Классификация основных форм нарушения микроциркуляции. Симптомы болезни - нарушения микроциркуляции. нарушение микроциркуляции


Микроциркуляция – упорядоченное движение крови и лимфы по микрососудам, транскапиллярный обмен веществ, а также перемещение жидкостей во внесосудистом пространстве.

В микроциркуляторное русло входят: артериолы, прекапилляры, капилляры, посткапилляры, венулы, артериоловенулярные шунты, лимфатические капилляры.

Типовые формы нарушений микроциркуляции:

I. Внутрисосудистые:

· Замедление, прекращение тока крови и(или) лимфы.

· Чрезмерное ускорение тока крови и(или) лимфы.

· Нарушение ламинарности (турбулентность) тока крови и(или) лимфы вследствие агрегации форменных элементов и повышения вязкости плазмы

· Шунтирование кровотока в обход кариляров МЦР

II. Интрамуральные(трансмуральные):

· Повышение сосудистой проницаемости

· Образование экстравазантов

III. Внесосудистые:

· Повышение объема интерстициальной жидкости и снижение скорости её оттока.

Феномен сладжа. Частой причиной, а также следствием расстройств микроциркуляции является развитие сладж-феномена (от англ. sludge - тина, ил, густая грязь).

Сладж-феномен характеризуется адгезией, агрегацией и агглютинацией форменных элементов крови, что обусловливает ее сепарацию на более или менее крупные конгломераты, состоящие из эритроцитов, тромбоцитов, лейкоцитов, и плазму крови (схема).

Причинами сладжа являются те же факторы, которые обусловливают расстройства микроциркуляции:

1) нарушение центральной и регионарной гемодинамики (при сердечной недостаточности, венозном застое, ишемии, патологических формах артериальной гиперемии);

2) повышение вязкости крови (например, в условиях гемоконцентрации, гиперпротеинемии, полицитемии);

3) повреждение стенок микрососудов.

Действие указанных факторов обусловливает агрегацию (от лат. aggregatio - присоединение, скопление, скучивание) клеток крови, главным образом эритроцитов, их адгезию (от лат. adhaesio - прилипание, слипание) друг с другом и клетками эндотелия микрососудов, агглютинацию (от лат. agglutinatio - склеивание) клеток с последующим лизисом их мембран - цитолизом.

К числу основных механизмов адгезии, агрегации и агглютинации форменных элементов крови, ведущих к развитию сладжа, относят следующие:

1) активацию клеток крови с высвобождением из них физиологически активных веществ, в том числе обладающих сильным проагрегатным действием (АДФ, тромбоксан А2, кинины, гистамин, ряд простагландинов);

2) «снятие» отрицательного (в норме) поверхностного заряда клеток и(или) «перезарядка» его на положительный избытком катионов, выходящих из поврежденных клеток.

Наличие и величина отрицательного поверхностного заряда клеток крови являются важными условиями обеспечения ее суспензионной стабильности. Последнее определяется действием сил «отталкивания» между одноименно заряженными форменными элементами крови. Увеличение в плазме катионов калия, кальция, магния и dpschu (что сопровождает любое более или менее значительное повреждение клеток) уменьшает поверхностный заряд форменных элементов крови или меняет его на положительный. Клетки сближаются, начинается процесс их адгезии, агрегации и агглютинации с последующей сепарацией крови;

3) уменьшение величины поверхностного заряда клеточных элементов крови при контакте с ними макромолекул белка при его избытке (гиперпротеинемии), особенно за счет высокомолекулярных его фракций (иммуноглобулинов, фибриногена, аномальных

разновидностей протеинов). В этом случае заряд клеток снижается в связи с их взаимодействием с положительно заряженной частью макромолекулы белка, в частности с его аминогруппами. Кроме того, мицеллы белка, адсорбированные на поверхности клеток, способствуют их оседанию и последующей адгезии, агрегации и агглютинации.

Образование агрегатов форменных элементов крови сочетается с сепарацией ее на клеточные конгломераты и плазму.

Сладжирование крови обусловливает сужение просвета и нарушение перфузии микрососудов (замедление в них кровотока, вплоть до стаза, турбулентный характер тока крови), расстройство процессов транскапиллярного обмена, развитие гипоксии и ацидоза, нарушение метаболизма в тканях. В целом совокупность указанных изменений обозначается как синдром капилляротрофической недостаточности.

Капилляротрофическая недостаточность - состояние, характеризующееся нарушением крово- и лимфообращения в сосудах МЦР, расстройствами транспорта жидкости и форменных элементов крови через стенки микрососудов, замедлением оттока межклеточной жидкости и приводящее к дистрофии, нарушениям пластических процессов, функций органов, тканей, жизнедеятельности организма.



Цель занятия : Знать основные формы нарушения микроциркуляции, их проявления,

причины и механизмы развития.

Самостоятельная работа во внеучебное время .

ПРОРАБОТАТЬ УЧЕБНЫЙ МАТЕРИАЛ ПО СЛЕДУЮЩИМ ВОПРОСАМ:

I. Вопросы для повторения, изученные ранее:

1. Общие представления о системе микроциркуляции.

2. Нервная и гуморальная регуляция микроциркуляторного русла.

II. Вопросы из курса патологической физиологии к данной теме:

1. Основные виды нарушений микроциркуляции.

2. Причины и механизмы нарушений адгезивных свойств сосудистой стенки и их роль в расстройствах микроциркуляции.

3. Роль биологически активных веществ (БАВ) в нарушениях микроциркуляции.

4. Значение гидростатического, коллоидно-осмотического давления и проницаемости сосудов в чрезмерном усилении транссудации.

5. Причины и механизмы нарушений транскапиллярной проницаемости.

6. Гемоконцентрация, нарушение суспензионной устойчивости, агрегация и

агглютинация эритроцитов.

7. Процесс сладжа. Виды, причины и стадии развития.

8. Агрегация тромбоцитов, диссеминированное внутрисосудистое свертывание

9. Нарушение тонуса, механической целостности, геометрического строения микрососудов.

10. Определение понятия «капилляротрофическая недостаточность». Механизмы развития, проявления, последствия.

11. Недостаточность лимфообращения, ее виды.

12. Нарушения микроциркуляции в детском возрасте.

13. Особенности кровоснабжения и микроциркуляции тканей челюстно – лицевой области.

МИКРОЛЕКЦИЯ.

Микроциркуляция (от лат. micros –малый, cirkulatio –круговорот) включает микрогемоциркуляцию и микролимфоциркуляцию. С системной точки зррения микроциркуляция – это движение крови и лимфы по микрососудам, транскапиллярный обмен и перемещение потоков веществ по внесосудистым пространствам до стенок клеток и в обратном направлении.

Система микроциркуляции включает следующие сосуды. Артериолы – резистивные сосуды, обеспечивающие приток артериальной крови к данному региону, ламинарность кровотока и перфузионное давление, определяющее в свою очередь объем капиллярного кровотока. Прекапиллярные артериолы - место, где артериолы делятся на капилляры, это короткий ствол с мышечным жомом, регулирующий степень наполнения капилляров. Капилляры - истинные обменные сосуды, главная их функция – участие в обмене веществ между кровью и внесосудистой средой. Регуляция функционирования капилляров осуществляется местными тканевыми гормонами и метаболитами. Далее идут посткапиллярные венулы, собирающие кровь от капилляров, и собственно венулы. В нормальных условиях венулы выполняют отводящую кровь функцию. Немаловажную роль в работе микроциркуляции играют артериоловенулярные шунты, осуществляющие юкстакапиллярный кровоток.

Микролимфоциркуляция представлена лимфатическими капиллярами, имеющие вид петель или слепых канальцевых выпячиваний, и микрососудами, которые сливаются в более крупные лимфатические сосуды, открывающиеся в венозные стволы. Однонаправленному движению лимфы способствуют имеющиеся в микрососудах клапаны. Лимфатические сосуды обеспечивают дренажный отток межклеточной жидкости в венозную систему.

Система микроциркуляции является таким важным звеном в жизнедеятельности организма, которое реализует конечную цель работы многих систем (кровообращение, дыхание, кровь, пищеварение) или осуществляет начальный этап их деятельности (выделение). Она не только определяет устойчивость микрогемодинамики постоянство межклеточной среды, но, что особенно важно, - оптимальное трофическое обеспечение ткани одного региона, соответствующее ее функциональному состоянию и потребностям. Если по какой - либо причине деятельность микроциркуляторной системы нарушается, немедленно включаются микроциркуляторные, общегемодинамические и другие системные приспособительные процессы. При недостаточности этих систем цель работы микроциркуляции достигается не в полной мере или становится невыполнимой. В таких случаях применяют понятие «капилляротрофическая недостаточность».

Капилляротрофическая недостаточность – типовая форма патологии системы микроциркуляции, связанная с необеспеченностью клеточного обмена веществ, доставкой необходимых продуктов обмена и удалением метаболитов. Она проявляется дистрофией и характеризуется отклонением параметров тканевого, а нередко и гуморального гомеостаза.

