Определение показаний для бактериологического, вирусологического, серологического исследований при расшифровке этиологии оки и оценка результатов. Вирусологическое исследование В чем смысл исследований

Вирусологические методы исследования

методы изучения биологии вирусов и их идентификации. В вирусологии широко используются методы молекулярной биологии, с помощью которых удалось установить молекулярную структуру вирусных частиц, способы проникновения их в клетку и особенности репродукции вирусов, первичной структуры вирусных нуклеиновых кислот и белков. Развиваются методы определения последовательности составляющих элементов вирусных нуклеиновых кислот и аминокислот белка. Появляется возможность связать функции нуклеиновых кислот и кодируемых ими белков с последовательностью нуклеотидов и установить причины внутриклеточных процессов, играющих важную роль в патогенезе вирусной инфекции.

В зараженных клеточных культурах вирусы можно обнаружить по изменению морфологии клеток, цитопатическому действию, которое может иметь специфический характер, появлению включений, путем определения вирусных антигенов в клетке и в культуральной жидкости; установления биологических свойств вирусного потомства в культуральной жидкости и титрования вирусов в культуре ткани, куриных эмбрионах или на чувствительных животных; путем выявления отдельных вирусных нуклеиновых кислот в клетках методом молекулярной гибридизации или скоплений нуклеиновых кислот цитохимическим методом с помощью люминесцентной микроскопии.

Выделение вирусов является трудоемким и длительным процессом. Его осуществляют с целью определения циркулирующего среди населения типа или варианта вируса (например, для идентификации сероварианта вируса гриппа, дикого или вакцинного штамма вируса полиомиелита и т.д.); в случаях, когда это необходимо для проведения срочных эпидемиологических мероприятий; при появлении новых типов или вариантов вирусов; при необходимости подтверждения предварительного диагноза; для индикации вирусов в объектах окружающей среды. При выделении вирусов учитывают возможность их персистирования в организме человека, а также возникновения смешанной инфекции, вызванной двумя и более вирусами. Генетически однородная популяция вируса, полученная от одного вириона, называется вирусным клоном, а сам процесс получения его - клонированием.

Для выделения вирусов применяют заражение восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект), образованию симпластов и синцитиев, обнаружению внутриклеточных включений, а также специфического антигена, выявляемого с помощью методов иммунофлюоресценции, гемадсорбции, гемагглютинации (у гемагглютинирующих вирусов) и т.д. Эти признаки могут обнаруживаться лишь после 2-3 пассажей вируса.

Для выделения ряда вирусов, например вирусов гриппа, используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов - новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов.

При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит дегенерация ткани, образуются включения и вирусоспецифические антигены . Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный анализ инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. Титр вируса выражают числом бляшкообразующих единиц в 1 мл .

Очистку и концентрацию вирусов обычно осуществляют путем дифференциального ультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.

Лабораторная диагностика вирусных инфекций включает обнаружение возбудителя или его компонентов в клиническом материале; выделение вируса из этого материала; серодиагностику. Выбор метода лабораторной диагностики в каждом отдельном случае зависит от характера заболевания, периода болезни и возможностей лаборатории. Современная диагностика вирусных инфекций основана на экспресс-методах, позволяющих получать ответ через несколько часов после взятия клинического материала в ранние сроки после заболевания, К ним относятся электронная и иммунная электронная микроскопия , а также иммунофлюоресценция , метод молекулярной гибридизации, выявление антител класса lgM и др.

Электронная микроскопия вирусов, окрашенных методом негативного контрастирования, позволяет дифференцировать вирусы и определять их концентрацию. Применение электронной микроскопии в диагностике вирусных инфекций ограничивается теми случаями, когда концентрация вирусных частиц в клиническом материале достаточно высокая (10 5 в 1 мл и выше). Недостатком метода является невозможность отличать вирусы, принадлежащие к одной таксономической группе. Этот недостаток устраняется путем использования иммунной электронной микроскопии. Метод основан на образовании иммунных комплексов при добавлении специфической сыворотки к вирусным частицам, при этом происходит одновременная концентрация вирусных частиц, позволяющая идентифицировать их. Метод применяют также для выявления антител. В целях экспресс-диагностики проводят электронно-микроскопическое исследование экстрактов тканей, фекалий, жидкости из везикул , секретов из носоглотки. Электронную микроскопию широко используют для изучения морфогенеза вируса, ее возможности расширяются при применении меченых антител.

Метод молекулярной гибридизации, основанный на выявлении вирусоспецифических нуклеиновых кислот, позволяет обнаружить единичные копии генов и по степени чувствительности не имеет себе равных. Реакция основана на гибридизации комплементарных нитей ДНК или РНК (зондов) и формировании двунитчатых структур. Наиболее дешевым зондом является клонированная рекомбинантная ДНК. Зонд метят радиоактивными предшественниками (обычно радиоактивным фосфором). Перспективно использование колориметрических реакций. Существует несколько вариантов молекулярной гибридизации: точечная, блот-гибридизация, сэндвич-гибридизация, гибридизация in situ и др.

