Передняя спинномозговая артерия. Кровоснабжение спинного мозга

Обеспечивается анастомотической цепью ветвей нескольких (чаще 4–8) передних и менее крупных (чаще 15–20) задних корешковых (радикуломедуллярных) ветвей позвоночной артерии, которые достигают вещества спинного мозга и формируют один передний и два задних артериальных тракта. Они кровоснабжают спинной мозг, корешки, спинномозговые узлы и мозговые оболочки.

Различают два типа кровоснабжения спинного мозга – магистральное и рассыпное. При магистральном типе имеется небольшое число корешковых артерий (3–5 передних и 6–8 задних), при рассыпном таких артерий бывает больше (6-12 передних, 22 и более задних).

По длиннику спинного мозга можно выделить два артериальных бассейна. Верхний бассейн позвоночно-подключичных артерий (a. vertebralis, а. cervicalis ascendens, truncus costocervicalis) включает a. spinalis anterior и a. spinalis posterior, кровоснабжающие C1-C4 сегменты, и 3–7 корешковых артерий для питания всех остальных шейных и двух-трех верхних грудных сегментов. Нижний бассейн аорты (аа. intercostales posterior, аа. lumbales, rr. sacrales laterales a. iliolumbalis) – корешковые ветви для снабжения всех грудных, начиная с Th4, поясничных и крестцовых сегментов. Корешковые артерии разделяются в позвоночном канале на передние и задние и сопровождают соответствующие корешки спинного мозга. Каждая такая артерия, подойдя к поверхности спинного мозга, делится дихотомически на восходящую и нисходящую ветви, которые анастомозируют с аналогичными ветвями выше-и нижерасположенных корешковых артерий, формируя в передней срединной щели спинного мозга переднюю, а в задних латеральных бороздах – две задние спинномозговые артерии. Таким образом, спинномозговые артерии не непрерывные сосуды, и кровоток в них может иметь противоположные направления с образованием по длиннику спинного мозга пограничных зон кровоснабжения (уровни C4, Th4, Th9-L1). При магистральном типе кровоснабжения передняя спинномозговая артерия в зоне нижнего бассейна образуется ветвями одной (20 %) или двух корешковых артерий: передней корешковой (a. radicularis anterior , Адамкевича) и нижней (артерия Депрож-Готтерона) или верхней дополнительной корешковой артерией. Передняя корешковая артерия входит в позвоночный канал с одним из спинномозговых корешков от Th5 до L5 (чаще Th11-Th12), обычно слева, нижняя дополнительная – с L5 или S1; верхняя дополнительная – от Th3 до Th6.

На поперечнике спинного мозга различают три зоны кровоснабжения. Первая из них охватывает передние рога, переднюю серую спайку, основание задних рогов, прилегающие к ним участки передних и боковых канатиков (центральная зона) и обеспечивается бороздчато-комиссуральными ветвями передней спинномозговой артерии.

Из капиллярной сети спинного мозга кровь отводится по радиально расположенным венам в венозные сплетения мягкой мозговой оболочки. Оттуда она поступает по петляющим продольным венам-коллекторам (передним и задним спинномозговым венам) и образующимся от них передним и задним корешковым венам (от 12 до 43) во внутренние позвоночные венозные сплетения, располагающиеся в эпидуральном пространстве. Затем по межпозвоночным венам кровь оттекает в наружные венозные позвоночные сплетения и далее в позвоночные, межреберные, пояснично-крестцовые, непарную, верхнюю и нижнюю полые вены. Частично кровь из внутренних позвоночных венозных сплетений отводится через большое затылочное отверстие в синусы на основании черепа.

Начало изучения кровоснабжения спинного мозга относится к 1664 году, когда английский врач и анатом T. Willis указал на существование передней спинальной артерии.