Причины и формы недостаточности микроциркуляции многообразны и классифицируются по разным критериям.

I. По этиологии

Первичные (наследственные): гипоальбуминемии, гипофиброногенемии, таласемии, S – гемоглобиноз, васкулиты, сосудистая гемофилия.

Вторичные (приобретенные): при сердечно – сосудистой недостаточности, шоках различной этиологии, гипертонической болезни, интоксикации, расстройств обмена веществ, опухолях и других патологических состояниях.

II. По происхождению

Гемодинамические, при разных формах патологии сердца и сосудов.

Негемодинамические, при нарушении внешнего дыхания, выделения, пищеварения.

III. По форме нарушений

Внутрисосудистые нарушения

Нарушения проницаемости сосудов

Внесосудистые нарушения

Каждая из этих главных форм включает различные варианты патологии и приспособительные реакции. Все указанные формы, несомненно, связаны, и данное разделение расстройств микроциркуляции носит условный характер. Первично возникающие изменения тока или реологических свойств крови, как правило, отражаются на сосудистой проницаемости и экстраваскулярном перемещении веществ. Таким образом, при том или ином заболевании обычно имеется комбинация разных форм нарушения микроциркуляции.

Интраваскулярные изменения микроциркуляции . Интраваскулярные процессы проявляются изменением микроперфузии, т.е. скорости и характера тока крови или лимфы, а также изменением их реологических свойств. Микроперфузия капилляров определяется разностью гидродинамического давления между артериальной и венозной частями микроциркуляторного русла, диаметром микрососудов и свойством их внутренней поверхности. Реологические свойства крови зависят от ее вязкости, которая связана с числом и состоянием форменных элементов крови (заряд, эластичность мембраны и пр.), соотношением белковых фракций, онкотическим и осмотическим давлением и другими факторами. Все эти факторы определяют суспензионную стабильность крови как сложного раствора со взвешенными в ней частицами.

Изменения микроперфузии проявляются увеличением или снижением скорости кровотока, а также нарушением ламинарности тока крови. Снижение скорости тока крови или лимфы по микрососудам вплоть до остановки – стаз. Различают следующие виды стаза:

  • венозный – в результате увеличения гидродинамического давления в венах при затруднении оттока венозной крови;
  • ишемический – вследствие уменьшения гидродинамического давления в артериях при затруднении притока артериальной крови;
  • истинный – возникает вследствие непосредственного повреждения стенок капилляров.

При повреждении стенки сосуда повышается ее проницаемость, жидкость выходит во внесосудистую среду и происходит ее локальная гемоконцентрация, альбумины поступают в ткань и в крови увеличиваются грубодисперсные фракции белка (глобулины, фибриноген). Все это приводит к снижению отрицательного заряда форменых элементов крови, прежде всего эритроцитов, уменьшению их деформабильности, суспензионной стабильности и образованию перекрученных цепочек, которые затрудняют ток крови и в дальнейшем обусловливают его остановку.

Изменения реологических свойств крови, вязкости, текучести обусловлены ее разжижением (гемоделюцией) или сгущением (гемоконцентрацией). В последнем случае нередко возникает своеобразное состояние крови, которое получило название сладж, или сладж – феномен (от англ. sludge – тина, грязь). Местная гемоконцентрация может возникнуть во всех случаях чрезмерного выхода жидкой части крови из просвета сосудов в межклеточную среду при расстройствах органного кровообращения, воспалении, аллергии и других процессах. Наиболее часто сладж появляется при значительных изменениях свойств эритроцитов. Факторами, вызывающими сладж, могут быть токсины микроорганизмов, алкоголь, высокомолекулярные соединения и накопление в крови грубодисперсных фракций белка, нарушения обмена веществ в клетках микрососудов и эритроцитах, приводящие к изменению pH и физико – химических свойств их мембран.

В процессе развития сладжа выделяют три стадии, которые при неблагоприятных условиях последовательно переходят одна в другую. Первая стадия характеризуется снижением заряда и деформабильности эритроцитов, образованием «монетных столбиков», в результате агрегации клеток. В дальнейшем процесс усугубляется и происходит перекручивание цепочек эритроцитов. На этой стадии агрегация носит обратимый характер. Если действие патогенных факторов сохраняется или усугубляется, то агрегация нарастает, сладж становится ригидным. В дальнейшем эритроциты подвергаются агглютинации с распадом цитолеммы и развитием гемолиза.

Выделяют 3 вида сладжа.

  1. Классический – несколько десятков эритроцитов, четкие контуры.
  2. Декстрановый – меньших размеров, имеют просвет внутри.
  3. Аморфный – самые маленькие, 2-3 эритроцита, закупоривают мелкие капилляры печени, почек, легких.

Кроме того различают тромбоцитарные и лейкоцитарные агрегаты. Особенностями лейкоцитарных агрегатов является активация лизомальных ферментов и дополнительное повреждение.

Трансваскулярные изменения микроциркуляции. Обмен жидкостью, веществами и клетками между кровью и межклеточной средой является сложным процессом, который зависит от многих факторов и прежде всего от проницаемости стенок микрососудов. Выделяют следующие пути прохождения веществ через стенку сосудов: фильтрация, активная и пассивная диффузия и микровезикулярный транспорт (пиноцитоз и цитопемсис).

Под фильтрацией понимают процесс перехода воды из сосудов в межклеточное пространство и в обратном направлении, который осуществляется в зависимости от фильтационного давления (ФД). Фд в свою очередь определяется гидродинамическим давлением (ГД) в сосуде, онкотическим (ОНД) и осмотическим (ОСД) давлением крови и тканевым давлением (ТД).

Диффузия – это прохождение разных веществ через стенку сосудов. Пассивная диффузия является процессом перемещения веществ в соответствии с различными градиентами: концентрационным, осмотическим, электрокинетическим и др. Активная диффузия характеризуется движением веществ против этих градиентов с помощью специальных переносчиков и для ее осуществления нужны энергозатраты в форме АТФ. Нарушения генерации энергии могут приводить к расстройствам данной формы проницаемости сосудистых мембран.

Сущность микровезикуляции состоит в захватывании цитоплазматической мембраной эндотелиоцита различных веществ или капелек плазмы, образованием транспортной вакуоли, активном ее переносе через цитоплазму и выделением на противоположной стороне эндотелиальной клетки в интерстициальную среду. Это явление получило название п и н о ц и т о з. округлени эндотелиальных клеток, либо непосредственно через эндотелиальную клетку. Последнее явление носит название ц и т о п е м с и с.

Нарушения проницаемости сосудистых мембран могут иметь распространенный, даже тотальный характер, как, например, на определенной стадии воспаления, или избирательный характер. Нарушения проницаемости могут проявляться как увеличением, так и снижением ее степени. Снижение проницаемости чаще касается отдельных процессов, особенно активной диффузии. Напротив, увеличение проницаемости чаще бывает распространенным явлением, затрагивая фильтрацию, диффузию и пиноцитоз. Повышение проницаемости мембран сосудов может быть настолько значительным, что из крови в межклеточную среду проходят не только соединения с низкой молярной массой, но и крупные молекулы – белки, например, фибриноген. В ряде случаев в межклеточную среду поступают эритроциты; диапедез эритроцитов свидетельствует о существенных нарушениях проницаемости вследствие резкого расширения межэндотелиальных каналов. В механизме повышения сосудистой проницаемости при травме, ожоге, воспалении, аллергии большое значение придают кислородному голоданию тканей, ацидотическому сдвигу реакции среды, накоплению местных метаболитов, образованию БАВ, активным глобулинам плазмы крови, катионным белкам и гистонам нейтрофильных гранулоцитов. Биологически активные амины (гистамин, серотонин) обладают кратковременным действием на проницаемость сосудистой стенки посредством влияния на контрактильные элементы сосудов, главным образом венул. При различных патологических процессах, особенно при воспалении, эти факторы воспроизводят раннюю фазу повышения сосудистой проницаемости (10 – 60 мин). Более поздние нарушения проницаемости сосудистой стенки вызываются протеазами, глобулинами, веществами, выделяющимися нейтрофильними гранулоцитами. Действие этих факторов направлено на стенку капиллярных сосудов – базальную мембрану – и заключается в физико – химических изменениях белково – полисахаридных комплексов.

В патологии нередко возникают разрывы стенки микрососудов и кровоизлияния. Подобные явления наблюдаются, например, при гипертонической болезни, инфекционно – токсических процессах, нарушениях обмена веществ (при сахарном диабете, почечной или печеночной недостаточности). Важным фактором, приводящим к разрывам сосудов, может быть не только повышение гидродинамического давления, но и снижение устойчивости стенки сосудов к напряжению. В зависимости от локализации даже микрокровоизлияния могут представлять существенную опасность (ствол мозга, миокард, почки), особенно если они имеют множественный характер. Нарушения тока крови и кровоизлияния могут быть следствием варикозного расширения стенки сосуда, так как при этом происходит ее истончение. Варикозные расширения способствуют турбулентности кровотока, а это в свою очередь приводит к агрегации форменных элементов и образованию микротромбов.