Антитела класса lgM появляются раньше, чем антитела класса G (на 3-5-й день болезни) и исчезают через несколько недель, поэтому их обнаружение свидетельствует о только что перенесенной инфекции. Антитела класса lgM выявляют методом иммунофлюоресценции или с помощью иммуноферментного анализа, используя анти- μ-антисыворотки (сыворотки против тяжелых цепей lgM).

Серологические методы в вирусологии основаны на классических иммунологических реакциях (см. Иммунологические методы исследования): реакции связывания комплемента, торможения гемагглютинации, биологической нейтрализации, иммунодиффузии, непрямой гемагглютинации, радиального гемолиза, иммунофлюоресценции, иммуноферментного, радиоиммунного анализа. Разработаны микрометоды многих реакций, техника их непрерывно совершенствуются. Эти методы используют для идентификации вирусов с помощью набора известных сывороток и для серодиагностики с целью определения нарастания антител во второй сыворотке по сравнению с первой (первую сыворотку берут в первые дни после заболевания, вторую - через 2-3 нед.). Диагностическое значение имеет не менее чем четырехкратное нарастание антител во второй сыворотке. Если выявление антител класса lgM свидетельствует о недавно перенесенной инфекции, то антитела класса lgC сохраняются в течение нескольких лет, а иногда и пожизненно.

Для идентификации индивидуальных антигенов вирусов и антител к ним в сложных смесях без предварительной очистки белков используют иммуноблоттинг. Метод сочетает фракционирование белков с помощью электрофореза в полиакриламидном геле с последующей иммуноиндикацией белков иммуноферментным методом. Разделение белков снижает требования к химической чистоте антигена и позволяет выявлять индивидуальные пары антиген - антитело. Такая задача актуальна, например, при серодиагностике ВИЧ-инфекции, где ложноположительные реакции иммуноферментного анализа обусловлены наличием антител к клеточным антигенам, которые присутствуют в результате недостаточной очистки вирусных белков. Идентификация антител в сыворотках больных к внутренним и наружным вирусным антигенам позволяет определять стадию заболевания, а при анализе популяций - изменчивость вирусных белков. Иммуноблоттинг при ВИЧ-инфекции применяют как подтверждающий тест для выявления индивидуальных вирусных антигенов и антител к ним. При анализе популяций метод используют для определения изменчивости вирусных белков. Большая ценность метода заключается в возможности анализа антигенов, синтезируемых с помощью технологии рекомбинантных ДНК, установлении их размеров и наличия антигенных детерминант.

Библиогр.: Букринская А.Г. Вирусология , М., 1986; Вирусология, Методы, под ред. Б. Мейхи, пер . с англ., М., 1988; Справочник по микробиологическим и вирусологическим методам исследования, под ред. М.О. Биргера, М., 1982.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

  • Вирусеми́я
  • Вирусология

Смотреть что такое "Вирусологические методы исследования" в других словарях:

    Вирусологические исследования - имеют целью обнаружение вирусов, их отождествление (идентификацию) и изучение биологических свойств. Для выделения вирусов (См. Вирусы) от человека, животных и растений исследуемый материал вводят в организм чувствительных к вирусам… … Большая советская энциклопедия

    ВИРУСОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ - вирусологические исследования, комплекс методов исследования, позволяющих распознать этиологию вирусного заболевания и изучить его возбудителя.Основными этапами В. и. являются выделение вируса от больных и павших животных (взятие, консервирование … Ветеринарный энциклопедический словарь

    ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ - ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ. см. ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ. Важнейшим условием получения достоверных результатов исследований является правильный выбор объектов анализа, своевременный их отбор и формулировка задачи исследования. Правила отбора проб … Болезни рыб: Справочник

    Лаборато́рии медици́нские - учреждения системы здравоохранения либо структурные подразделения лечебно профилактических или санитарно профилактических учреждений, предназначенные для проведения различных медицинских исследований. В эту группу не входят научно… … Медицинская энциклопедия

    Эпидемиология - I Эпидемиология (Эпидемия + греч. logos учение) наука, изучающая закономерности эпидемического процесса и разрабатывающая меры борьбы с заразными болезнями человека. Исторически Э. сложилась как научная дисциплина, объектом изучения которой… … Медицинская энциклопедия

    Вирусология - I Вирусология (вирус [ы] (Вирусы) + греч. logos учение) медико биологическая наука, изучающая вирусы. Возникла в конце 19 в., когда русский ученый Д.И. Ивановский (1892) впервые установил существование мельчайших микроорганизмов, вызывающих… … Медицинская энциклопедия

    Энцефали́т клещево́й - (синонимы: клещевой энцефаломиелит, весенне летний энцефалит, весенне летний менингоэнцефалит, таежный энцефалит, русский дальневосточный энцефалит) инфекционная болезнь, характеризующаяся лихорадкой, интоксикацией и преимущественным поражением… … Медицинская энциклопедия

методы изучения биологии вирусов и их идентификации. В вирусологии широко используются методы молекулярной биологии, с помощью которых удалось установить молекулярную структуру вирусных частиц, способы проникновения их в клетку и особенности репродукции вирусов, первичной структуры вирусных нуклеиновых кислот и белков. Развиваются методы определения последовательности составляющих элементов вирусных нуклеиновых кислот и аминокислот белка. Появляется возможность связать функции нуклеиновых кислот и кодируемых ими белков с последовательностью нуклеотидов и установить причины внутриклеточных процессов, играющих важную роль в патогенезе вирусной инфекции.

