,246 0,552
5,362 0,624
5,453 0,703
5,556 0,783
5,637 0,867
5,738 0,955
5,826 1,04
5,902 1,136

Таблица №1. Gd x Mn 1-x S, (x=0.1).

Похожие публикации