По длиннику выделяют три артериальных бассейна спинного мозга – шейногрудной, грудной и нижний (пояснично-грудной):

n Шейно-грудной бассейн кровоснабжает мозг на уровне C1-D3. При этом васкуляризация самых верхних отделов спинного мозга (на уровне C1-C3) осуществляется одной передней и двумя задними спинномозговыми артериями, отходящими от позвоночной артерии в полости черепа. На всем остальном протяжении спинного мозга кровоснабжение идет из системы сегментарных радикуломедуллярных артерий. На среднем, нижнешейном и верхнегрудном уровнях радикуломедуллярные артерии являются ветвями экстракраниального отдела позвоночных артерий и шейных.

n В грудном бассейне имеется следующая схема формирования радикуломедуллярных артерий. От аорты отходят межреберные артерии, отдающие дорсальные ветви, которые в свою очередь делятся на мышечно-кожную и спинальную ветвь. Спинальная ветвь через межпозвонковое отверстие входит в спинномозговой канал, где делится на переднюю и заднюю радикуломедуллярные артерии. Передние радикуломедуллярные артерии, сливаясь, формируют одну переднюю спинномозговую артерию. Задние формируют две задние спинномозговые артерии.

n В пояснично-грудном отделе дорсальные ветви отходят от поясничных артерий, латеральных крестцовых артерий, подвздошно-поясничных артерий.

Таким образом, передняя и задние поясничные артерии представляют собой совокупность концевых ветвей радикуломедуллярных артерий. При этом по ходу кровотока существуют зоны с противоположным кровотоком (на местах ветвления и стыка).

Выделяют зоны критического кровообращения, где возможны спинальные ишемические инсульты. Это зоны стыка сосудистых бассейнов – CIV, DIV, DXI-LI.

Кроме спинного мозга радикуломедуллярные артерии кровоснабжают оболочки спинного мозга, спинномозговые корешки и спинномозговые ганглии.

Количество радикуломедуллярных артерий варьирует от 6 до 28. При этом передних радикуломедуллярных артерий меньше, чем задних. Чаще всего в шейной части 3 артерии, в верхней и средней грудной 2-3, в нижней грудной и поясничной – 1-3.

Выделяют следующие крупные радикуломедуллярные артерии:

1. Артерия шейного утолщения.

2. Большая передняя радикуломедуллярная артерия Адамкевича. Входит в канал позвоночника на уровне DVIII-DXII.

3. Нижняя радикуломедуллярная артерия Депрож-Гаттерона (имеется у 15% людей). Входит на уровне LV-SI.

4. Верхняя дополнительная радикуломедуллярная артерия на уровне DII-DIV. Встречается при магистральном типе кровоснабжения.


По поперечнику различают три артериальных бассейна кровоснабжения спинного мозга:

1. Центральная зона включает передние рога, периэпендимную желатинозную субстанцию, боковой рог, основание заднего рога, колонки Кларка, глубинные отделы переднего и бокового столбов спинного мозга, вентральную часть задних канатиков. Эта зона составляет 4/5 всего поперечника спинного мозга. Здесь кровоснабжение идет из передних спинномозговых артерий за счет бороздчатых погруженных артерий. Их по две с каждой стороны.

2. Задняя артериальная зона включает задние столбы, верхушки задних рогов, задние отделы боковых столбов. Здесь кровоснабжение идет из задних спинномозговых артерий.

3. Периферическая артериальная зона. Кровоснабжение здесь осуществляется из системы коротких и длинных огибающих артерий перимедуллярной сосудистой сети.

Венозная система спинного мозга имеет центральный и периферический отделы. Периферическая система собирает венозную кровь из периферических отделов серого и главным образом периферического белого вещества спинного мозга. Оттекает она в венозную систему пиальной сети, образующей заднюю спинномозговую или заднюю спинальную вены. Центральная передняя зона собирает кровь от передней спайки, медиальной и центральной части переднего рога и переднего канатика. Задняя центральная венозная система включает задние канатики и задние рога. Венозная кровь оттекает в бороздчатые вены, а затем в переднюю спинальную вену, расположенную в передней щели спинного мозга. Из пиальной венозной сети кровь оттекает через передние и задние корешковые вены. Корешковые вены сливаются в общий ствол и дренируются во внутреннее позвоночное сплетение или межпозвонковую вену. Из этих образований венозная кровь оттекает в систему верхней и нижней полых вен.

Кровоснабжение спинного мозга, его оболочек и корешков осуществляется многочисленными сосудами, отходящими на уровне шеи от позвоночных, щитовидной и подключичной артерий, на уровне грудного и поясничного отделов спинного мозга - от ветвей аорты (межреберных и поясничных артерий). Более 60 парных сегментарных радикулярных артерий , формирующихся возле межпозвоночных отверстий, имеют малый диаметр (150-200 мкм) и кровоснабжают лишь корешки и прилежащие к ним оболочки. В кровоснабжении же собственно спинного мозга участвуют 5-9 непарных артерий крупного калибра (400-800 мкм), входящих в позвоночный канал на разном уровне то через левое, то через правое межпозвоночное отверстие. Эти артерии называются радикуломедуллярными, или магистральными , сосудами спинного мозга. Крупные радикуломедуллярные артерии непостоянны по количеству и встречаются в шейном отделе спинного мозга от 2 до 5, в грудном - от 1 до 4 и в поясничном - от 1 до 2.