Вирусологические методы исследования основаны также на иммунологических процессах (взаимодействие антигена с антителами), биологических свойствах вируса (способность к гемагглютинации, гемолизу, ферментативная активность), особенностях взаимодействия вируса с клеткой-хозяином (характер цитопатического эффекта, образование внутриклеточных включений и т.д.).

В диагностике вирусных инфекций, при культивировании, выделении и идентификации вирусов, а также при получении вакцинных препаратов широко применяют метод культуры ткани и клеток. Используют первичные, вторичные, стабильные перевиваемые и диплоидные клеточные культуры. Первичные культуры получают при диспергировании ткани протеолитическими ферментами (трипсином, коллагеназой). Источником клеток могут быть ткани и органы (чаще почки) эмбрионов человека и животных. Суспензию клеток в питательной среде помещают в так называемые матрацы, бутыли или чашки Петри, где после прикрепления к поверхности сосуда клетки начинают размножаться. Для заражения вирусами используют обычно клеточный монослой. Питательную жидкость сливают, вносят вирусную суспензию в определенных разведениях и после контакта с клетками добавляют свежую питательную среду, обычно без сыворотки.

Клетки большинства первичных культур могут быть пересеяны, такая культура называется вторичной. При дальнейшем пассировании клеток формируется популяция фибробластоподобных клеток, способных к быстрому размножению, большая часть которых сохраняет исходный набор хромосом. Это так называемые диплоидные клетки. При серийном культивировании клеток получают стабильные перевиваемые клеточные культуры. При пассажах появляются быстро делящиеся однородные клетки с гетероплоидным набором хромосом. Стабильные линии клеток могут быть однослойными и суспензионными. Однослойные культуры растут в виде сплошного слоя на поверхности стекла, суспензионные - в виде суспензий в различных сосудах с использованием перемешивающих устройств. Существует более 400 линий клеток, полученных от 40 различных видов животных (в т.ч. от приматов, птиц, рептилий, амфибий, рыб, насекомых) и человека.

В искусственных питательных средах можно культивировать кусочки отдельных органов и тканей (органные культуры). Эти типы культур сохраняют структуру ткани, что особенно важно для выделения и пассирования вирусов, которые не репродуцируются в недифференцированных тканевых культурах (например, коронавирусы).

В зараженных клеточных культурах вирусы можно обнаружить по изменению морфологии клеток, цитопатическому действию, которое может иметь специфический характер, появлению включений, путем определения вирусных антигенов в клетке и в культуральной жидкости; установления биологических свойств вирусного потомства в культуральной жидкости и титрования вирусов в культуре ткани, куриных эмбрионах или на чувствительных животных; путем выявления отдельных вирусных нуклеиновых кислот в клетках методом молекулярной гибридизации или скоплений нуклеиновых кислот цитохимическим методом с помощью люминесцентной микроскопии.

Выделение вирусов является трудоемким и длительным процессом. Его осуществляют с целью определения циркулирующего среди населения типа или варианта вируса (например, для идентификации сероварианта вируса гриппа, дикого или вакцинного штамма вируса полиомиелита и т.д.); в случаях, когда это необходимо для проведения срочных эпидемиологических мероприятий; при появлении новых типов или вариантов вирусов; при необходимости подтверждения предварительного диагноза; для индикации вирусов в объектах окружающей среды. При выделении вирусов учитывают возможность их персистирования в организме человека, а также возникновения смешанной инфекции, вызванной двумя и более вирусами. Генетически однородная популяция вируса, полученная от одного вириона, называется вирусным клоном, а сам процесс получения его - клонированием.

Для выделения вирусов применяют заражение восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект), образованию симпластов и синцитиев, обнаружению внутриклеточных включений, а также специфического антигена, выявляемого с помощью методов иммунофлюоресценции, гемадсорбции, гемагглютинации (у гемагглютинирующих вирусов) и т.д. Эти признаки могут обнаруживаться лишь после 2-3 пассажей вируса.

Для выделения ряда вирусов, например вирусов гриппа, используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов - новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов.

При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит дегенерация ткани, образуются включения и вирусоспецифические антигены. Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный анализ инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. Титр вируса выражают числом бляшкообразующих единиц в 1 мл .

