Пирамидные пути головного мозга. Пирамидная система. Начало и окончание пирамидных путей

Основная эфферентная структура — центральный двига-тельный нейрон, представленный гигантскими пирамид-ными клетками Беца V слоя проекционной моторной ко-ры (прероландовая извилина и парацентральная долька, 4-е поле). Совокупность отростков клеток Беца входит в состав пирамидного пути. Значительная часть его воло-кон берет начало от других отделов мозговой коры : вто-ричной двигательной коры внутренней поверхности лоб-ной доли, верхней лобной извилины, премоторной коры (6-е поле), а также постцентральной извилины, причем не только от крупных пирамидных клеток V слоя, но и от мелких пирамидных клеток III слоя и от других. Большая часть волокон пирамидного пути оканчивается в образованиях экстрапирамидной системы — полосатом теле, бледном шаре, черной субстанции, красном ядре, а также в ретикулярной формации мозгового ствола, осу-ществляя взаимодействие пирамидной и экстрапирамид-ной систем. Другие волокна, в особенности толстомиелинизированные, начинающиеся от гигантских клеток Беца проекционной моторной коры, заканчиваются на дендритах периферического двигательного нейрона .

Двигательный нейрон располагается в двух местах — передних рогах спинного мозга и в двигательных ядрах черепных нервов , и поэтому пирамидный путь состоит из двух путей — кортикоспинального и кортиконуклеарного (рис. 1.2.1).

Основная часть волокон кортикоспинального пути на границе продолговатого и спинного мозга переходит на другую сторону и там идет в боковых канатиках спинно-го мозга, оканчиваясь посегментарно: большая часть пу-ти — в передних рогах шейного и поясничного утол-щения, мотонейроны которых иннервируют конечности, другая его часть идет на своей стороне в переднем кана-тике. Предположительно мышцы туловища имеют дву-стороннюю иннервацию.

Кортиконуклеарный путь за-канчивается в мозговом стволе на дендритах двигатель-ных ядер черепных нервов. Материал с сайта

В проекционной двигательной коре реализован функ-циональный принцип соматотопической локализации: представительство мышц, осуществляющих наиболее сложные и значимые произвольные движения, занимает максимальную площадь. Это относится к мимической мускулатуре (мимика — средство биокоммуникации), мышцам языка, глотки, гортани (артикуляция — основа моторной речи), а также рук, в особенности пальцев ки-сти и самой кисти, представленных соответственно в нижней и средней частях проекционной моторной коры (рис. 1.2.2). Последняя занимает заднюю часть на-ружной поверхности лобной доли (прецентральная изви-лина). Кпереди от проекционной моторной коры распо-лагается премоторная кора, играющая важную роль в преформировании движений в действия, а кпереди от премоторной — префронтальная, ответственная за осу-ществление целостной деятельности. Премоторная кора также входит в состав экстрапирамидной системы. При овладении сложными моторными навыками они выпол-няются уже автоматически по программам, считывае-мым с премоторной коры.

Поражения проекционной моторной коры вызывают центральный паралич , премоторной — нарушения дейст-вия (праксиса), а префронтальной — деятельности. Пре-фронтальная кора имеет у человека также важное значе-ние в прямохождении, и ее поражение ведет к расстрой-ству стояния и ходьбы.

Нисходящие пути головного и спинного мозга проводят импульсы от коры большого мозга, мозжечка, подкорковых и стволовых центров к нижележащим двигательным ядрам мозгового ствола и спинного мозга.

Высшим двигательным центром у человека является кора большого мозга. Она управляет мотонейронами мозгового ствола и спинного мозга двумя путями: напрямую посредством корково-ядерного, переднего и бокового корково-спинномозговых (пирамидных) путей, либо опосредованно, через нижележащие двигательные центры. В последнем случае роль коры сводится к запуску, поддержанию или прекращению выполнения двигательных программ, хранящихся в этих центрах. Нисходящие пути делятся на две группы:

    Пирамидная система обеспечивает выполнение точных целенаправленных сознательных движений, подстраивает дыхание, обеспечивая произнесение слов. В неё входят корково-ядерный, передний и боковой корково-спинномозговые (пирамидные) пути.