После вхождения в субдуральное пространство эти артерии, достигающие спинного мозга, делятся на две конечные ветви - переднюю и заднюю .

Ведущее функциональное значение имеют передние ветви радикуломедуллярных артерий. Проходя на вентральную поверхность спинного мозга до уровня передней спинальной щели, каждая из этих ветвей разделяется на восходящую и нисходящую ветви, образуя ствол, а чаще систему сосудов, называемых передней спинномозговой артерией. Эта артерия обеспечивает кровоснабжение передних 2/3 поперечника спинного мозга за счет отходящих в глубину бороздчатых артерий , областью распространения которых является центральная зона спинного мозга. Каждая ее половина снабжается самостоятельной артерией. На один сегмент спинного мозга приходится несколько бороздчатых артерий. Сосуды интрамедуллярной сети обычно функционально концевые. Периферическая область спинного мозга обеспечивается другой ветвью передней спинномозговой артерии - циркумферентной - и ее ветвями. В отличие от бороздчатых артерий они имеют богатую сеть анастомозов с одноименными сосудами.

Задние, обычно более многочисленные (в среднем 14) и меньшие по диаметру, ветви радикуломедуллярных артерий формируют систему задней спинальной артерии , ее короткие ветви питают заднюю (дорсальную) треть спинного мозга.

Передняя спинальная артерия распространяется каудально лишь на несколько шейных сегментов. Ниже она не представляет единого сосуда, а является цепью анастомозов нескольких крупных радикуломедуллярных артерий. Не случайно кровоток в передней спинальной артерии осуществляется в разных направлениях: в шейном и верхнегрудном отделах спинного мозга сверху вниз, в средне- и нижнегрудном - снизу вверх, в поясничном и крестцовом - вниз и вверх.

Анатомически различаются вертикальные и горизонтальные артериальные бассейны спинного мозга.

В вертикальной плоскости выделяют 3 сосудистых бассейна спинного мозга:

1. Верхний (цервико-дорсальный), питающий спинной мозг в зоне сегментов C 1 - Th 3 .

2. Средний, или промежуточный - сегменты Th 4 - Th 8 .

3. Нижний, или поясничный - ниже сегмента Th 9 .

Шейное утолщение составляет функциональный центр верхних конечностей и имеет автономную васкуляризацию. В кровоснабжении шейно-грудного отдела спинного мозга принимают участие не только позвоночные артерии, но и затылочная артерия (ветвь наружной сонной артерии), а также глубокая и восходящая шейные артерии (ветви подключичной артерии). Следовательно, верхний сосудистый бассейн имеет наилучшие условия коллатерального кровообращения.

Коллатерали на уровне среднего бассейна значительно беднее и кровоснабжение сегментов Th 4 - Th 8 существенно хуже. Этот отдел исключительно раним и является избирательным местом ишемического повреждения. Cредний грудной отдел спинного мозга является переходной зоной между двумя утолщениями, представляющими истинные функциональные центры спинного мозга. Его слабое артериальное кровоснабжение соответствует недифференцированности функций.

Поясничное же утолщение спинного мозга и крестцовый его отдел иногда кровоснабжаются лишь одной крупной (до 2 мм в диаметре) артерией Адамкевича, входящей чаще всего в позвоночный канал между I и II поясничными позвонками. В ряде случаев (от 4 до 25%) в кровоснабжении конуса спинного мозга участвует дополнительная артерия Депрож-Готтерона, входящая в канал между IV и V поясничными позвонками.

Следовательно, условия кровоснабжения разных отделов спинного мозга неодинаковы. Шейный и поясничный отделы снабжаются кровью лучше, чем грудной. Коллатерали выражены больше на боковых и задней поверхности спинного мозга. Кровоснабжение наиболее неблагоприятно на стыке сосудистых бассейнов.