Очистку и концентрацию вирусов обычно осуществляют путем дифференциального ультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.

Лабораторная диагностика вирусных инфекций включает обнаружение возбудителя или его компонентов в клиническом материале; выделение вируса из этого материала; серодиагностику. Выбор метода лабораторной диагностики в каждом отдельном случае зависит от характера заболевания, периода болезни и возможностей лаборатории. Современная диагностика вирусных инфекций основана на экспресс-методах, позволяющих получать ответ через несколько часов после взятия клинического материала в ранние сроки после заболевания, К ним относятся электронная и иммунная электронная микроскопия, а также иммунофлюоресценция, метод молекулярной гибридизации, выявление антител класса lgM и др.

Электронная микроскопия вирусов, окрашенных методом негативного контрастирования, позволяет дифференцировать вирусы и определять их концентрацию. Применение электронной микроскопии в диагностике вирусных инфекций ограничивается теми случаями, когда концентрация вирусных частиц в клиническом материале достаточно высокая (10 5 в 1 мл и выше). Недостатком метода является невозможность отличать вирусы, принадлежащие к одной таксономической группе. Этот недостаток устраняется путем использования иммунной электронной микроскопии. Метод основан на образовании иммунных комплексов при добавлении специфической сыворотки к вирусным частицам, при этом происходит одновременная концентрация вирусных частиц, позволяющая идентифицировать их. Метод применяют также для выявления антител. В целях экспресс-диагностики проводят электронно-микроскопическое исследование экстрактов тканей, фекалий, жидкости из везикул, секретов из носоглотки. Электронную микроскопию широко используют для изучения морфогенеза вируса, ее возможности расширяются при применении меченых антител.

Метод молекулярной гибридизации, основанный на выявлении вирусоспецифических нуклеиновых кислот, позволяет обнаружить единичные копии генов и по степени чувствительности не имеет себе равных. Реакция основана на гибридизации комплементарных нитей ДНК или РНК (зондов) и формировании двунитчатых структур. Наиболее дешевым зондом является клонированная рекомбинантная ДНК. Зонд метят радиоактивными предшественниками (обычно радиоактивным фосфором). Перспективно использование колориметрических реакций. Существует несколько вариантов молекулярной гибридизации: точечная, блот-гибридизация, сэндвич-гибридизация, гибридизация in situ и др.

Антитела класса lgM появляются раньше, чем антитела класса G (на 3-5-й день болезни) и исчезают через несколько недель, поэтому их обнаружение свидетельствует о только что перенесенной инфекции. Антитела класса lgM выявляют методом иммунофлюоресценции или с помощью иммуноферментного анализа, используя анти- μ-антисыворотки (сыворотки против тяжелых цепей lgM).

Серологические методы в вирусологии основаны на классических иммунологических реакциях (см. Иммунологические методы исследования): реакции связывания комплемента, торможения гемагглютинации, биологической нейтрализации, иммунодиффузии, непрямой гемагглютинации, радиального гемолиза, иммунофлюоресценции, иммуноферментного, радиоиммунного анализа. Разработаны микрометоды многих реакций, техника их непрерывно совершенствуются. Эти методы используют для идентификации вирусов с помощью набора известных сывороток и для серодиагностики с целью определения нарастания антител во второй сыворотке по сравнению с первой (первую сыворотку берут в первые дни после заболевания, вторую - через 2-3 нед.). Диагностическое значение имеет не менее чем четырехкратное нарастание антител во второй сыворотке. Если выявление антител класса lgM свидетельствует о недавно перенесенной инфекции, то антитела класса lgC сохраняются в течение нескольких лет, а иногда и пожизненно.

Для идентификации индивидуальных антигенов вирусов и антител к ним в сложных смесях без предварительной очистки белков используют иммуноблоттинг. Метод сочетает фракционирование белков с помощью электрофореза в полиакриламидном геле с последующей иммуноиндикацией белков иммуноферментным методом. Разделение белков снижает требования к химической чистоте антигена и позволяет выявлять индивидуальные пары антиген - антитело. Такая задача актуальна, например, при серодиагностике ВИЧ-инфекции, где ложноположительные реакции иммуноферментного анализа обусловлены наличием антител к клеточным антигенам, которые присутствуют в результате недостаточной очистки вирусных белков. Идентификация антител в сыворотках больных к внутренним и наружным вирусным антигенам позволяет определять стадию заболевания, а при анализе популяций - изменчивость вирусных белков. Иммуноблоттинг при ВИЧ-инфекции применяют как подтверждающий тест для выявления индивидуальных вирусных антигенов и антител к ним. При анализе популяций метод используют для определения изменчивости вирусных белков. Большая ценность метода заключается в возможности анализа антигенов, синтезируемых с помощью технологии рекомбинантных ДНК, установлении их размеров и наличия антигенных детерминант.

Библиогр.: Букринская А.Г. Вирусология, М., 1986; Вирусология, Методы, под ред. Б. Мейхи, пер. с англ., М., 1988; Справочник по микробиологическим и вирусологическим методам исследования, под ред. М.О. Биргера, М., 1982.