Корково-ядерный путь начинается в нижней трети предцентральной извилины большого мозга. Здесь располагаются пирамидные клетки (1 нейрон), аксоны которых проходят через колено внутренней капсулы в ствол мозга и направляются в базальной его части вниз к двигательным ядрам черепных нервов противоположной стороны (III–VII, IX–XII). Здесь располагаются тела вторых нейронов этой системы, являющиеся аналогами двигательных нейронов передних рогов спинного мозга. Их аксоны идут в составе черепных нервов к иннервируемым мышцам головы и шеи.

Передний и боковой корково-спинномозговые (пирамидные) тракты проводят двигательные импульсы от пирамидных клеток, расположенных в верхних двух третях предцентральной извилины, к мышцам туловища и конечностей противоположной стороны.

Аксоны первых нейронов этих путей вместе идут в составе лучистого венца, проходят через заднюю ножку внутренней капсулы в ствол мозга, где располагаются вентрально. В продолговатом мозге они образуют пирамидные возвышения (пирамиды); и с этого уровня данные пути расходятся. Волокна переднего пирамидного пути спускаются по ипсилатеральной стороне в переднем канатике, образуя соответствующий тракт спинного мозга (см. рис. 23), а затем на уровне своего сегмента переходят на противоположную сторону и заканчиваются на мотонейронах передних рогов спинного мозга (второй нейрон системы). Волокна бокового пирамидного пути, в отличие от переднего, переходят на противоположную сторону на уровне продолговатого мозга, образуя перекрёст пирамид. Далее они идут в задней части бокового канатика (см. рис. 23) до «своего» сегмента и заканчиваются на мотонейронах передних рогов спинного мозга (второй нейрон системы).

    Экстрапирамидная система осуществляет непроизвольную регуляцию и координацию движений, регуляцию мышечного тонуса, поддержание позы, организацию двигательных проявлений эмоций. Обеспечивает плавность движений, устанавливает исходную позу для их выполнения.

К экстрапирамидной системе относятся:

Корково-таламический путь, проводящий двигательные импульсы от коры к двигательным ядрам таламуса.

Лучистость полосатого тела – группа волокон, соединяющая эти подкорковые центры с корой мозга и таламусом.

Корково-красноядерный путь, проводит импульсы от коры большого мозга к красному ядру, которое является двигательным центром среднего мозга.

Красноядерно-спинномозговой путь (рис. 58) проводит двигательные импульсы от красного ядра к мотонейронам передних рогов на противоположной стороне (подробнее см. Раздел 5.3.2.).

Покрышечно-спинномозговой путь . Его прохождение в общих чертах схоже с предыдущим путём, с той разницей, что начинается он не в красных ядрах, в ядрах крыши среднего мозга. Первые нейроны этой системы располагаются в бугорках четверохолмия среднего мозга. Их аксоны переходят на противоположную сторону и в составе передних канатиков спинного мозга спускаются до соответствующих сегментов спинного мозга (см. рис. 23). Далее они входят в передние рога и заканчиваются на мотонейронах спинного мозга (второй нейрон системы).

Преддверно-спинномозговой путь соединяет вестибулярные ядра заднего мозга (моста) и обеспечивает регуляцию тонуса мышц тела (см. Раздел 5.3.2.).

Ретикуло-спинномозговой путь соединяет нейроны РФ и нейроны спинного мозга, обеспечивая регуляцию чувствительности их к управляющим импульсам (см. Раздел 5.3.2.).

Корково-мосто-мозжечковый путь позволяют коре управлять функциями мозжечка. Первые нейроны этой системы располагаются в коре лобной, височной, затылочной или теменной доли. Их нейроны (корково-мостовые волокна) проходят через внутреннюю капсулу и направляются в базилярную часть моста, к собственным ядрам моста. Здесь происходит переключение на вторые нейроны этой системы. Их аксоны (мосто-мозжечковые волокна) переходят на противоположную сторону и через среднюю мозжечковую ножку направляются в контрлатеральное полушарие мозжечка.

    Основные восходящие пути.