Внутри спинного мозга (в поперечной плоскости) можно выделить 3 относительно дискретные (разделенные) зоны кровоснабжения:

1. Зона, питаемая центральными артериями - ветвями передней спинальной артерии. Она занимает от 2/3 до 4/5 поперечника спинного мозга, включая большую часть серого вещества (передние рога, основание задних рогов, substantia gelatinosa, боковые рога, столбы Кларка) и белого вещества (передние канатики, глубокие отделы боковых и вентральные отделы задних канатиков).

2. Зона, снабжаемая артерией задней борозды - ветвью задней спинальной артерии. Включает наружные отделы задних рогов и задние канатики. При этом пучок Голля кровоснабжается лучше, чем пучок Бурдаха - за счет анастомотических ветвей из противоположной задней спинальной артерии.

3. Зона, снабжаемая краевыми артериями, выходящими из перимедуллярной короны. Последняя образуется мелкими артериями, являющимися коллатералями передней и задних спинальных артерий. Она обеспечивает кровоснабжение поверхностных отделов белого вещества спинного мозга, а также коллатеральную связь между экстра- и интрамедуллярной сосудистой сетью, то есть сосудами мягкой оболочки и центральными и периферическими артериями спинного мозга.

Большинство очагов размягчения в спинном мозге локализуется почти всегда в центральном бассейне и, как правило, они наблюдаются в пограничных зонах, т.е. в глубине белого вещества. Центральный бассейн, который снабжается одним источником, более раним, чем зоны, которые питаются одновременно от центральных и от периферических артерий.

Венозный отток

Вены, входящие в венозное сплетение спинного мозга, взаимосвязаны в подпаутинном пространстве с корешковыми артериями. Отток из корешковых вен осуществляется в эпидуральное венозное сплетение, сообщающееся с нижней полой веной посредством околопозвоночного венозного сплетения.

Вены спинного мозга. Корешковые, передние и задние спинальные вены (Suh Alexander, 1939)

Различают переднюю и заднюю системы оттока . Центральный и передний пути оттока идут в основном от серой спайки, передних рогов, пирамидных пучков. Периферический и задний пути начинаются от заднего рога, задних и боковых столбов.

Распределение венозных бассейнов не соответствует распределению артериальных. Вены вентральной поверхности отводят кровь из одного участка, занимающего переднюю треть поперечника спинного мозга, от всей оставшейся части кровь поступает в вены дорсальной поверхности. Таким образом, задний венозный бассейн оказывается более значительным, чем задний артериальный, и наоборот, передний венозный бассейн в объеме оказывается меньше артериального.

Вены поверхности спинного мозга объединены значительной анастомотической сетью. Перевязка одной или нескольких корешковых вен, даже крупных, не вызывает никаких спинальных повреждений или нарушений.

Внутрипозвоночное эпидуральное венозное сплетение имеет поверхность, приблизительно в 20 раз большую, чем разветвления соответствующих артерий. Это путь без клапанов с протяженностью от основания мозга до таза; кровь может циркулировать во всех направлениях. Сплетения построены таким образом, что при закрытии одних сосудов кровь немедленно оттекает другим путем без отклонений в объеме и давлении. Давление спинномозговой жидкости в физиологических пределах при дыхании, сердечных сокращениях, кашле и др. сопровождается различной степенью заполнения венозных сплетений. Увеличение внутреннего венозного давления при сжатии яремных вен или вен брюшной полости, при комплексии нижней полой вены определяется увеличением объема эпидуральных венозных сплетений, нарастанием давления спинномозговой жидкости.

Соединительная ткань, окружающая эпидуральные сплетения, препятствует варикозному расширению вен.

Сдавливание нижней полой вены через брюшную стенку используется при спинальной внутрикостной венографии, чтобы получить лучшую визуализацию венозных сплетений позвонков.

Хотя в клинике приходится нередко констатировать некоторую зависимость кровообращения спинного мозга от общего артериального давления и состояния сердечно-сосудистой системы, современный уровень исследовательских работ позволяет допускать ауторегуляцию спинального кровотока.

Таким образом, вся центральная нервная система в отличие от других органов имеет защитную артериальную гемодинамику.

Для спинного мозга не установлены минимальные цифры артериального давления , ниже которых происходят циркуляторные нарушения (для головного мозга таковыми являются цифры от 60 до 70 мм рт. ст. (J. Espagno, 1952). Создается впечатление, что давление от 40 до 50 мм рт. ст. не может быть у человека без появления спинальных ишемических нарушений или повреждений (С. R. Stephen et coll., 1956)



Доставку необходимых питательных веществ к мягким тканям позвоночника обеспечивает система кровоснабжения. Любые нарушения приводят к ухудшению передачи нервных импульсов, развитию патологических изменений, грыж, нарушению двигательных и рефлекторных функций.