  • - методы обезвреживания отбросов, содержащих органические вещества, основанные на их разогревании в результате жизнедеятельности термофильных аэробных микроорганизмов...

    Медицинская энциклопедия

  • - гистохимические методы выявления ферментов, основанные на реакции образования осадков фосфата кальция или магния в местах локализации ферментативной активности при инкубации срезов тканей с органическими...

    Медицинская энциклопедия

  • - методы выявления гистиоцитов в препаратах нервной ткани и различных органов с помощью аммиачного серебра или пиридиново-содовых растворов серебра...

    Медицинская энциклопедия

  • - методы оценки предположений о характере наследования, основанные на сопоставлении наблюдаемых и ожидаемых соотношений больных и здоровых в семьях, отягощенных наследственными болезнями, с учетом способа...

    Медицинская энциклопедия

  • - применяются для изучения строения и функции клеток и тканей человека, животных и растительных организмов в норме, патологии и эксперименте...

    Медицинская энциклопедия

  • - методы идентификации химических веществ в гистологических срезах. Составной частью Г. м. и. являются цитохимические методы, выявляющие химические вещества в клетках приготовленных мазков и отпечатков...

    Медицинская энциклопедия

  • - методы количественного и качественного определения глюкозы в крови и моче, основанные на окислении глюкозы кислородом воздуха в присутствии фермента глюкозооксидазы...

    Медицинская энциклопедия

  • - диагностические методы исследования, основанные на специфическом взаимодействии антигенов и антител...

    Медицинская энциклопедия

  • - методы выявления волокнистых структур соединительной ткани и нейроглии в гистологических препаратах, основанные на их многоцветной окраске...

    Медицинская энциклопедия

  • - 1) метод окраски гистологических препаратов дермы с помощью гемалауна Майера, раствора калийных квасцов и родамина; ядра клеток окрашиваются в синий цвет, элеидин - в красный...

    Медицинская энциклопедия

  • - в медицине - совокупность методов количественного изучения и анализа состояния и поведения объектов и систем, относящихся к медицине и здравоохранению...

    Медицинская энциклопедия

  • - способы изучения различных объектов с помощью микроскопа...

    Медицинская энциклопедия

  • - основаны на использовании законов оптики, касающихся природы, распространения и взаимодействия с веществом электромагнитного излучения оптического диапазона...

    Медицинская энциклопедия

  • - методы исследования и оценки качества объектов кружающей среды с помощью органов чувств...

    Медицинская энциклопедия

  • - общее название ряда методов импрегнации гистологических препаратов серебром для выявления глиальных и других аргирофильных волокон...

    Медицинская энциклопедия

  • - назначаются следователем и судом для разрешения специальных вопросов, возникающих при расследовании преступлений и рассмотрении гражданских дел. Они проводятся также по предложению судебно-медицинских...

    Медицинская энциклопедия

"Вирусологи́ческие ме́тоды иссле́дования" в книгах

Rage Against The Machine Killing In The Name (1992)

автора Цалер Игорь

Rage Against The Machine Killing In The Name (1992) Первый альбом лос-анджелесской группы Rage Against The Machine объединил хип-хоп и хард-рок, сдобрив их злободневными политическими манифестами и, что приятно, немалой дозой плотного фанкового ритма. В песне «Убивая во имя», вошедшей в первый сингл,

James Brown Get Up (I Feel Like Being A) Sex Machine (1970)

Из книги Популярная музыка XX века: джаз, блюз, рок, поп, кантри, фолк, электроника, соул автора Цалер Игорь

James Brown Get Up (I Feel Like Being A) Sex Machine (1970) К концу 1960-х годов Джеймс Браун взялся за эксперименты. Душераздирающий соул с группой The Famous Flames сменился тренькающим фанком с The J.B.’s. Одной из важнейших вех надвигающейся фанк-эпохи стала «Секс-машина», которая в десятиминутном варианте

Rage Against The Machine («Ярость Против Машин»)

Из книги Против невозможного (сборник статей о культуре) автора Колташов Василий Георгиевич

Rage Against The Machine («Ярость Против Машин») Том Морелло: «Наша цель - помочь людям освободиться от цепей лжи и насилия, которыми их опутали правительства, международные корпорации, масс-медиа и политические партии, дать людям во всем мире чувство уверенности в завтрашнем дне и

Welcome to the machine

Из книги Время колокольчиков автора Смирнов Илья

Welcome to the machine Начало перестройки в нашей истории мы можем датировать январем 1987-го года. Тогда состоялся либеральный Пленум ЦК, а мы получили возможность напечатать в «Юности» неотредактированный список современных «звезд» советского рока, включая ДДТ, ОБЛАЧНЫЙ КРАЙ и

Toyoda Machine Works

Из книги Гемба кайдзен. Путь к снижению затрат и повышению качества автора Имаи Масааки