А. Восходящие к заднему мозгу: задний спинно-мозжечковый путь Флексига, передний спинно-мозжечковый путь Говерса. Оба спинно-мозжечковых тракта проводят бессознательные импульсы (бессознательная координация движений).

Восходящие к среднему мозгу: боковой спинно-среднемозговой (спинно-тектальный) путь

К промежуточному мозгу: боковой спинно-таламический путь. Он проводит температурные раздражения и болевые; передний спинно-таламический является путем проведения импульсов осязания, прикосновения.

Часть из них представляет собой идущие без перерыва волокна первичных афферентных (чувствительных) нейронов. Эти волокна - тонкий (пучок Голля) и клиновидный (пучок Бурдаха) пучки идут в составе дорсальных канатиков белого вещества и заканчиваются в продолговатом мозге возле нейтронных релейных ядер, называемых ядрами дорсального канатика, или ядрами Голля и Бурдаха. Волокна дорсального канатика являются проводниками кожно-механической чувствительности.

Остальные восходящие пути начинаются от нейронов, расположенных в сером веществе спинного мозга. Поскольку эти нейроны получают синаптические входы от первичных афферентных нейронов, их принято обозначать нейронами второго порядка, или вторичными афферентными нейронами. Основная масса волокон от вторичных афферентных нейронов проходит в составе латерального канатика белого вещества. Здесь расположен спиноталамический путь. Аксоны спиноталамических нейронов совершают перекрест и доходят не прерываясь через продолговатый и средний мозг до таламических ядер, где они образуют синапсы с нейронами таламуса. По спиноталамическим путям поступает импульсация от кожных рецепторов.

В латеральных канатиках проходят волокна спинно-мозжечковых трактов, дорсального и вентрального, проводящие в кору мозжечка импульсацию от кожных и мышечных рецепторов.

В составе латерального канатика идут и волокна спиноцервикального тракта, окончание которых образуют синапсы с релейными нейронами шейного отдела спинного мозга - нейронами цервикального ядра. После переключения в цервикальном ядре этот путь направляется в мозжечок и ядра ствола.

Путь болевой чувствительности локализуется в вентральных столбах белого вещества. Кроме того, в задних, боковых и передних столбах проходят собственные проводящие пути спинного мозга, обеспечивающие интеграцию функций и рефлекторную деятельность его центров.

а) Пирамидный путь (tr. pyramidalis) (рис. 504). Хорошо развит у человека, так как по нему передаются импульсы поперечнополосатым мышцам при выполнении целенаправленных, тонко координированных сознательных движений. Пирамидные пути существуют и у многих животных, но функционируют без сознательной корректировки. Двигательные клетки коры не иннервируют отдельно ту или другую мышцу, а осуществляют заданную программу движений для отдельных групп мышц. Пирамидный путь получил свое название от двух клиновидной формы выпуклостей, лежащих на вентральной поверхности продолговатого мозга. Многие годы считалось, что все волокна пирамидного пути начинаются от клеток коры передней центральной извилины. В настоящее время установлено, что только около 40% аксонов, проходящих через пирамиды, начинается от клеток двигательной зоны коры, а 20% аксонов пирамидного пути начинается от клеток задней центральной извилины (соматосенсорная область). Остальные 40% волокон присоединяются к пирамидному пути от клеток различных областей коры полушарий большого мозга.

504. Схема пирамидного пути (по Сентаготаи).
1 - gyrus precentralis; 2 - tr. corticonuclearis; 3 - tr. corticospinalis lateralis; 4 - tr. corticospinalis anterior; 5 - полушарие головного мозга; 6 - средний мозг; 7 - мост; 8 - продолговатый мозг; 9 - спинной мозг; 10 - двигательное ядро V пары; 11 - двигательное ядро VII пары; 12 - двигательные ядра IX, X, XI пар; 13 - ядро XII пары.