Кровоснабжение спинного мозга обеспечивают две крупных артерии, а также дополнительные системы и медиаторы, помогающие извлечь питательные вещества.

Как происходит кровообращение мозга спины

В кровоснабжении спинного мозга принимают участие:
  1. Передняя и задняя спинномозговые артерии.
  2. Ликвор.
  3. Пахионовы грануляции.
  4. Нейромедиаторы.
Каждая составляющая играет важную роль в схеме кровоснабжения и способствует нормальному метаболизму организма.

Спинномозговые артерии

Являются основными источниками спинномозгового кровоснабжения. Отвечают за циркуляцию крови. Кровоснабжение осуществляется через переднюю и заднюю артерию спинного мозга. Каналы соединены с венами, уходящими во внутреннее сплетение позвоночного столба. Впоследствии кровь следует в верхнюю и полую вену.

Так как внутреннее сплетение позвоночника располагается вдоль всего позвоночного столба и соприкасается с твердой оболочкой мозга, анатомически обеспечиваются наиболее благоприятные условия для питания мягких тканей.

Ликвор и пахионовы грануляции

Особенности анатомии кровоснабжения заключаются в том, что кровь напрямую не поступает в мозг. По мере прохождения через соответствующие отделы, она расщепляется на полезные и питательные элементы, доставляемые через ликвор.

Спинной мозг находится в подвешенном состоянии, окруженный спинномозговой жидкостью (ликвором). Жидкость не только служит амортизирующим и защитным слоем, предотвращающим механические повреждения, но и способствует транспортировке питательных веществ от крови к мягким тканям мозга.

Спинномозговая жидкость находится в постоянном движении. Циркуляция начинается от сосудистых сплетений желудочков мозга. Ликвор направляется в подпаутинное пространство. Окончательный отток жидкости в венозные синусы осуществляется при помощи грануляции паутинной оболочки.

Нейромедиаторы

Отвечают непосредственно за выработку секрета посредством синтеза белков и полипептидов. По сути, помогают выделить из крови необходимые питательные элементы.

Нарушения кровообращения в спинном мозге зачастую связаны с количеством и активностью нейросекреторных медиаторов в одной клетке нервных волокон.

Общий принцип кровоснабжения спинного мозга связан с постоянной циркуляцией крови и ликвора. Любые нарушения приводят к серьезным сбоям в работе организма.

Причины нарушений спинномозгового кровообращения

Недостаточность кровообращения возникает по причине врожденных или приобретенных факторов.

Согласно коду по МКБ 10, принято различать три основных катализатора нарушений:

Независимо от причины нарушений, преходящие и хронические расстройства спинномозгового кровообращения нуждаются в своевременном и квалифицированном лечении.

Лечение сбоев кровообращения спинного мозга

Восстановление кровотока выполняется при стационарном лечении. Требуется госпитализация пациента. После поступления в стационар, проводится диагностика нарушения кровоснабжения. По результатам исследования назначается медикаментозное или хирургическое лечение.

При диагностировании учитывается:

По результатам исследования пациенту назначается курс медикаментозной терапии. При острых признаках недостаточности потребуется хирургическая операция.

Лекарственные препараты, улучшающие кровообращение, назначаются с особой осторожностью. Наличие внутренних кровотечений является абсолютным противопоказанием к приему препаратов данного типа.

Острое нарушение спинномозгового кровообращения может быть вызвано многими факторами: разрывом аневризмы, тромботической бляшкой, травмой, спровоцировавшей сужение позвоночного просвета. Задачей лечащего персонала является точное диагностирование причины патологических изменений, а также назначение своевременного и квалифицированного лечения.

Спинной мозг получает кровь главным образом из двух источников: из непарной передней спинно­мозговой артерии и пары задних спинномозговых артерий (рис. 16-8). Парные задние спинномозго­вые артерии имеют богатую коллатеральную сеть и кровоснабжают белое и серое вещество задних отде­лов спинного мозга. Задние спинномозговые арте­рии отходят от артерий виллизиева круга и имеют многочисленные коллатерали с подключичными, межреберными, поясничными и крестцовыми артериями.