Toyoda Machine Works По словам Ёсио Симы, директора Toyoda Machine Works, выгода от создания системы качества и стандартов для его обеспечения стала очевидной в 1980-е годы, когда компания, чтобы получить премию Деминга (Deming Prize), внедрила концепцию «всеобщего менеджмента на основе качества»

Машина (Machine)

Из книги Философский словарь автора Конт-Спонвиль Андре

Машина (Machine) «Если бы челноки ткали сами собой, – заметил однажды Аристотель, – ремесленникам не нужны были бы рабочие, а хозяевам – рабы» («Политика», I, 4). Это приблизительно и есть то, что мы называем машиной – способный двигаться предмет, лишенный души (автомат) и

Из книги Интернет-разведка [Руководство к действию] автора Ющук Евгений Леонидович

Архив сайтов Internet Archive Wayback Machine Электронный адрес – http://web.archive.org.Каждый, кто собирал информацию по интересующей его проблеме за достаточно длительный период, знает, как порой бывает важно найти сведения, опубликованные на сайте несколько лет назад. Иногда это просто

Архив сайтов Internet Archive Wayback Machine

Из книги Противодействие черному PR в Интернете автора Кузин Александр Владимирович

Архив сайтов Internet Archive Wayback Machine Очень часто нападение черных пиарщиков происходит неожиданно для вас. В таком случае вы впервые сталкиваетесь с необходимостью пристального изучения противника. В случае если вы даже предполагали подобное развитие событий (например, в

4.9. Резервное копирование с помощью Time Machine

автора Скрылина Софья

4.9. Резервное копирование с помощью Time Machine Операционная система Mac OS X Leopard позволяет выполнять регулярное резервное копирование данных на вашем компьютере с помощью приложения Time Machine (Машина времени). После соответствующих настроек приложение автоматически будет

4.9.2. Создание первой резервной копии с помощью Time Machine

Из книги Самоучитель работы на Macintosh автора Скрылина Софья

4.9.2. Создание первой резервной копии с помощью Time Machine Прежде чем перейти к созданию первой резервной копии, следует вставить внешний диск или иметь свободный раздел жесткого диска, отведенный только для резервного копирования.При подключении внешнего диска размером,

4.9.4. Использование Time Machine

Из книги Самоучитель работы на Macintosh автора Скрылина Софья

4.9.4. Использование Time Machine Когда необходимые настройки Time Machine выполнены и создано некоторое количество резервных копий, можно приступить к поиску и восстановлению ранних версий файлов. Для этого:1. Откройте окно Finder и выделите файл, необходимый для восстановления.2. Если

методы изучения биологии вирусов и их идентификации. В вирусологии широко используются методы молекулярной биологии, с помощью которых удалось установить молекулярную структуру вирусных частиц, способы проникновения их в клетку и особенности репродукции вирусов, первичной структуры вирусных нуклеиновых кислот и белков. Развиваются методы определения последовательности составляющих элементов вирусных нуклеиновых кислот и аминокислот белка. Появляется возможность связать функции нуклеиновых кислот и кодируемых ими белков с последовательностью нуклеотидов и установить причины внутриклеточных процессов, играющих важную роль в патогенезе вирусной инфекции.

Вирусологические методы исследования основаны также на иммунологических процессах (взаимодействие антигена с антителами), биологических свойствах вируса (способность к гемагглютинации, гемолизу, ферментативная активность), особенностях взаимодействия вируса с клеткой-хозяином (характерцитопатического эффекта, образование внутриклеточных включений и т.д.).

В диагностике вирусных инфекций, при культивировании, выделении и идентификации вирусов, а также при получении вакцинных препаратов широко применяют метод культуры ткани и клеток. Используют первичные, вторичные, стабильные перевиваемые и диплоидные клеточные культуры. Первичные культуры получают при диспергировании ткани протеолитическими ферментами (трипсином, коллагеназой). Источником клеток могут быть ткани и органы (чаще почки) эмбрионов человека и животных. Суспензию клеток в питательной среде помещают в так называемые матрацы, бутыли или чашки Петри, где после прикрепления к поверхности сосуда клетки начинают размножаться. Для заражения вирусами используют обычно клеточный монослой. Питательную жидкость сливают, вносят вирусную суспензию в определенных разведениях и после контакта с клетками добавляют свежую питательную среду, обычно без сыворотки.

Клетки большинства первичных культур могут быть пересеяны, такая культура называется вторичной. При дальнейшем пассировании клеток формируется популяцияфибробластоподобных клеток, способных к быстрому размножению, большая часть которых сохраняет исходный набор хромосом. Это так называемые диплоидные клетки. При серийном культивировании клеток получают стабильные перевиваемые клеточные культуры. При пассажах появляются быстро делящиеся однородные клетки с гетероплоидным набором хромосом. Стабильные линии клеток могут быть однослойными и суспензионными. Однослойные культуры растут в виде сплошного слоя на поверхности стекла, суспензионные - в виде суспензий в различных сосудах с использованием перемешивающих устройств. Существует более 400 линий клеток, полученных от 40 различных видов животных (в т.ч. от приматов, птиц, рептилий, амфибий, рыб, насекомых) и человека.