Первые нейроны располагаются в передней центральной извилине, предцентральной и парацентральной дольках (поля 4-6), часть нейронов разбросана в других корковых полях (7-8-9-22-24 и др.). Существенным моментом является то, что все корковые поля пирамидного пути связаны с нейронами, которые своей деятельностью подавляют моторную активность двигательной зоны и находятся в полях 2 - 4 - 8-19. Подобная тормозящая система отсутствует у других проводящих путей. Кроме того, в поле 4 есть участок 4S, откуда специальные аксоны достигают ядер ретикулярной формации, которая оказывает тормозящее или возбуждающее влияние на произвольные рефлексы. Дендриты пирамидных клеток имеют связь со вставочными нейронами, подключающими чувствительные клетки всех анализаторов. Эти вставочные нейроны формируют короткие и длинные ассоциативные пути белого вещества.

В передней центральной извилине и парацентральной дольке имеются специализированные участки коры, которые осуществляют программу, заданную определенным группам мышц: мышцы нижних конечностей находятся под контролем клеток верхних отделов (ближе к сагиттальной борозде большого мозга) передней центральной извилины и парацентральной дольки, мышцы верхних конечностей - клеток среднего отдела центральной извилины, мышцы лица и органов головы - клеток нижнего отдела.

Пирамидный путь включает три пучка: а) корково-ядерный путь (tr. corticonuclearis), осуществляющий центральное кодирование программы движений в двигательных ядрах черепных нервов (III, IV, V, VI, VII, IX, X, XI, XII пары); б) передний корково-спинальный путь (tr. corticospinal anterior); в) боковой корково-спинальный путь (tr. corticospinalis lateralis). Оба последних пучка проводят импульсы программы движений к мотонейронам спинного мозга.

Первые нейроны пирамидного пути находятся в различных областях коры полушарий головного мозга. В V слое коры головного мозга имеются пирамидные клетки Беца, аксоны которых принимают участие в образовании лучистого венца белого вещества полушарий мозга. Эти волокна конвергируют вниз, проходя в колене и в 2/3 задней ножки внутренней капсулы. Пирамидные клетки имеют длинные аксоны и большое число коллатералей, которые подключают несколько двигательных клеток II нейронов.

Волокна пирамидного пути, пройдя внутреннюю капсулу, располагаются в основании ножки мозга, где от них отделяются перекрещенные волокна к ядрам глазодвигательного нерва (иннервирующего, верхнюю, нижнюю, медиальную прямые, нижнюю косую мышцы глазного яблока и мышцу, поднимающую верхнее веко), к ядру блокового нерва (иннервирующего верхнюю косую мышцу глазного яблока) и к ядру отводящего нерва (иннервирующего латеральную прямую мышцу глазного яблока).

Из основания ножки мозга пирамидный путь спускается в вентральную часть моста, на уровне которого отделяются перекрещенные волокна для контакта с двигательным ядром тройничного нерва (иннервирующего жевательные мышцы), с двигательным ядром лицевого нерва (иннервирующего мимическую мускулатуру); некоторые волокна отдают коллатерали в ретикулярную формацию. Пучок пирамидного пути расположен в мосту некомпактно, через него поперечно проходят волокна корково-мостомозжечкового пути (описан в разделе «Проприоцептивные пути»). В продолговатом мозге волокна пирамидного пути объединяются в компактный пучок и на вентральной поверхности продолговатого мозга образуют пирамиды. В каждом из двух трактов пирамидных путей содержится около 1 млн. волокон, главным образом тонких и скудно миелинизированных; около 3% волокон имеет большой диаметр и покрыто толстой миелиновой оболочкой; они являются аксонами клеток Беца. В продолговатом мозге двигательные ядра языкоглоточного (IX пара), блуждающего (X пара), добавочного (XI пара), подъязычного (XII пара) нервов также контактируют с волокнами пирамидного пути. Волокна пирамидного пути, направляющиеся к ядрам двигательных черепных нервов, перекрещиваются. Эти ядра получают иннервацию от волокон своей и противоположной сторон. Поэтому при центральном одностороннем поражении коры полушарий мозга или проводящих путей не бывает полного паралича мышц, иннервируемых III, IV, V, VI, VII, IXt X, XI парами черепных нервов. В области пирамид продолговатого мозга небольшая часть волокон пирамидного пути, огибая нижнюю оливу через нижнюю или среднюю ножку мозжечка, входит в него.