Рис. 16-4. Спинной мозг

Рнс. 16-5. Позвонок, спинной мозг с оболочками, спин­номозговые нервы: поперечный срез. (Из: Waxman S, G., deGroot J. Correlative Neuroanatomy, 22nd ed. Appieton & Langc, 1995. Воспроизведено с изменениями, с разрешения.)

В связи с богатой коллатеральной сетью при повреждении артериального сегмента ишемия спинного мозга в бассейне задней спинномозговой артерии маловероятна. Иная ситуация в бассейне непарной передней спинномозговой артерии, кото­рая кровоснабжает вентральную часть спинного мозга, формируется в результате слияния двух вет­вей позвоночной артерии и имеет многочисленные коллатерали с сегментарными и корешковыми вет­вями шейного, грудного (межреберные артерии) и пояснично-крестцового отдела (рис. 16-9). Задне-латеральные спинномозговые артерии - ветви по­звоночной артерии, проходя вниз, кровоснабжают верхнегрудные сегменты. Непарная сегментарная ветвь аорты (артерия Адамкевича, или большая корешковая артерия) обеспечивает почти все кро­воснабжение в нижнегрудных и поясничных сегмен­тах. Повреждение этой артерии влечет за собой риск ишемии всей нижней половины спинного мозга. Артерия Адамкевича проходит через межпозвоноч­ное отверстие, чаще всего слева,

Физиология

Физиологические эффекты центральной блокады обусловлены прерыванием афферентной и эффе­рентной импульсации к вегетативным и сомати­ческим структурам. Соматические структуры по­лучают чувствительную (сенсорную) и двигательную (моторную) иннервацию, в то время как висцеральные структуры - вегетативную.



Рис. 16-6. Схема взаиморасположения тел позвонков, сегментов, спинного мозга и выходящих из них кореш­ков спинномозговых нервов. (Из: Waxman S. G., deGroot J. Correlative Neuroanatomy, 22nd ed. Appieton & Lange, 1995. Воспроизведено с изменениями, с разрешения.)

Рис. 16-7. Регионарные различия в строении спинного мозга

Соматическая блокада

Предотвращение боли и релаксация скелетной мускулатуры - важнейшие цели центральной блокады. Местный анестетик соответствующей продолжительности действия (выбранный в зави­симости от длительности операции) после люм-бальной пункции вводят в субарахноидальное пространство. Анестетик смешивается с церебро­спинальной жидкостью и воздействует на спинной мозг. Распространение анестетика по длинной оси спинного мозга зависит от ряда факторов, включая силу тяжести, давление цереброспинальной жид­кости, положение тела больного, температуру раствора и пр. Местный анестетик смешивается с це­реброспинальной жидкостью, диффундирует и проникает в вещество центральной нервной систе­мы. Для блокады необходимо, чтобы анестетик проник через клеточную мембрану и блокировал натриевые каналы аксоплазмы. Этот процесс про­исходит только при определенной минимальной пороговой концентрации местного анестетика (Км, от англ, minimum concentration - минималь­ная концентрация). Но нервные волокна не одно­родны. Имеются структурные различия между волокнами, обеспечивающими двигательную, чув­ствительную и симпатическую иннервацию.

Существуют три типа волокон, обозначаемые как А, В и С. Тип А имеет подгруппы α,β, γ и δ. Функ­ции волокон в зависимости от типа и подгруппы приведены в табл. 16-1. Нервный корешок составля­ют волокна различных типов, поэтому начало ане­стезии не будет одномоментным. Иными словами, минимальная концентрация местного анестетика (Км), необходимая для прерывания нервного им­пульса, варьируется в зависмости от типа волокна (гл. 14). Например, мелкие и миелиновые волокна блокировать легче, чем крупные и безмиелиновые. Теперь понятно, почему A γ- и В-волокна блокиро­вать легче, чем крупные Aα и безмиелиновые c-во-локна. Поскольку имеет место диффузия и разве­дение местного анестетика, то полная блокада наиболее резистентных волокон может и не насту­пить. В результате граница симпатической блокады (о которой судят по температурной чувствитель­ности) может проходить на два сегмента выше, чем граница сенсорной блокады (болевая и тактильная чувствительность), которая в свою очередь на два сегмента выше границы двигательной блокады. Сег­менты, в которых получена блокада одних и не про­изошло блокирования других, называются зоной дифференциальной блокады. Оценивая анестезию, важно иметь в виду, какая именно блокада достиг­нута: температурная (симпатическая), болевая (сенсорная, чувствительная) или двигательная (мо­торная), потому что максимальная выраженность каждой из них неодинакова у разных сегментов.