В искусственных питательных средах можно культивировать кусочки отдельных органов и тканей (органные культуры). Эти типы культур сохраняют структуру ткани, что особенно важно для выделения и пассирования вирусов, которые не репродуцируются в недифференцированных тканевых культурах (например, коронавирусы).

В зараженных клеточных культурах вирусы можно обнаружить по изменению морфологии клеток, цитопатическому действию, которое может иметь специфический характер, появлению включений, путем определения вирусных антигенов в клетке и в культуральной жидкости; установления биологических свойств вирусного потомства в культуральной жидкости и титрования вирусов в культуре ткани, куриных эмбрионах или на чувствительных животных; путем выявления отдельных вирусных нуклеиновых кислот в клетках методом молекулярной гибридизации или скоплений нуклеиновых кислот цитохимическим методом с помощью люминесцентной микроскопии.

Выделение вирусов является трудоемким и длительным процессом. Его осуществляют с целью определения циркулирующего среди населения типа или варианта вируса (например, для идентификации сероварианта вируса гриппа, дикого или вакцинного штамма вируса полиомиелита и т.д.); в случаях, когда это необходимо для проведения срочных эпидемиологических мероприятий; при появлении новых типов или вариантов вирусов; при необходимости подтверждения предварительного диагноза; для индикации вирусов в объектах окружающей среды. При выделении вирусов учитывают возможность их персистирования в организме человека, а также возникновения смешанной инфекции, вызванной двумя и более вирусами. Генетически однородная популяция вируса, полученная от одного вириона, называется вирусным клоном, а сам процесс получения его - клонированием.

Для выделения вирусов применяют заражение восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект), образованию симпластов и синцитиев, обнаружению внутриклеточных включений, а также специфического антигена, выявляемого с помощью методов иммунофлюоресценции, гемадсорбции, гемагглютинации (у гемагглютинирующих вирусов) и т.д. Эти признаки могут обнаруживаться лишь после 2-3 пассажей вируса.

Для выделения ряда вирусов, например вирусов гриппа, используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов - новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов.

При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит дегенерация ткани, образуются включения и вирусоспецифические антигены. Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный анализ инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. Титр вируса выражают числом бляшкообразующих единиц в 1 мл .

Очистку и концентрацию вирусов обычно осуществляют путем дифференциальногоультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.

Лабораторная диагностика вирусных инфекций включает обнаружение возбудителя или его компонентов в клиническом материале; выделение вируса из этого материала; серодиагностику. Выбор метода лабораторной диагностики в каждом отдельном случае зависит от характера заболевания, периода болезни и возможностей лаборатории. Современная диагностика вирусных инфекций основана на экспресс-методах, позволяющих получать ответ через несколько часов после взятия клинического материала в ранние сроки после заболевания, К ним относятся электронная и иммунная электронная микроскопия, а также иммунофлюоресценция, метод молекулярной гибридизации, выявление антител класса lgM и др.

Электронная микроскопия вирусов, окрашенных методом негативного контрастирования, позволяет дифференцировать вирусы и определять их концентрацию. Применение электронной микроскопии в диагностике вирусных инфекций ограничивается теми случаями, когда концентрация вирусных частиц в клиническом материале достаточно высокая (10 5 в 1 мл и выше). Недостатком метода является невозможность отличать вирусы, принадлежащие к одной таксономической группе. Этот недостаток устраняется путем использования иммунной электронной микроскопии. Метод основан на образовании иммунных комплексов при добавлении специфической сыворотки к вирусным частицам, при этом происходит одновременная концентрация вирусных частиц, позволяющая идентифицировать их. Метод применяют также для выявления антител. В целях экспресс-диагностики проводят электронно-микроскопическое исследование экстрактов тканей, фекалий, жидкости из везикул, секретов из носоглотки. Электронную микроскопию широко используют для изучения морфогенеза вируса, ее возможности расширяются при применении меченых антител.

Метод молекулярной гибридизации, основанный на выявлении вирусоспецифических нуклеиновых кислот, позволяет обнаружить единичные копии генов и по степени чувствительности не имеет себе равных. Реакция основана на гибридизации комплементарных нитей ДНК или РНК (зондов) и формировании двунитчатых структур. Наиболее дешевым зондом является клонированная рекомбинантная ДНК. Зонд метят радиоактивными предшественниками (обычно радиоактивным фосфором). Перспективно использование колориметрических реакций. Существует несколько вариантов молекулярной гибридизации: точечная, блот-гибридизация, сэндвич-гибридизация, гибридизацияinsitu и др.