В нижней части продолговатого мозга пирамидный путь разделяется на два пучка. Один большой пучок (около 80% волокон) перекрещивается (decussatio pyramidum) и переходит в латеральный канатик спинного мозга, образуя боковой корково-спинномозговой путь (tr. corticospinalis lateralis). Волокна этого пути оканчиваются возле дендритов вставочных клеток (II нейрон), расположенных в задних столбах спинного мозга. Аксоны этих клеток передают импульсы вставочным клеткам (III нейрон) переднего столба, а последние - большим альфа-нейронам (IV нейрон) переднего столба, от которых импульсы направляются к малым альфа-нейронам (V нейрон), а также к мышцам конечностей и туловища.

Меньшая часть пирамидного пути в продолговатом мозге не перекрещивается и спускается в переднем канатике под названием переднего корково-спинномозгового пути (tr. corticospinalis anterior). В каждом сегменте спинного мозга его аксоны переходят на противоположную сторону, переключаясь в передних столбах одной частью на вставочные нейроны (II нейрон) и другой - на мотонейроны (II нейрон). Аксоны вставочных нейронов подключаются к малым альфа-нейронам (III нейрон), аксоны которых достигают мышц туловища и конечностей (рис. 505). Волокна вставочных нейронов прослеживаются в шейных и верхних грудных сегментах спинного мозга. Часть волокон переднего корково-спинномозгового пути переключается в мотонейронных пулах своей стороны.


505. Схема переключения кортикоспинального пути (пирамидного) в спинном мозге.
1 - задний канатик; 2 - задний столб; 3 - боковой канатик; 4 - передний кортикоспинальный путь; 5 - крупные мотонейроны переднего столба; 5 - вставочные нейроны переднего столба; 7 - вставочные нейроны заднего столба; 8 - латеральный корково-спинальный путь.


506. Связь коры головного мозга с базальными ядрами, таламусами, ретикулярной формацией и ядрами подталамической области.

1 - корковые поля;
2 - центральная борозда;
3 - волокна пирамидного пути;
4 - чечевицеобразное тело;
5 - луизово тело;
6 - черная субстанция;
7 - ретикулярная формация;
8 - подталамическое ядро;
9 - зрительный бугор;
10 - хвостатое тело.

Аксоны периферического спинномозгового нерва, являющиеся отростками крупных мотонейронов передних столбов серого вещества спинного мозга, иннервируют экстрафузальные мышечные волокна поперечнополосатых мышц. Каждое волокно имеет химически чувствительную область - концевую пластинку, где оканчивается двигательный аксон; она эквивалентна постсинаптической мембране нейрона. При возбуждении аксон мотонейрона выделяет ацетилхолин, воздействующий на концевую пластинку при этом наблюдается деполяризация мышечного волокна и генерация электрического импульса, который распространяется в обе стороны к концам мышечного волокна, вызывая кратковременное его сокращение.

Следовательно, пирамидный путь осуществляет главным образом перекрестную иннервацию. Поражение бокового корково-спинномозгового пути вызывает расстройство движений конечностей на противоположной стороне и почти не нарушает функции мышц туловища вследствие сохранения иннервации за счет переднего кортикоспинального пучка. Такой односторонней иннервацией обладают не все мышечные группы. Большая часть мышц, а именно мышцы глазного яблока, жевательные, мимические мышцы верхней части лица, глотки, гортани, шеи, туловища и промежности, имеет двустороннюю иннервацию за счет волокон перекрестных и своей стороны. Односторонне иннервируются мышцы конечностей, языка, мимические мышцы ниже ротовой щели. Поражение соответствующих клеток коры вызывает полный паралич.

Существуют следующие нисходящие проводящие пути :
корково-спинномозговой проводящий путь (пирамидный проводящий путь);
ретикуло-спинномозговой проводящий путь (экстрапира-мидный путь);
преддверно-спинномозговой проводящий путь;
покрышечно-спинномозговой проводящий путь;
шовно-спинномозговой проводящий путь;
проводящие пути аминергических систем ЦНС;
проводящие пути вегетативной нервной системы.