Свойства стенки и интраваскулярные процессы в микрососудах изменяются при отеке эндотелиальных клеток. Подобное явление ярко выражено при ишемическом нарушении микроциркуляции и особенно последующей реперфузии. Во время реперфузии жидкость из просвета микрососуда поступает в эндотелиоциты, последние набухают (интрацеллюлярный отек), что может приводить к феномену no reflow (не восстановлению кровотока) и усугубляет гипоперфузию.

Микрососудистая стенка может повреждаться самыми разнообразными факторами – физическими, химическими, биологическими. После слущивания эндотелиальных клеток в просвет сосуда и обнажения базальной мембраны на субэндотелий адгезируются тромбоциты, которые высвобождают тромбоцитарный фактор репарации (ТФР). ТФР выделяют и сами эндотелиальные клетки. Этот и другие стимулы могут вызывать распластывание эндотелиальных клеток, их миграцию в зону повреждения и регенерацию.

Экстраваскулярные изменения микроциркуляции. Наиболее важными проявлениями

Нарушения микроциркуляции принадлежат к типовым патологическим процессам, лежащим в основе многих заболеваний и травм. Расстройства в системе микроциркуляции можно разделить на 4 большие группы: наруше­ния в стенках микрососудов, внутрисосудистые нарушения, внесосудистые изменения и комбинированные расстройства.

Патологические расстройства на уровне сосудистых стенок микрососудов выражаются в изменениях формы и расположения эндотелиальных клеток. Одним из наиболее часто наблюдающихся нарушений этого типа является повышение проницаемости сосудистой стенки, которые также могут вызы­вать прилипание (адгезию) к их поверхности форменных элементов крови, опухолевых клеток, инородных частиц и др. Проникновение (диапедез) фор­менных элементов через стенки микрососудов имеет место после прилипа­ния соответствующих клеток к эндотелию. Следствием нарушения целост­ности при повреждении стенки микрососудов являются микрокровоизлияния.

Внутрисосудистые нарушения микрогемоциркуляции крайне разнооб­разны. Среди них чаще всего встречаются изменения реологических свойств крови, связанные прежде всего с агрегацией (англ. aggregate - соединение частей) эритроцитов и других форменных элементов крови. Такие внутри­сосудистые расстройства, как замедление кровотока, тромбоз, эмболия так­же в значительной степени зависят от нарушения реологических свойств крови. Следует отличать агрегацию форменных элементов крови от их агг­лютинации. Первый процесс характеризуется обратимостью, в то время как второй необратим. Крайняя степень выраженности агрегации форменных элементов крови получил название «сладж» (англ. sludge - тина, густая грязь, болото). Главным результатом таких изменений является увеличение вязкости крови вследствие слипания эритроцитов, лейкоцитов и тромбоци­тов. Такое её состояние в значительной степени ухудшает кровоснабжение тканей через микрососуды и снижает объём циркулирующей крови. В пото­ке крови при этом наступает разделение (сепарация) на клетки и плазму.

Ведущая роль в агрегации эритроцитов принадлежит факторам плазмы крови, в частности высокомолекулярным белкам, таким, как глобулины и, особенно, фибриноген. Увеличение их содержания, что встречается неред­ко при злокачественных опухолях, усиливает агрегацию эритроцитов.

Так как гемостаз является защитной реакцией организма при любом на­рушении целостности сосудистой стенки, такие расстройства реологичес­ких свойств крови встречаются при различных местных повреждениях. По­следствием этих расстройств является замедление кровотока в микроцир- куляторной системе вплоть до стаза (греч. stasis - стояние), под которым понимается местная остановка крови в просвете сосудов того или иного органа, ткани. Стаз может быть вызван уменьшением разности давлений на протяжении микрососуда и (или) увеличением сопротивления в его просве­те. В зависимости от причин, его вызвавших, различают ишемический, зас­тойный и истинный капиллярный стаз.

При ишемическом стазе градиент давления в микрососудах уменьшается вследствие значительного пониже­ния давления в их артериальных отделах, что связано с прекращением при­тока крови из более крупных артерий (например, при тромбозе, эмболии, ангиоспазме и др.). Застойный стаз возникает при уменьшении градиента давления на протяжении микрососудов вследствие резкого повышения дав­ления в их венозных отделах (например, при застое крови вследствие ве­нозной гиперемии, тромбозе более крупных вен, сдавления их опухолью и др.). Истинный капиллярный стаз связан со значительным первичным увели­

чением сопротивления кровотоку в соответствующих сосудах. Причиной ис­тинного капиллярного стаза является усиленная внутрисосудистая агрегация эритроцитов. Возникновению стаза может способствовать относительно вы­сокая концентрация эритроцитов в крови, протекающей по капиллярам. На развитие и разрешение истинного капиллярного стаза влияют нервные и гу­моральные механизмы. Нервная система воздействует на внутрисосудистую агрегацию с помощью биологически активных веществ.

Поскольку остановка кровотока в капиллярах при стазе вызывает пре­кращение доставки кислорода к соответствующим участкам, проявления стаза схожи с симптоматикой ишемии. Исход стаза зависит от его дли­тельности и места возникновения. Кратковременный стаз - явление обра­тимое. Если стаз сохраняется в течение длительного времени, происходит распад тромбоцитов с последующим выпадением фибрина и образованием тромба.

Одной из частых, распространённых форм патологического тромбооб- разования в микроциркуляторном русле - синдром диссеминированного внутрисосудистого свёртывания (ДВС) крови.

В случаях длительного стаза, который охватывает большое количество капилляров и происходит в тканях, высоко чувствительных к нарушениям циркуляции крови, может наступать некроз отдельных структурных элемен­тов органов и тканей. Прежде всего, это относится к центральной нервной системе, особенно чувствительной к любым нарушениям кровоснабжения.

Внесосудистые тканевые факторы могут влиять на состояние микроцир­куляции. Наиболее выраженное влияние на систему микроциркуляции ока­зывают тучные клетки (мастоциты, тканевые базофилы), содержащие в своих гранулах гистамин, гепарин, серотонин и другие биологически активные вещества, действующие на микрососуды. Комбинированные расстройства микроциркуляции, связанные с внутрисосудистыми нарушениями, измене­ниями стенки сосудов и внесосудистых компонентов, встречаются доволь­но часто. Обычно они представляют собой разные сочетания уже описан­ных выше расстройств. Другой тип нарушений микроциркуляции внесосудистого происхождения обуславливают изменения периваскулярного транспорта интерстициальной жидкости вместе с растворёнными в ней ве­ществами, в том числе образования и транспорта лимфы.

«НАРУШЕНИЯ МИКРОЦИРКУЛЯЦИИ»

ЧИТА, 2005г.

РАЗДЕЛ : Типические патологические процессы.

ТЕМА: Нарушения микроциркуляции

Цель занятия : Знать основные формы нарушения микроциркуляции, их проявления,

причины и механизмы развития.

Самостоятельная работа во внеучебное время .

ПРОРАБОТАТЬ УЧЕБНЫЙ МАТЕРИАЛ ПО СЛЕДУЮЩИМ ВОПРОСАМ:

I. Вопросы для повторения, изученные ранее:

1. Общие представления о системе микроциркуляции.

2. Нервная и гуморальная регуляция микроциркуляторного русла.

II. Вопросы из курса патологической физиологии к данной теме:

1. Основные виды нарушений микроциркуляции.

2. Причины и механизмы нарушений адгезивных свойств сосудистой стенки и их роль в расстройствах микроциркуляции.

3. Роль биологически активных веществ (БАВ) в нарушениях микроциркуляции.

4. Значение гидростатического, коллоидно-осмотического давления и проницаемости сосудов в чрезмерном усилении транссудации.

5. Причины и механизмы нарушений транскапиллярной проницаемости.

6. Гемоконцентрация, нарушение суспензионной устойчивости, агрегация и

агглютинация эритроцитов.

7. Процесс сладжа. Виды, причины и стадии развития.

8. Агрегация тромбоцитов, диссеминированное внутрисосудистое свертывание

9. Нарушение тонуса, механической целостности, геометрического строения микрососудов.

10. Определение понятия «капилляротрофическая недостаточность». Механизмы развития, проявления, последствия.

11. Недостаточность лимфообращения, ее виды.

12. Нарушения микроциркуляции в детском возрасте.

13. Особенности кровоснабжения и микроциркуляции тканей челюстно – лицевой области.

МИКРОЛЕКЦИЯ.

Микроциркуляция (от лат. micros –малый, cirkulatio –круговорот) включает микрогемоциркуляцию и микролимфоциркуляцию. С системной точки зррения микроциркуляция – это движение крови и лимфы по микрососудам, транскапиллярный обмен и перемещение потоков веществ по внесосудистым пространствам до стенок клеток и в обратном направлении.