Различная степень блокады соматических во­локон может создать клинические проблемы. Ощущение сильного давления или значительных двигательных воздействий передается посред­ством С-волокон, которые трудно блокировать. Аналогично, граница моторной блокады может проходить гораздо ниже, чем сенсорной. Следова­тельно, у больного сохраняется способность дви­жений в оперируемой конечности, что может пре­пятствовать работе хирурга. Кроме того, особо тревожные больные могут воспринимать тактиль-

Рис. 16-8. Артериальное кровоснабжение спинного мозга

ные ощущения от прикосновения как болевые. Седация и хороший психологический контакт с тревожными больными позволяет предупредить нежелательное восприятие проприоцептивной ре­цепции как болевой.

Висцеральная блокада

Большинство висцеральных эффектов централь­ной блокады обусловлено прерыванием вегетатив­ной иннервации различных органов.

Кровообращение

Прерывание симпатической импульсации вызыва­ет гемодинамические сдвиги в сердечно-сосудис­той системе, выраженность которых прямо пропорциональна степени медикаментозной сим-патэктомии. Симпатический ствол связан с тора-коабдоминальным отделом спинного мозга. Во­локна, иннервирующие гладкие мышцы артерий и вен, отходят от спинного мозга на уровне сегмен­тов T V -L I . При медикаментозной симпатэктомии с помощью местного анестетика артериальный то­нус преимущественно сохраняется (благодаря воз­действию локальных медиаторов), в то время как венозный значительно снижается. Тотальная ме­дикаментозная симпатэктомия вызывает увеличение емкости сосудистого русла с последующим снижением венозного возврата и артериальной ги­потонией. Гемодинамические изменения при час­тичной симпатэктомии (блокада до уровня Т VIII) обычно компенсируются вазоконстрикцией, опо­средованной симпатическими волокнами выше уровня блокады. У людей со светлой кожей вазо-констрикцию можно видеть невооруженным гла­зом. Симпатические волокна, идущие в составе грудных сердечных нервов (T 1 -T 4), несут импуль­сы, убыстряющие сердечные сокращения. При вы­сокой центральной блокаде тоническая активность блуждающего нерва становится несбалансирован­ной, что вызывает брадикардию. Опускание голов­ного конца тела и инфузия жидкости вызывают увеличение преднагрузки, венозный возврат воз­растает и сердечный выброс нормализуется. Холи-ноблокаторы устраняют брадикардию.

Выраженность артериальной гипотонии опре­деляет выбор лечебных мероприятий. Наиболее чувствительные органы-мишени - это сердце и го­ловной мозг. Умеренное снижение доставки кис­лорода к сердцу компенсируется снижением рабо­ты миокарда и потребления им кислорода. Значительно уменьшается постнагрузка, и работа сердца, связанная с преодолением общего перифе­рического сосудистого сопротивления, также снижается. При значительном и нелеченном уменьше­нии преднагрузки эти компенсаторные реакции оказываются несостоятельными. Ауторегуляция мозгового кровообращения представляет собой механизм, посредством которого мозг в значитель­ной степени защищен от артериальной гипотонии.

У здоровых людей мозговой кровоток остается не­изменным, пока среднее артериальное давление не снижается менее 60 мм рт. ст. (гл. 25).

Лечение и профилактика артериальной гипото­нии органично связаны с пониманием механизмов ее развития. Непосредственно перед выполнением блокады и после этого на протяжении анестезии проводят инфузию жидкости.

Рис. 16-9. Сегментарный характер кровоснабжения спинного мозга (А, Б)

ТАБЛИЦА 16-1 . Классификация нервных волокон

Инфузия кристал­лоидов в дозе 10-20 мл/кг частично компенсирует депонирование крови в венах, обусловленное ме­дикаментозной симпатэктомией.