Корково-спинномозговой проводящий путь

Представляет собой крупный проводящий путь произвольной двигательной активности. Около 40 % его волокон начинается из первичной моторной коры прецентральной извилины. Остальные волокна берут начало из дополнительной моторной области на медиальной стороне полушария, премоторной коры головного мозга на латеральной стороне полушария, соматической сенсорной коры, коры теменной доли и коры поясной извилины. Волокна от двух вышеупомянутых сенсорных центров заканчиваются на чувствительных ядрах ствола головного мозга и спинного мозга, где они регулируют передачу чувствительных импульсов.

Корково-спинномозговой проводящий путь спускается вниз через лучистый венец и заднюю ножку внутренней капсулы к стволу головного мозга. Затем он проходит в ножке (головного мозга) на уровне среднего мозга и базилярной части моста, достигая продолговатого мозга. Здесь он образует пирамиду (отсюда название - пирамидный проводящий путь).

Проходя через ствол мозга, корково-спинномозговой проводящий путь отдает волокна, которые активируют двигательные ядра черепных нервов, в частности тех, которые иннервируют мышцы лица, челюсти и языка. Эти волокна называют корково-бульбарными. (Также используют термин «корково-ядерный», поскольку термин «бульбарный» можно интерпретировать по-разному.)

Демонстрация хода волокон пирамидного пути с левой стороны.
Дополнительная моторная область на медиальной стороне полушария.
Стрелкой показан уровень перекреста пирамид. Чувствительные нейроны выделены синим цветом.

Коронарный срез бальзамированного головного мозга пациента с последующей обработкой сульфатом меди (окраска по Маллигану),
демонстрирующий неокрашенные корково-спинномозговые волокна, идущие через ядра моста в сторону пирамид.

Характеристика волокон корково-спинномозгового пути выше уровня спинномозгового перехода:

Около 80 % (70-90 %) волокон переходят на противоположную сторону на уровне перекреста пирамид;

Эти волокна спускаются по противоположной стороне спинного мозга и составляют латеральный корково-спинномозговой проводящий путь (перекрещивающийся корково-спинномозговой проводящий путь); оставшиеся 20 % волокон не перекрещиваются и продолжают спускаться вниз в передней части спинного мозга;

Половина из этих неперекрещивающихся волокон вступает в передний/вентральный корково-спинномозговой проводящий путь и располагается в вентральном/переднем канатике спинного мозга на шейном и верхнем грудном уровнях; данные волокна переходят на противоположную сторону на уровне белой спайки и иннервируют мышцы передней и задней стенок брюшной полости;

Другая половина вступает в латеральный корково-спинномозговой проводящий путь на своей половине спинного мозга.

Считают, что корково-спинномозговой проводящий путь содержит около 1 млн. нервных волокон. Средняя скорость проведения импульса составляет 60 м/с, что указывает на средний диаметр волокна, равный 10 мкм («правило шести»). Около 3 % волокон - очень крупные (до 20 мкм); они отходят от гигантских нейронов (клетки Беца), расположенных в основном в области двигательной коры, отвечающей за иннервацию нижних конечностей. Все волокна корково-спинномозгового пути - возбуждающие и в качестве медиатора используют глутамат.

Пирамидный проводящий путь.
КСП - корково-спинномозговой проводящий путь;
ПКСТ - передний корково-спинномозговой проводящий путь;
ЛКСП - латеральный корково-спинномозговой проводящий путь.
Обратите внимание: показан только двигательный компонент; компоненты теменной доли опущены.

Клетки-мишени латерального корково-спинномозгового пути :

а) Мотонейроны дистальных отделов конечностей . В передних рогах серого вещества спинного мозга аксоны латерального корково-спинномозгового пути могут непосредственно образовывать синапсы на дендритах α- и γ-мотонейронов, иннервирующих мышцы конечностей, особенно верхних (однако, как правило, это происходит через интернейроны в пределах серого вещества спинного мозга). Отдельные аксоны латерального корково-спинномозгового пути могут активировать «большие» или «малые» двигательные единицы.