Система микроциркуляции включает следующие сосуды. Артериолы – резистивные сосуды, обеспечивающие приток артериальной крови к данному региону, ламинарность кровотока и перфузионное давление, определяющее в свою очередь объем капиллярного кровотока. Прекапиллярные артериолы - место, где артериолы делятся на капилляры, это короткий ствол с мышечным жомом, регулирующий степень наполнения капилляров. Капилляры - истинные обменные сосуды, главная их функция – участие в обмене веществ между кровью и внесосудистой средой. Регуляция функционирования капилляров осуществляется местными тканевыми гормонами и метаболитами. Далее идут посткапиллярные венулы, собирающие кровь от капилляров, и собственно венулы. В нормальных условиях венулы выполняют отводящую кровь функцию. Немаловажную роль в работе микроциркуляции играют артериоловенулярные шунты, осуществляющие юкстакапиллярный кровоток.

Микролимфоциркуляция представлена лимфатическими капиллярами, имеющие вид петель или слепых канальцевых выпячиваний, и микрососудами, которые сливаются в более крупные лимфатические сосуды, открывающиеся в венозные стволы. Однонаправленному движению лимфы способствуют имеющиеся в микрососудах клапаны. Лимфатические сосуды обеспечивают дренажный отток межклеточной жидкости в венозную систему.

Система микроциркуляции является таким важным звеном в жизнедеятельности организма, которое реализует конечную цель работы многих систем (кровообращение, дыхание, кровь, пищеварение) или осуществляет начальный этап их деятельности (выделение). Она не только определяет устойчивость микрогемодинамики постоянство межклеточной среды, но, что особенно важно, - оптимальное трофическое обеспечение ткани одного региона, соответствующее ее функциональному состоянию и потребностям. Если по какой - либо причине деятельность микроциркуляторной системы нарушается , немедленно включаются микроциркуляторные, общегемодинамические и другие системные приспособительные процессы. При недостаточности этих систем цель работы микроциркуляции достигается не в полной мере или становится невыполнимой. В таких случаях применяют понятие «капилляротрофическая недостаточность».

Капилляротрофическая недостаточность – типовая форма патологии системы микроциркуляции, связанная с необеспеченностью клеточного обмена веществ, доставкой необходимых продуктов обмена и удалением метаболитов. Она проявляется дистрофией и характеризуется отклонением параметров тканевого, а нередко и гуморального гомеостаза.

Причины и формы недостаточности микроциркуляции многообразны и классифицируются по разным критериям.

I. По этиологии


  • первичные (наследственные): гипоальбуминемии, гипофиброногенемии, таласемии, S – гемоглобиноз, васкулиты, сосудистая гемофилия.

  • вторичные (приобретенные): при сердечно – сосудистой недостаточности, шоках различной этиологии, гипертонической болезни, интоксикации, расстройств обмена веществ, опухолях и других патологических состояниях.

II. По происхождению


  • гемодинамические, при разных формах патологии сердца и сосудов.

  • Негемодинамические, при нарушении внешнего дыхания, выделения, пищеварения.
III. По форме нарушений

Внутрисосудистые нарушения


  • нарушения проницаемости сосудов

  • внесосудистые нарушения

Каждая из этих главных форм включает различные варианты патологии и приспособительные реакции. Все указанные формы, несомненно, связаны, и данное разделение расстройств микроциркуляции носит условный характер. Первично возникающие изменения тока или реологических свойств крови, как правило, отражаются на сосудистой проницаемости и экстраваскулярном перемещении веществ. Таким образом, при том или ином заболевании обычно имеется комбинация разных форм нарушения микроциркуляции.

Интраваскулярные изменения микроциркуляции . Интраваскулярные процессы проявляются изменением микроперфузии, т.е. скорости и характера тока крови или лимфы, а также изменением их реологических свойств. Микроперфузия капилляров определяется разностью гидродинамического давления между артериальной и венозной частями микроциркуляторного русла, диаметром микрососудов и свойством их внутренней поверхности. Реологические свойства крови зависят от ее вязкости, которая связана с числом и состоянием форменных элементов крови (заряд, эластичность мембраны и пр.), соотношением белковых фракций, онкотическим и осмотическим давлением и другими факторами. Все эти факторы определяют суспензионную стабильность крови как сложного раствора со взвешенными в ней частицами.

Изменения микроперфузии проявляются увеличением или снижением скорости кровотока, а также нарушением ламинарности тока крови. Снижение скорости тока крови или лимфы по микрососудам вплоть до остановки – стаз. Различают следующие виды стаза:


  • венозный – в результате увеличения гидродинамического давления в венах при затруднении оттока венозной крови;

  • ишемический – вследствие уменьшения гидродинамического давления в артериях при затруднении притока артериальной крови;

  • истинный – возникает вследствие непосредственного повреждения стенок капилляров.

При повреждении стенки сосуда повышается ее проницаемость, жидкость выходит во внесосудистую среду и происходит ее локальная гемоконцентрация, альбумины поступают в ткань и в крови увеличиваются грубодисперсные фракции белка (глобулины, фибриноген). Все это приводит к снижению отрицательного заряда форменых элементов крови, прежде всего эритроцитов, уменьшению их деформабильности, суспензионной стабильности и образованию перекрученных цепочек, которые затрудняют ток крови и в дальнейшем обусловливают его остановку.

Изменения реологических свойств крови, вязкости, текучести обусловлены ее разжижением (гемоделюцией) или сгущением (гемоконцентрацией). В последнем случае нередко возникает своеобразное состояние крови , которое получило название сладж, или сладж – феномен (от англ. sludge – тина, грязь). Местная гемоконцентрация может возникнуть во всех случаях чрезмерного выхода жидкой части крови из просвета сосудов в межклеточную среду при расстройствах органного кровообращения, воспалении, аллергии и других процессах. Наиболее часто сладж появляется при значительных изменениях свойств эритроцитов. Факторами, вызывающими сладж, могут быть токсины микроорганизмов, алкоголь, высокомолекулярные соединения и накопление в крови грубодисперсных фракций белка, нарушения обмена веществ в клетках микрососудов и эритроцитах, приводящие к изменению pH и физико – химических свойств их мембран.

В процессе развития сладжа выделяют три стадии, которые при неблагоприятных условиях последовательно переходят одна в другую. Первая стадия характеризуется снижением заряда и деформабильности эритроцитов, образованием «монетных столбиков», в результате агрегации клеток. В дальнейшем процесс усугубляется и происходит перекручивание цепочек эритроцитов. На этой стадии агрегация носит обратимый характер. Если действие патогенных факторов сохраняется или усугубляется, то агрегация нарастает, сладж становится ригидным. В дальнейшем эритроциты подвергаются агглютинации с распадом цитолеммы и развитием гемолиза.

Выделяют 3 вида сладжа.


  1. Классический – несколько десятков эритроцитов, четкие контуры.

  2. Декстрановый – меньших размеров, имеют просвет внутри.

  3. Аморфный – самые маленькие, 2-3 эритроцита, закупоривают мелкие капилляры печени, почек, легких.
Кроме того различают тромбоцитарные и лейкоцитарные агрегаты. Особенностями лейкоцитарных агрегатов является активация лизомальных ферментов и дополнительное повреждение.
Трансваскулярные изменения микроциркуляции. Обмен жидкостью, веществами и клетками между кровью и межклеточной средой является сложным процессом, который зависит от многих факторов и прежде всего от проницаемости стенок микрососудов. Выделяют следующие пути прохождения веществ через стенку сосудов: фильтрация, активная и пассивная диффузия и микровезикулярный транспорт (пиноцитоз и цитопемсис).
Под фильтрацией понимают процесс перехода воды из сосудов в межклеточное пространство и в обратном направлении, который осуществляется в зависимости от фильтационного давления (ФД). Фд в свою очередь определяется гидродинамическим давлением (ГД) в сосуде, онкотическим (ОНД) и осмотическим (ОСД) давлением крови и тканевым давлением (ТД).

Диффузия – это прохождение разных веществ через стенку сосудов. Пассивная диффузия является процессом перемещения веществ в соответствии с различными градиентами: концентрационным, осмотическим, электрокинетическим и др. Активная диффузия характеризуется движением веществ против этих градиентов с помощью специальных переносчиков и для ее осуществления нужны энергозатраты в форме АТФ. Нарушения генерации энергии могут приводить к расстройствам данной формы проницаемости сосудистых мембран.

Сущность микровезикуляции состоит в захватывании цитоплазматической мембраной эндотелиоцита различных веществ или капелек плазмы, образованием транспортной вакуоли, активном ее переносе через цитоплазму и выделением на противоположной стороне эндотелиальной клетки в интерстициальную среду. Это явление получило название п и н о ц и т о з. округлени эндотелиальных клеток, либо непосредственно через эндотелиальную клетку. Последнее явление носит название ц и т о п е м с и с.