Лечение включает ряд мер. Опускание головно­го конца (или поднятие ножного) потенцирует действие инфузионных растворов, что способству­ет быстрому увеличению преднагрузки. При выра­женной брадикардии применяют холиноблокато-ры. Если эти меры неэффективны или же имеются противопоказания к массивным инфузиям, то при­меняют адреномиметики прямого или непрямого действия. Адреномиметики прямого действия (на­пример, фенилэфрин) восстанавливают тонус вен, вызывают артериолярную вазоконстрикцию и уве­личивают преднагрузку. Недостатком адреноми-метиков прямого действия теоретически является повышение постнагрузки, приводящее к увеличе­нию работы миокарда. Адреномиметики непрямо­го действия (например, эфедрин) увеличивают со­кратимость миокарда (центральный эффект) и вызывают вазоконстрикцию (периферический эф­фект). Периферический эффект адреномиметиков непрямого действия не может быть реализован при истощении запасов эндогенных катехоламинов (например, при длительном лечении резерпином). При глубокой артериальной гипотонии введение ад­реналина позволяет восстановить коронарную перфузию и предотвратить остановку сердца, обусловленную ишемией миокарда.

Дыхание

Прерывая импульсацию по двигательным нервам туловища, центральная блокада оказывает влия­ние на дыхание. Межреберные мышцы обеспечи­вают как вдох, так и выдох, а мышцы передней брюшной стенки - форсированный выдох. Блока­да будет нарушать функцию межреберных мышц на уровне соответствующих сегментов, а функция брюшных мышц будет страдать во всех случаях (за исключением, может быть, особо низкой блокады). Функция диафрагмы не страдает, потому что пере­дача нервного импульса по диафрагмальному нер­ву редко прерывается даже при высоких блокадах в шейном отделе. Эта устойчивость обусловлена не тем, что раствор местного анестетика не может до­стичь сегментов спинного мозга, от которых отхо­дят корешки диафрагмального нерва (C 3 -C 5), а не­достаточной концентрацией анестетика. Даже при тотальной спинномозговой анестезии концентра­ция анестетика значительно ниже той, при которой возможна блокада волокон типа Aα в диафраг-мальном нерве или блокада дыхательного центра в стволе мозга. Апноэ, сочетанное с высокой цент­ральной блокадой, носит преходящий характер, длится значительно меньше, чем продолжает дей­ствовать анестетик, и вероятнее всего обусловлено ишемией ствола мозга вследствие гипотонии.

Даже при высокой блокаде на уровне грудных сегментов газовый состав артериальной крови не отличается от нормы. Дыхательный объем, минут­ный объем дыхания и максимальный объем вдоха обычно зависят от функции диафрагмы. Функцио­нальная остаточная емкость и объем форсиро­ванного выдоха уменьшаются пропорционально снижению активности абдоминальных и межре­берных мышц. У здоровых людей нарушений вен­тиляции при этом не возникает, чего нельзя ска­зать про больных с хроническим обструктивным заболеванием легких, которые для активного вы­доха должны задействовать вспомогательные мышцы. Потеря тонуса прямых мышц живота зат­рудняет фиксацию грудной клетки, а потеря тону­са межреберных мышц препятствует активному выдоху, поэтому при хроническом обструктивном заболевании легких центральная блокада может привести к снижению вентиляции. К ранним при­знакам такого снижения относятся субъективное ощущение нехватки воздуха и усиление одышки. Эти явления могут быстро прогрессировать вплоть до ощущения удушья и возникновения па­ники, хотя оксигенация и вентиляция сохраняют­ся на исходном уровне. В конечном счете, гипер-капния может перейти в острую гипоксию даже на фоне кислородотерапии. Больные с тяжелыми рестриктивными заболеваниями легких или острым бронхоспазмом, у которых в акте вдоха задейство­вана вспомогательная мускулатура, также отно­сятся к группе риска вследствие снижения тонуса межреберных и абдоминальных мышц.

Регионарная анестезия показана больным с со­путствующими заболеваниями легких (отсутствует необходимость манипуляций в дыхательных путях, не нужно проводить ИВЛ, не возникает увеличения вентиляционно-перфузионного соотношения) - но только при условии, что верхняя граница мотор­ной блокады не распространяется выше уровня сег­мента Т VII . В случаях, когда необходим более высо­кий уровень блокады (операции на органах верхнего этажа брюшной полости), изолированная регионарная анестезия не является методом выбора при сопутствующих заболеваниях легких.

В ближайшем периоде после операций на орга­нах грудной полости и верхнего этажа брюшной полости регионарная анестезия (которую выпол­няют, только если технически возможна сенсорная блокада без моторной) предотвращает боль и свя­занное с ней рефлекторное поверхностное дыхание. При этом возможны продуктивное откашливание и глубокое дыхание, что позволяет эвакуировать секрет из дыхательных путей и предотвратить воз­никновение ателектазов.

Похожие публикации