Двигательная единица - это комплекс, состоящий из нейрона переднего рога спинного мозга и всех мышечных волокон, которые этот нейрон иннервирует. Нейроны малых двигательных единиц избирательно иннервируют небольшое количество мышечных волокон и участвуют в выполнении тонких и точных движений (например, при игре на пианино). Нейроны переднего рога, иннервирующие крупные мышцы (например, большую ягодичную мышцу), способны по отдельности вызвать сокращение сотни мышечных клеток сразу, так эти мышцы отвечают за грубые и простые движения.

Уникальное свойство этих корковомотонейронных волокон латерального корково-спинномозгового пути демонстрирует понятие «фракционирования», относящееся к переменной активности интернейронов, в результате чего небольшие группы нейронов могут быть избирательно активированы для выполнения конкретной общей функции. Это легко показать на указательном пальце, который может быть согнут или разогнут независимо от положения других пальцев (хотя три из его длинных сухожилий имеют общее начало с мышечным ложем всех четырех пальцев).

Фракционирование имеет большое значение при выполнении привычных движений, таких как застегивание пальто или завязывание шнурков. Травматическое или другое повреждение корковомотонейронной системы на любом уровне влечет за собой утрату навыков выполнения привычных движений, которые затем редко поддаются восстановлению.

При выполнении данных движений α- и γ-мотонейроны активируются совместно через латеральный корково-спинномозговой проводящий путь таким образом, что веретена мышц, первично задействованных в движении, посылают импульсы об активном растяжении, а веретена мышц-антагонистов - о пассивном растяжении.


Продолговатый мозг и верхние отделы спинного мозга, вид спереди.
Продемонстрированы три группы нервных волокон левой пирамиды.

б) Клетки Реншоу . Функции синапсов латерального корково-спинномозгового пути на клетках Реншоу довольно многочисленны, так как торможение на некоторых клеточных синапсах главным образом происходит за счет интернейронов типа Iа; на других синапсах данную функцию выполняют клетки Реншоу. Вероятно, наиболее важная функция - контроль совместного сокращения основных движущих мышц и их антагонистов для фиксации одного или нескольких суставов, например при работе с кухонным ножом или лопатой. Совместное сокращение происходит за счет инактивации ингибирующих интернейронов Iа клетками Реншоу.

в) Возбуждающие интернейроны . Латеральный корково-спинно-мозговой проводящий путь влияет на деятельность двигательных нейронов, расположенных в средней части серого вещества и в основании переднего рога спинного мозга, иннервирующих осевые (позвоночные) мышцы и мышцы проксимальных отделов конечностей посредством возбуждающих интернейронов. г) la-ингибирующие интернейроны. Эти нейроны также расположены в средней части серого вещества спинного мозга и активируются латеральным корково-спинномозговым путем в первую очередь при совершении произвольных движений.

Активность Ia-интернейронов способствует расслаблению мышц-антагонистов до того, как начнут сокращаться -агонисты. Кроме того, они вызывают рефрактерность мотонейронов мышц-антагонистов к стимуляции афферентами нервно-мышечного веретена при их пассивном растяжении во время движения. Последовательность процессов при произвольном сгибания коленного сустава показана на рисунке ниже.

(Обратите внимание на терминологию: в спокойном положении стоя колени человека «закрыты» в небольшом переразгибании, а четырехглавая мышца бедра находится в неактивном состоянии, о чем свидетельствует «свободное» положение надколенника. При попытке сгибания одного или обоих колен происходит подергивание четырехглавой мышцы бедра в ответ на пассивное растяжение в ней десятков мышечных веретен. Поскольку таким образом происходит сопротивление сгибанию, рефлекс называют рефлексом сопротивления.

С другой стороны, во время произвольного сгибания коленного сустава мышцы способствуют данному движению с помощью такого же механизма, но уже через рефлекс помощи. Изменение знака с отрицательного на положительный называют рефлексом перемены направления.)