Нарушения проницаемости сосудистых мембран могут иметь распространенный, даже тотальный характер, как, например, на определенной стадии воспаления, или избирательный характер. Нарушения проницаемости могут проявляться как увеличением, так и снижением ее степени. Снижение проницаемости чаще касается отдельных процессов, особенно активной диффузии. Напротив, увеличение проницаемости чаще бывает распространенным явлением, затрагивая фильтрацию, диффузию и пиноцитоз. Повышение проницаемости мембран сосудов может быть настолько значительным, что из крови в межклеточную среду проходят не только соединения с низкой молярной массой, но и крупные молекулы – белки, например, фибриноген. В ряде случаев в межклеточную среду поступают эритроциты; диапедез эритроцитов свидетельствует о существенных нарушениях проницаемости вследствие резкого расширения межэндотелиальных каналов. В механизме повышения сосудистой проницаемости при травме , ожоге, воспалении, аллергии большое значение придают кислородному голоданию тканей, ацидотическому сдвигу реакции среды, накоплению местных метаболитов, образованию БАВ, активным глобулинам плазмы крови, катионным белкам и гистонам нейтрофильных гранулоцитов. Биологически активные амины (гистамин, серотонин) обладают кратковременным действием на проницаемость сосудистой стенки посредством влияния на контрактильные элементы сосудов, главным образом венул. При различных патологических процессах, особенно при воспалении, эти факторы воспроизводят раннюю фазу повышения сосудистой проницаемости (10 – 60 мин). Более поздние нарушения проницаемости сосудистой стенки вызываются протеазами, глобулинами, веществами, выделяющимися нейтрофильними гранулоцитами. Действие этих факторов направлено на стенку капиллярных сосудов – базальную мембрану – и заключается в физико – химических изменениях белково – полисахаридных комплексов.

В патологии нередко возникают разрывы стенки микрососудов и кровоизлияния. Подобные явления наблюдаются, например, при гипертонической болезни, инфекционно – токсических процессах, нарушениях обмена веществ (при сахарном диабете, почечной или печеночной недостаточности). Важным фактором, приводящим к разрывам сосудов, может быть не только повышение гидродинамического давления, но и снижение устойчивости стенки сосудов к напряжению. В зависимости от локализации даже микрокровоизлияния могут представлять существенную опасность (ствол мозга, миокард, почки), особенно если они имеют множественный характер. Нарушения тока крови и кровоизлияния могут быть следствием варикозного расширения стенки сосуда, так как при этом происходит ее истончение. Варикозные расширения способствуют турбулентности кровотока, а это в свою очередь приводит к агрегации форменных элементов и образованию микротромбов.

Свойства стенки и интраваскулярные процессы в микрососудах изменяются при отеке эндотелиальных клеток. Подобное явление ярко выражено при ишемическом нарушении микроциркуляции и особенно последующей реперфузии. Во время реперфузии жидкость из просвета микрососуда поступает в эндотелиоциты, последние набухают (интрацеллюлярный отек), что может приводить к феномену no reflow (не восстановлению кровотока) и усугубляет гипоперфузию.

Микрососудистая стенка может повреждаться самыми разнообразными факторами – физическими, химическими, биологическими. После слущивания эндотелиальных клеток в просвет сосуда и обнажения базальной мембраны на субэндотелий адгезируются тромбоциты, которые высвобождают тромбоцитарный фактор репарации (ТФР). ТФР выделяют и сами эндотелиальные клетки. Этот и другие стимулы могут вызывать распластывание эндотелиальных клеток, их миграцию в зону повреждения и регенерацию.

Экстраваскулярные изменения микроциркуляции. Наиболее важными проявлениями

экстраваскулярных расстройств микроциркуляции являются периваскулярный и межклеточный отек, нарушения лимфодинамики и изменения нейроэндокринной регуляции микрососудов.

О т е к – это скопление жидкости в межклеточном пространстве или полостях вследствие нарушения водно –электролитного обмена. В возникновении отека имеют значение следующие основные патогенетические факторы: гидродинамический, осмотический, онкотический и мембраногенный. При любом отеке имеются ведущий патогенетический фактор и определенная последовательность включения всех остальных. Значение межклеточного отека в каждом конкретном случае неоднозначно. Накопление жидкости во внеклеточной среде сдавливает паренхиматозные элементы, увеличивает диффузионное расстояние для кислорода и питательных веществ от центра микрососуда до стенки клеток, удлиняет путь движения продуктов клеточного распада, нарушает работу нервных волокон и рецепторов, лаброцитов, приводит к сдавлению тонкостенных микролимфососудов и венул, еще больше усугубляя отек.

Скопление внеклеточной жидкости может возникать в результате лимфатической недостаточности – состоянии, при котором образование лимфы превышает способность лимфатических сосудов транспортировать ее в венозную систему. Различают механическую, динамическую и резорбционную лимфатическую недостаточность. При механической недостаточности ограничивается отведение лимфы вследствие лимфоангиоспазма, сдавления лимфатических сосудов, закупорки тромбом, раковыми клетками при их метастазировании. Динамическая недостаточность возникает в результате усиленного образования лимфы , когда нормальные пути лимфооттока не справляются с чрезмерной нагрузкой. Подобное явление может возникать при длительной артериальной гиперемии с усиленной транссудацией. Резорбционная недостаточность обусловлена структурными изменениями межуточной ткани, накоплением белков и осаждением их патологических видов в интерстиции.

Застой лимфы и лимфогипертензия приводят к расширению лимфатических сосудов, лимфогенному отеку и лимфедеме. В зависимости от распространенности лимфедема может быть общей и местной (региональной), каждая из них по скорости – острой и хронической. Быстро развивающийся общий лимфатический отек возникает при нарушении оттока крови по верхней полой вене. При повышении в ней давления появляется застой лимфы в грудном лимфатическом протоке и остальных лимфатических сосудах вплоть до капилляров. Острый региональный лимфатический отек возникает также при блокаде лимфатических сосудов раковыми эмболами, при удалении лимфатических узлов, их воспалении. Хроническая общая лимфедема встречается при длительной флебогипертензии, например, в случае декомпенсации сердца и сердечной недостатачности. Хроническая местная лимфедема отмечается при постепенном сдавлении лимфатических сосудов растущей опухолью, очагом хронического воспаления, при тромбозе вен и тромбофлебите. При лимфедеме в ткани развиваются склеротические процессы, орган становится плотным и изменяет форму. Такое состояние называется слоновостью.

Лимфедема сопровождается обычно лимфостазом, лимфотромбозом и разрывами лимфатических сосудов. Истечение лимфы (лимфорея) может происходить в окружающую среду, в ткань или в полость.
В детском возрасте типовые формы нарушений микроциркуляции могут сопровождать течение некоторых врожденных заболеваний. Например, течение врожденной гемолитической серповодноклеточной анемии сопровождается тромботическими болевыми кризами. По своей частоте болевые кризы занимают первое место – в этом заключается своеобразие данной нозологии. Роль первичного пускового механизма в генезе криза играет замедленная циркуляция крови до остановки кровотока. Развитие стаза крови при этой патологии обусловлено особенностями серповидных эритроцитов. Низкая растворимость Hb S способствует образованию полукристаллических тел (тактоидов), вследствие чего эритроцит становится хрупким к механическому воздействию; снижается деформабильность эритроцитов, клетки агрегируют, переплетаются между собой с развитием сладж – феномена, дальнейшим распадом мембраны и гемолизом. В микроциркуляцию начинает поступать тканевой тромбопластин, запускаются кровосвертывающие механизмы – возникает тромбообразование мелких сосудов, развивается болевой тромботический криз. Другим примером может служить геморрагический васкулит или болезнь Шенлейна – Геноха. В основе заболевания лежит множественный микротромбоваскулит, поражающий сосуды кожи и внутренних органов. Болезнь часто встречается в детском возрасте и среди детей моложе 14 лет. В патогенезе заболевания имеет место образование комплексов антиген – антитело, преципитация их на сосудистую стенку, активация системы комплемента с дальнейшим развитием микротромбоваскулитов, периваскулярным отеком, блокадой микроциркуляции, геморрагиями, глубокими дистрофическими нарушениями вплоть до некрозов. В клинике наиболее част кожный синдром, он симметрично поражает конечности, ягодицы, реже туловище. Возникает папулезно – геморрагическая сыпь, в тяжелых случаях осложняющаяся центральными некрозами.

При врожденных пороках сердца синего типа (тетрада Фалло) наблюдаются явления гемоконцентрации вследствие выработки эритропоэтинов в почках. Это ведет к развитию вторичного эритроцитоза с повышением вязкости крови, замедлением скорости кровотока, блоком микрогемоциркуляции и усугублению трофики тканей.

Нарушения микроциркуляции при стоматологических заболеваниях определяются строением слизистой оболочки и подслизистого слоя полости рта, особенностями крово – и лимфообращения.

Кровоснабжение пародонта осуществляется обильными коллатералями, которые создаются сетью сосудистых анастомозов с микроциркуляторными системами альвеолярного отростка челюстей, пульпы зуба и окружающих мягких тканей. Между костной стенкой альвеолы и корнем зуба располагается богатая сосудистая сеть в виде сплетений, петель и капиллярных клубочков. Капиллярная сеть десны подходит к поверхности слизистой оболочки , капилляры покрыты лишь несколькими слоями эпителиальных клеток. В поверхности десневых сосочков, прилежащей к шейке зуба, находятся подковообразные капиллярные клубочки. Вместе с сосудистой системой десневого края они обеспечивают плотное прилегание края десны к шейке зуба. При гингивите в первую очередь повреждаются сосудистые клубочки микроциркуляторного русла десны. Кровеносные сосуды периодонта образуют несколько сплетений. Наружное сплетение состоит из более крупных, продольно расположенных кровеносных сосудов, среднее – из сосудов меньшего размера. Рядом с цементом корня расположено капиллярное сплетение.

Лимфатические сосуды периодонта располагаются в основном продольно, подобно кровеносным сосудам. От полулунных расширений лимфатических сосудов отходят сплетения в виде клубочков, располагающихся более глубоко под сплетением капилляров. Лимфа оттекает от сосудов пульпы и периодонта через лимфатические сосуды, проходящие в толще кости по ходу сосудисто – нервных пучков. В полости рта встречаются д и ф фу з н а я л и м ф о и д н а я ткань, а также множественные фолликулы, входящие в состав лимфоэпителиального глоточного кольца Пирогова. Лимфоидные органы слизистых оболочек и миндалин в отличие от лимфатических узлов имеют только выносящие сосуды.

В сосудистой системе челюстно – лицевой области регуляция кровообращения осуществляется нервным, гуморальным и миогенным механизмами. Н е р в н ы й м е х а н и з м регуляции кровообращения заключается в том, что тоническая импульсация поступает к этим сосудам от сосудодвигательного центра по нервным волокнам, отходящим от верхнего шейного симпатического узла. Тоническая импульсация сосудосуживающих волокон имеет существенное значение для поддержания тонуса резистивных сосудов (в основном мелких артерий и артериол), так как нейрогенный тонус преобладает в тих сосудах челюстно – лицевой области. Сосудосуживающие реакции резистивных сосудов челюстно – лицевой области и пульпы зуба обусловлены высвобождением в окончаниях симпатических нервных волокон медиатора норадреналина. Наряду с адренорецепторами в сосудах головы и лица имеются м – и н – холинорецепторы, вызывающие расширение сосудов.

В сосудах челюстно – лицевой области возможен механизм по типу аксон – рефлекса. Просвет сосудов может меняться также под влиянием гуморальных факторов. В стоматологической практике широко используют местное обезболивание, когда к раствору новокаина добавляют 0,1% раствора адреналина, который оказывает местное сосудосуживающее влияние.

Сосуды челюстно – лицевой области обладают и собственно м и о г е н н ы м м е с т н ы м м е х а н и з м о м регуляции тонуса. Так, повышение тонуса сосудов мышечного типа – артериол и прекапиллярных сфинктеров приводит к уменьшению числа функционирующих капилляров, что предотвращает повышение внутрисосудистого давления крови и усиленную фильтрацию жидкости, т. е. является физиологической защитой тканей от развития отека. Ослабление регуляторных механизмов миогенного тонуса сосудов является одним из факторов развития отека тканей пульпы, пародонта и других органов полости рта при воспалении.
КАПИЛЛЯРОТРОФИЧЕСКАЯ НЕДОСТАТОЧНОСТЬ
Снижение эффективности энергетического обмена

Структурные нарушения

Набухание митохондрий, накопление жировых капель, исчезновение крист.

Вакуолизация, хроматолиз, пикноз ядра.

Исчезновение гликогена из клеток.

Очаги некроза.

Отек эндотелиоцитов.

Отек интерстиция.

Мукоидное или фибриноидное набухание интерстиция.

ЛИТЕРАТУРА:

Обязательный материал


  1. Материал лекций по теме.

  2. Учебник «Патологическая физиология», Москва, М., 2002г.
Дополнительная литература

  1. А.М.Чернух, П.Н. Александров, О.В. Алексеев
«Микроциркуляция» М., 1984, гл. Х, ХI, XV, XVI.

  1. А.М. Чернух «Воспаление» М., 1979, с. 68-90.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ


  1. Чем представлено микроциркуляторное русло?

  2. Какова функция прекапиллярных сфинктеров?

  3. Назовите основные функции микроциркуляторного русла.

  4. Классифицируйте нарушения микроциркуляции по основным формам.

  5. Чем в физиологических условиях обеспечивается суспензионная стабильность клеток крови?

  6. Чем обусловлены внутрисосудистые нарушения микроциркуляции?

  7. Охарактеризуйте расстройства реологических свойств крови, связанные с изменением суспензионной стабильности форменных элементов и вязкости крови.

  8. Что такое «сладж»? Каковы причины и механизмы формирования сладжей?

  9. Перечислите виды сладжей. Охарактеризуйте каждый из них.

  10. Приведите примеры патологических ситуаций, сопровождающиеся возникновением «сладж-феномена».

  11. Какие особенности характеризуют сладжированную кровь? Характерна ли для нее сепарация клеточных элементов и плазмы?

  12. Чем обусловлены внутрисосудистые нарушения свертывания крови, ведущие к тромбоэмболизму и коагуляции?

  13. Какое значение имеет замедление кровотока в патологии микроциркуляции?

  14. Охарактеризуйте нарушения микроциркуляции, связанные с нарушением самих сосудов.

  15. Что обуславливает адгезию (прилипание лейкоцитов), тромбоцитов к эндотелию?

  16. Как осуществляется диапедез форменных элементов крови через стенку микрососуда?

  17. Охарактеризуйте внесосудистые нарушения микроциркуляции.

  18. В чем заключается реакция тучных клеток в расстройствах микроциркуляции?

  19. Значение нарушений лимфообращения в нарушениях микроциркуляции.

  20. Охарактеризуйте динамическую недостаточность лимфооттока.

  21. Дайте определениепонятия «капилляротрофическая недостаточность».

  22. Охарактеризуйте механизмы развития капилляротрофической недостаточности и ее последствия для организма.

  23. Перечислите БАВ, вызывающие повышение проницаемости сосудистой стенки.

  24. Охарактеризуйте основные механизмы транскапиллярного обмена.

  25. В чем заключаются особенности микровезикулярного или микропиноцитозного транспорта? Какова его роль в патологии?

  26. Объясните нарушения микроциркуляции при обезвоживании организма.

  27. Почему гипотермия может привести к нарушениям микроциркуляции?

  28. Почему протеазный взрыв ведет к нарушениям микроциркуляции?

  29. Чем объяснить нарушения микроциркуляции при анафилактическом шоке?
НАРУШЕНИЯ МИКРОЦИРКУЛЯЦИИ.

Виды

Основное звено патогенеза

Механизмы

Причины

ВНУТРИСОСУДИСТЫЕ НАРУШЕНИЯ

  1. Расстройства реологических свойств крови, связанные с изменением суспензионной стабильности форменных элементов и вязкости крови;

  2. Нарушение коагуляции крови;

  3. Изменение скорости кровотока.

Изменение отрицательного заряда эритроцитов и тромбоцитов;

Увеличение глобулиновой фракции белка и особенно фибриногена, повышение вязкости;

Повреждение тромбоцитов и сосудистой стенки. Активируется ПОЛ мембран тромбоцитов и эндотелиоцитов с образованием тромбоксана А2, повышение агрегации тромбоцитов, тромбообразование.


Внутривенное введение высокомолекулярных веществ: декстрана, эмульсии жира, этилового спирта, тромбина, адреналина и др. веществ; отравление мышьяком, кадмием, хлороформом, бензолом, толуолом, анинином. Острый панкреатит, алкогольная интоксикация, септицемия.

НАРУШЕНИЯ СОСУДИСТОЙ СТЕНКИ-----

  1. Изменение проницаемости сосудистой стенки;

  2. адгезия клеток крови к сосудистой стенки;

  3. диапедез форменных элементов через стенку капилляров;

  4. микрокровоизлияния.

Отек эндотелиальных клеток под воздействием повреждающих факторов.

Повреждение сосудистой стенки физическими(травма, перепады давления, И.И.), химическими (никотин, животные и растительные яды, лекарственные препараты) и биологические (инфекционные агенты, токсины, антигены, иммунные комплексы) факторами. Врожденная патология сосудистой стенки: сосудистая гемофилия, системные васкулиты).

ВНЕСОСУДИСТЫЕ НАРУШЕНИЯ

  1. Влияние продуктов поврежденной ткани окружающей микрососуды;

  2. Реакция тучных клеток на патологические стимулы;

  3. Нарушение лимфообращения;

  4. Вовлечение микрососудистого звена в нейродистрофический тканевой процесс.