д) Пресинаптические ингибиторные нейроны, обеспечивающие рефлекс растяжения . Рассмотрим движения спринтера. На каждом шаге сила тяжести тянет его тело вниз, на выпрямленное четырехглавой мышцей колено. В момент соприкосновения с землей все нервно-мышечные веретена в сокращенной четырехглавой мышце резко растягиваются, в результате чего возникает опасность разрыва мышцы. Сухожильный орган Гольджи обеспечивает некоторую защиту посредством внутреннего торможения, однако основной защитный механизм обеспечивает латеральный корково-спинномозговой путь через пресинаптическое торможение афферентов веретен вблизи их контакта с мотонейронами.

В то же время удлинение паузы до ахиллового рефлекса служит преимуществом в этой ситуации, так как происходит восстановление мотонейронов, иннервирующих заднюю часть голени, для следующего рывка. Предполагают, что степень подавления рефлекса растяжения со стороны латерального корково-спинномозгового пути зависит от конкретных движений.

е) Пресинаптическое ингибирование чувствительных нейронов первого порядка . В заднем роге серого вещества спинного мозга существует некоторое подавление передачи чувствительных импульсов в спиноталамический проводящий путь при совершении произвольных движений. Это происходит путем активации синапсов, образованных ингибирующими вставочными нейронами и первичными чувствительными нервными окончаниями.

Еще более тонкую регуляцию наблюдают на уровне тонкого и клиновидного ядер, где волокна пирамидного пути (после пересечения) способны усиливать передачу чувствительных импульсов во время медленных аккуратных движений или ослаблять ее во время совершения быстрых движений.


Последовательность событий при выполнении произвольного движения (сгибания колена). МН - мотонейроны.
(1) Активация la интернейронов ингибирует их антагонисты-α-мотонейроны.
(2) Активация агонистов α- и γ-мотонейронов.
(3) Активация экстрафузальных и интрафузальных мышечных волокон.
(4) Импульсация от активно растянутых нервно-мышечных веретен увеличивает активность агониста а-мотонейрона и снижает активность его антагонистов.
(5) Iа-волокна от пассивно растянутых нервно-мышечных веретен-антагонистов направляются к соответствующим рефрактерным а-мотонейронам.
Обратите внимание: последовательность «γ-мотонейронон-Ia-волокно-α-мотонейрон» образует γ-петлю.

Видео урок анатомия пирамидных путей - tractus corticospinalis et corticonuclearis

Пирамидная система , пирамидный путь (лат. tractus pyramidales, PNA) - система нервных структур. Поддерживает сложную и тонкую координацию движений.

Пирамидная система - одно из поздних приобретений эволюции. Низшие позвоночные пирамидальной системы не имеют, она появляется только умлекопитающих, и достигает наибольшего развития у обезьян и особенно у человека. Пирамидная система играет особую роль в прямохождении.

Пирамидный путь

Волокна перекрещиваются на границе головного и (большая часть - в продолговатом мозге, меньшая - в спинном). Далее они проходят через спинной мозг (передние и боковые столбы спинного мозга). В каждом сегменте спинного мозга эти волокна образуют синаптические окончания (см. ), которые отвечают за определенный участок тела (шейный отдел спинного мозга - за иннервацию рук, грудной - за туловище, а поясничный отдел - за ноги). Импульсы от коры головного мозга эти волокна передают либо непосредственно, либо через вставочныенейроны.

Проекционные зоны коры головного мозга

Непосредственное раздражение определенных участков коры головного мозга приводит к судорогам мышц, соответствующих участку коры - проекционной двигательной зоне. При раздражении верхней трети передней центральной возникает судорога мышц ноги, средней - руки, нижней - лица, причем, на стороне, противоположной очагу раздражения в полушарии. Эти судороги носят название парциальных (джексоновских). Их открыл английский невролог Д. Х. Джэксон (1835-1911). В проекционной двигательной зоне каждого полушария головного мозга представлены все мышцы противоположной половины тела.

Типы нервных волокон

Пирамидная система человека содержит около 1 млн. нервных волокон. Различают следующие типы волокон:

Наибольшее количество пирамидных клеток (клеток Беца) иннервирует мелкие мышцы, отвечающие за тонкие дифференцированные движения кисти, мимику и речевой акт. Значительно меньшее их количество иннервирует мышцы туловища и нижних конечностей.

Похожие публикации