Вазотропное влияние продуктов распада, БАВ и ферментов. Несостоятельность дренажной функции лимфатической системы, возникновение механической, динамической и резорбционной недостаточности.

Разнообразные тканевые повреждения и последующая воспалительная реакция; опухоли; дистрофические процессы; явления гипертрофии и гипотрофии.

«НАРУШЕНИЕ МИКРОЦИРКУЛЯЦИИ»

Вариант 1

1. Агрегация эритроцитов способствует уменьшению скорости кровотока (да / нет).

2. Назовите виды сладжей:

3. Назовите основные механизмы транскапиллярного обмена:

4. При каких заболеваниях изменение белкового состава крови приводит к нарушению

микроциркуляции:

а) б) в) г) д).

5. Назовите основные функции микроциркуляторного русла:

а) б) в) г) д).

6. Назовите механизмы повышения проницаемости стенок микрососудов под влиянием

гистамина:

7. Агрегация эритроцитов способствует:

8. Почему гипотермия может привести к нарушению микроциркуляции? Составьте схему патогенеза.
Вариант 2

1. Увеличение в крови фибриногена способствует агрегации эритроцитов (да / нет).

2. Гистамин повышает проницаемость сосудистой стенки (да / нет).

3. Приведите заболевания, при которых возникает сладж-синдром:

а) б) в) г) д).

4. Какие сосуды относятся к микроциркуляторной системе?

а) б) в) г) д).

5. К обратимым сладжам относится:

а) агрегаты эритроцитов;

б) агглютинаты эритроцитов.

6. Назовите основные механизмы транскапиллярного обмена:

7. Какие БАВ повышают проницаемость сосудистой стенки:

а) б) в) г).

8. Назовите основные формы нарушения микроциркуляции:

9. Составьте схему патогенеза нарушения микроциркуляции при обезвоживании

организма.

Вариант 3

1. Влияет ли белковый состав крови в сохранении суспензионной способности крови (да \ нет).

2. С какого конца терминального сосудистого ложа:

а) артериального или

б) венозного начинается агрегация форменных элементов крови.

3. Способствует ли снижение отрицательного заряда на поверхности эритроцитов их

агрегации? (да \ нет)

4. Какой вид сладжа возникает при введении этилового спирта?

а) классический

б) декстрановый

в) аморфный

5. С чем связаны основные внутрисосудистые нарушения микроциркуляции?

а) б) в) г) д).

6. Какие вещества повышают проницаемость сосудистой стенки?

а) серотонин

б) кинины

в) норадреналин

г) протеазы ПМЯЛ лейкоцитов

7. Назовите заболевания, при которых возможно развитие сладж-синдрома:

а), б), в), г), д), е).

8. Чем обеспечивается стабильность суспензионной способности крови

а), б), в), г).

9. Составьте схему патогенеза нарушения микроциркуляции при развитии аллергической

реакции 1 типа.

ОТВЕТЫ НА ТЕСТОВЫЕ ЗАДАНИЯ ПО ТЕМЕ

«НАРУШЕНИЕ МИКРОЦИРКУЛЯЦИИ»
Вариант 1
1. да
2. а) классический

б) декстрановый

в) аморфный
3. а) диффузия

б) фильтрация

в) микровезикулярный транспорт
4. а) макроглобулинемия

б) гломерулонефрит

в) острый панкреатит

г) острый вирусный гепатит

д) сахарный диабет
5. а) доставка кислорода к тканям и клеткам

б) доставка питательных веществ к тканям и клеткам

в) удаление углекислоты и «шлаков»

г) поддержание равновесия притекающей и оттекающей жидкости

д) поддержание оптимального уровня давления в периферических сосудах и тканях
6. а) расширение сосудов

б) констрикция эндотелиальных клеток
7. а) замедлению тока крови

б) нарушению ламинарности тока крови

в) повышению вязкости крови
8.

гипотермия

восприятие холодового раздражения терморецепторами кожи

импульсы в гипоталамус, ЦНС

возбуждение мозгового вещества надпочечников

повышение секреции адреналина

сужение периферических сосудов

открытие артериоловенулярных анастомозов

турбулентное движение крови

образование агрегатов клеток крови

Микроциркуляция - кровоток через систему мелких сосудов (диаметр менее 100 мкм), находящихся в каком-либо органе или ткани, посредством которого клетки получают питание и освобождаются от метаболитов, катаболитов, в результате изменяющегося потока крови, соответствующего потребностям тканей (А.М.Чернух, 1975).

В последнее время в системе периферического кровообращения условно выделяют микроциркуляторное, или сосудистое русло, которое в свою очередь в соответствии с делением сосудов на кровеносные и лимфоносные делится на микроциркуляторное кровеносное и лимфоносное русло. Микроциркуляторное кровеносное русло состоит из сосудов, диаметр которых не превышает 100 мкм, т.е. артериол, метартериол, капиллярных сосудов, венул и артериоловенулярных анастомозов. В нем осуществляется доставка питательных веществ и кислорода к тканям и клеткам, удаление из них углекислоты и шлаков, поддерживается равновесие притекающей и оттекающей жидкости, оптимальный уровень давления в периферических сосудах и тканях.

Микроциркуляторное лимфоносное русло представлено начальным отделом лимфатической системы, в котором происходит образование лимфы и поступление ее в лимфатические капилляры. Процесс образования лимфы имеет сложный характер и заключается в переводе жидкости и растворенных в ней веществ, в том числе белков, через стенку кровеносных капиллярных сосудов в межклеточное пространство, распространении веществ в периваскулярной соединительной ткани, резорбции капиллярного фильтрата в кровь, резорбции белков и избытка жидкости в лимфоносные пути и т.д.

Таким образом, с помощью микроциркуляторного кровообращения осуществляется тесное гематоинтерстициальное и лимфоин-терстициальное взаимодействие, направленное на поддержание необходимого уровня метаболизма в органах и тканях в соответствии с их собственными потребностями, а также потребностями организма в целом.

Методы изучения микроциркуляторного сосудистого русла. Комплексное изучение состояния микроциркуляции в норме и при ее нарушениях достигается с помощью физиологических и морфологических методов. Прежде всего следует указать на широкое использование в клинике и эксперименте кино- и фотосъемки, телевизионной микроскопии, фотоэлектрической регистрации и др.

Классическими объектами для биомикроскопии в условиях эксперимента являются брыжейка лягушки, крысы и других теплокров

ных животных, перепонка крыла летучей мыши, защечный мешок хомяка, ухо кролика, радужная оболочка глаза, а также другие органы и ткани.

Для изучения микроциркуляции у человека используют микрососуды конъюнктивы и радужной оболочки глаз, слизистой оболочки носа и рта. Применение световодной техники позволяет изучить особенности микроциркуляции и во внутренних органах (головном мозге, почках, печени, селезенке, легких, скелетной мышце и др.).

Большой вклад в дело разработки теоретических, экспериментальных и прикладных аспектов проблемы микроциркуляции внесли видные патофизиологи А.М.Чернух (1979), Ю.В.Быць (1995) и др.

Типические нарушения микроциркуляции. В соответствии с общепринятой классификацией E.Maggio (1965) расстройства микроциркуляции делят на внутрисосудистые нарушения, связанные с изменением самих сосудов, и внесосудистые нарушения.

Внутрисосудистые нарушения. Наиболее важными внутрисо-судистыми нарушениями являются расстройства реологических особенностей крови в связи с изменением суспензионной стабильности клеток крови и ее вязкости. В нормальных условиях кровь имеет характер стабильной суспензии клеток в жидкой части.

Сохранность суспензионной стабильности крови обеспечивается величиной отрицательного заряда эритроцитов и тромбоцитов, определенным соотношением белковых фракций плазмы (альбуминов, с одной стороны, глобулинов и фибриногена, с другой), а также достаточной скоростью кровотока. Уменьшение отрицательного заряда эритроцитов, причиной которого чаще всего является абсолютное или относительное увеличение содержания положительно заряженных макромолекул глобулинов и (или) фибриногена и их адсорбция на поверхности эритроцитов, приводит к снижению суспензио-ной стабильности крови, к агрегации эритроцитов и других клеток крови. Снижение скорости кровотока усугубляет этот процесс. Описанный феномен получил название "сладжа" (рис. 6.2). Основными особенностями сладжированной крови являются прилипание друг к другу эритроцитов, лейкоцитов, тромбоцитов и повышение вязкости крови, что затрудняет ее перфузию через микрососуды.

В зависимости от характера воздействия сладж может быть обратимым (при наличии только агрегации эритроцитов) и необратимым. В последнем случае имеет место агглютинация эритроцитов.

В зависимости от размеров агрегатов, характера их контуров и плотности упаковки эритроцитов различают такие типы сладжа:

0 классический (крупные размеры агрегатов, неровные очертания контуров и плотная упаковка эритроцитов);

Рис. 6.2. Сладж-феномен. В просвете капилляра почечного клубочка гемолизи-рующиеся эритроциты (Эр) в виде монетных столбиков: СтК - стенка капилляра; Мз - мезангий х 14500 (по С.М.Секаловой)

0 декстрановый (различная величина агрегатов, округлые очертания, плотная упаковка эритроцитов);

0 аморфный гранулированный (огромное количество мелких агрегатов в виде гранул, состоящих всего из нескольких эритроцитов).

Размеры агрегатов при различных видах сладжа колеблются от 10 х 10 до 100 х 200 мкм и более.

Процесс формирования агрегатов клеток крови имеет определенную последовательность. В первые минуты после повреждения преимущественно в капиллярных сосудах и венулах образуются агрегаты из тромбоцитов и хиломикронов. Они плотно фиксируются к стенке микрососудов, образуя "белый" тромб, или уносятся в другие отделы сосудистой системы к новым очагам тромбообразования.

Эритроцитарные агрегаты образуются в первые часы после повреждения первоначально в венулах, а затем и в артериолах, что обусловлено снижением скорости кровотока. Спустя 12-18 ч развитие указанных нарушений прогрессирует как по выраженности проявлений, так и по распространенности. Возможно и обратное развитие процесса в направлении дезагрегации.

Нарушения микроциркуляции проявляются частичной или полной закупоркой сосудов, резким замедлением кровотока, сепарацией и отделением плазмы от эритроцитов, маятникообразным движением плазмы со взвешенными в ней агрегатами и стазом крови.

Таким образом, сладж - феномен, возникающий первоначально как местная реакция ткани на повреждение, в дальнейшем своем развитии может приобрести характер системной реакции, т.е. генерализованного ответа организма. В этом заключается его общепатологическое значение.

Нарушения, связанные с изменениями самих сосудов, или нарушения проницаемости сосудов обмена. Сосуды (капиллярные сосуды и ве-нулы) характеризуются двумя основными функциями: осуществлением движения крови и способностью пропускать в направлении кровь - ткань и обратно воду, растворенные газы, кристаллогидраты и крупномолекулярные (белковые) вещества. Морфологической основой проницаемости капиллярных сосудов и венул является эндотелий и базальная мембрана.

Механизм перехода вещества через сосудистую стенку может быть активным и пассивным.

Если силы, которые обеспечивают транспорт веществ, находятся за пределами сосудистой стенки, а транспорт осуществляется в соответствии с концентрационными и электрохимическими градиентами, такой вид транспорта называется пассивным. Существует он главным образом для переноса воды, растворенных газов и низко

молекулярных веществ, т.е. таких веществ, которые свободно проникают через сосуды обмена, в связи с чем изменение проницаемости существенно не сказывается на скорости их перехода.

Активный характер транспорт веществ имеет тогда, когда он осуществляется против концентрационного и электрохимического градиентов (транспорт "вгору") и для его осуществления требуется определенное количество энергии. Особенно велика роль данного механизма в транспорте белков и других, в том числе чужеродных, макромолекул.

При патологии часто наблюдается увеличение или уменьшение интенсивности перехода веществ через сосудистую стенку не только за счет изменения интенсивности кровотока, но и за счет истинного нарушения сосудистой проницаемости, которое сопровождается изменением структуры стенки сосудов обмена и усиленным переходом крупномолекулярных веществ. Из двух возможных вариантов нарушения сосудистой проницаемости (уменьшение, увеличение) чаще встречается последний.

В механизме повышения сосудистой проницаемости при травме, ожоге, воспалении, аллергии большое значение придают кислородному голоданию тканей, ацидотическому сдвигу реакции среды, накоплению местных метаболитов, образованию биологически активных веществ и т.д.

По современным представлениям биологически активные амины (гистамин, серотонин) и их естественные либераторы, а также брадикинин, обладают кратковременным действием на проницаемость сосудистой стенки посредством влияния на контрактильные элементы сосудов, главным образом, венул. При различных патологических процессах, особенно при воспалении, вызванном слабыми агентами (тепло, ультрафиолетовые лучи, некоторые химические вещества), эти факторы воспроизводят раннюю фазу повышения сосудистой проницаемости (10-60 мин).

Более поздние нарушения проницаемости сосудистой стенки (от 60 мин до нескольких суток) вызываются протеазами, каллидином, глобулинами, веществами, выделяющимися нейтрофильными гранулоцитами. Действие этих факторов направлено на стенку капиллярных сосудов - межклеточный цемент эндотелия и базальную мембрану - и заключается в физико-химических изменениях (в частности, деполимеризации) сложных белково-полисахаридных комплексов. При сильном повреждении тканей повышение проницаемости сосудистой стенки имеет монофазный характер и обусловлено влиянием протеаз и кининов.

Внесосудистые нарушения. Наиболее важными являются два типа внесосудистых нарушений. Одни из них существенным образом

влияют на состояние микроциркуляции, служат дополнительными патогенетическими механизмами ее нарушений в условиях патологии. Прежде всего это реакция тканевых базофилов окружающей сосуды соединительной ткани на повреждающие агенты.

При некоторых патологических процессах (воспаление, аллергическое повреждение тканей и др.) из тканевых базофилов при их дегрануляции в окружающее микрососуды интерстициальное пространство выбрасываются биологически активные вещества и ферменты.

Действие повреждающих агентов на ткани сопровождается высвобождением из лизосом протеолитических ферментов и их активацией, которые затем расщепляют сложные белково-полисахарид-ные комплексы основного межуточного вещества. Следствием указанных нарушений являются деструктивные изменения базальной мембраны микрососудов, а также волокнистых структур, образующих своеобразный остов, в который заключены микрососуды. Очевидна роль указанных нарушений в изменении проницаемости сосудов, их просвета и замедлении кровотока.

Другой тип нарушений окружающей соединительной ткани включает в себя изменения периваскулярного транспорта интерсти-циальной жидкости вместе с растворенными в ней веществами, образования и транспорта лимфы.

Увеличение транссудации межтканевой жидкости наблюдается при увеличении гидродинамического давления крови на стенки микрососудов (наиболее частой причиной этого является застой крови местного характера или вызванный общей недостаточностью кровообращения); при уменьшении онкотического давления крови (основными причинами являются снижение продукции плазменных белков, прежде всего альбуминов, например, при голодании, при воспалительных и дистрофических изменениях в паренхиме печени, при расстройствах пищеварения и кишечного всасывания). Значительная потеря белков наблюдается при обширных ожогах, энтероколите, геморрагии, лимфоррагии, а также при заболеваниях почек воспалительной и дистрофической природы.

Таким образом, описанные нарушения микроциркуляции можно представить следующим образом.

Внутрисосудистые нарушения: уменьшение или увеличение вязкости крови, гипер- или гипокоагуляция крови, замедление или ускорение тока крови, сладжирование крови.

Внесосудистые нарушения: дегрануляция тканевых базофилов и выход в окружающую сосуды ткань биологически активных веществ и ферментов, изменения периваскулярного транспорта интерстици-альной жидкости.

Нарушения стенки микрососудов: повышение или понижение проницаемости сосудов, диапедез клеток крови, преимущественно лейкоцитов и эритроцитов.

Патогенез основных нарушений микроциркуляции: увеличение вязкости крови приводит к абсолютной полицитемии, агрегации клеток крови, обезвоживанию организма, уменьшению индекса альбумины-глобулины, микроглобулинемии и гиперфибриногенемии.

Повышение проницаемости сосудов вызывает в ранней стадии сокращение контрактильных элементов венул, активизирует действие гистамина и серотонина, в более поздней стадии приводит к деполимеризации белково-полисахаридных комплексов базальной мембраны капилляров, усиливает действие кининов и протеаз.

Диапедез эритроцитов является следствием нарушения целостности стенки микрососудов, повышением ее хрупкости под действием протеаз или повреждающих факторов. Диапедез эритроцитов проявляется микрокровоизлияниями.

Базисные понятия (определения)

Ангиоспазм - сужение или закрытие просвета сосудов в результате действия на нервно-мышечный аппарат артериальной стенки различных эмоциональных, биологических, химических и других факторов.

Гиперемия - покраснение.

Компрессия - сдавление (артерии).

Обтурация - закрытие просвета сосуда.

Суспензионная стабильность крови - постоянное сохранение суспензии клеток крови в жидкой ее части. Тургор - напряжение.

Контрольные вопросы и задания

1. Дайте определение понятию "микроциркуляция".

2. Какие существуют методы изучения микроциркуляции?

3. Назовите внутрисосудистые нарушения микроциркуляции.

4. Что такое сладж-феномен? Назовите виды сладжей.

5. Перечислите внесосудистые нарушения микроциркуляции.

6. В чем состоит суть нарушений микроциркуляции, связанных с изменениями самих сосудов?

7. Объясните механизм активного и пассивного перехода веществ через сосудистую стенку.

Похожие публикации