Антитела класса lgM появляются раньше, чем антитела класса G (на 3-5-й день болезни) и исчезают через несколько недель, поэтому их обнаружение свидетельствует о только что перенесенной инфекции. Антитела класса lgM выявляют методом иммунофлюоресценции или с помощью иммуноферментного анализа, используя анти- μ-антисыворотки (сыворотки против тяжелых цепей lgM).

Серологические методы в вирусологии основаны на классических иммунологических реакциях (см. Иммунологические методы исследования): реакции связывания комплемента, торможения гемагглютинации, биологической нейтрализации, иммунодиффузии, непрямой гемагглютинации, радиального гемолиза, иммунофлюоресценции, иммуноферментного, радиоиммунного анализа. Разработаны микрометоды многих реакций, техника их непрерывно совершенствуются. Эти методы используют для идентификации вирусов с помощью набора известных сывороток и для серодиагностики с целью определения нарастания антител во второй сыворотке по сравнению с первой (первую сыворотку берут в первые дни после заболевания, вторую - через 2-3 нед.). Диагностическое значение имеет не менее чем четырехкратное нарастание антител во второй сыворотке. Если выявление антител класса lgM свидетельствует о недавно перенесенной инфекции, то антитела класса lgC сохраняются в течение нескольких лет, а иногда и пожизненно.

Для идентификации индивидуальных антигенов вирусов и антител к ним в сложных смесях без предварительной очистки белков используют иммуноблоттинг. Метод сочетает фракционирование белков с помощью электрофореза в полиакриламидном геле с последующей иммуноиндикацией белков иммуноферментным методом. Разделение белков снижает требования к химической чистоте антигена и позволяет выявлять индивидуальные пары антиген - антитело. Такая задача актуальна, например, при серодиагностике ВИЧ-инфекции, где ложноположительные реакции иммуноферментного анализа обусловлены наличием антител к клеточным антигенам, которые присутствуют в результате недостаточной очистки вирусных белков. Идентификация антител в сыворотках больных к внутренним и наружным вирусным антигенам позволяет определять стадию заболевания, а при анализе популяций - изменчивость вирусных белков. Иммуноблоттинг при ВИЧ-инфекции применяют как подтверждающий тест для выявления индивидуальных вирусных антигенов и антител к ним. При анализе популяций метод используют для определения изменчивости вирусных белков. Большая ценность метода заключается в возможности анализа антигенов, синтезируемых с помощью технологии рекомбинантных ДНК, установлении их размеров и наличия антигенных детерминант.

20)Основным структурным компонентом вирионов (полных вирусных частиц) является нуклеокапсид, т.е. белковый чехол (капсид) в котором заключен вирусный геном (ДНК или РНК). Нуклеокапсид большинства семейств вирусов окружен липопротеиновой оболочкой. Между оболочкой и нуклеокапсидом у некоторых вирусов (орто-, парамиксо-, рабдо-, фило- и ретровирусов) находится негликозилированный матриксный белок, придающий дополнительную жесткость вирионам. Вирусы большинства семейств имеют оболочку, которая играет важную роль в инфекционности. Наружный слой оболочки вирионы приобретают, когда нуклеокапсид проникает через клеточную мембрану почкованием. Белки оболочки кодируются вирусом, а липиды заимствуются из мембраны клетки. Гликопротеины обычно в виде димеров и тримеров образуют пепломеры (выступы) на поверхности вирионов (орто-, парамиксовирусы, рабдо-, фило-, корона-, бунья-, арена-, ретровирусы). Гликозилированные белки слияния связаны с пепломерами и выполняют ключевую роль в проникновении вируса в клетку. Капсиды и оболочки вирионов образуются множеством копий одного или нескольких видов белковых субъединиц в результате процесса самосборки. Взаимодействие в системе белок-белок, благодаря слабым химическим связям, ведет к объединению симметричных капсидов. Различия вирусов по форме и размеру вирионов зависят от формы, размера и количества структурных белковых субъединиц и природы взаимодействия между ними. Капсид состоит из множества морфологически выраженных субъединиц (капсомеров), собранных из вирусных полипептидов строго определенным образом, в соответствии с относительно простыми геометрическими принципами. Белковые субъединицы, соединяясь друг с другом, образуют капсиды двух видов симметрии: изометрические и спиральные. Структура нуклеокапсида оболочечных вирусов сходна со структурой нуклеокапсида безоболочечных вирусов. На поверхности оболочки вирусов различают морфологически выраженные гликопротеиновые структуры - пепломеры. В состав суперкапсидной оболочки входят липиды (до 20-35%) и углеводы (до 7-8%), имеющие клеточное происхождение. Она состоит из двойного слоя клеточных липидов и вирусспецифических белков, расположенных снаружи и изнутри липидного биослоя. Наружный слой суперкапсидной оболочки представляют пепломеры (выступы) одного или более типов, состоящие из одной или нескольких молекул гликопротеинов. Нуклеокапсид у оболочечных вирусов часто называют сердцевиной (core), а центральную часть вирионов, содержащую нуклеиновую кислоту, называют нуклеоидом. Капсомеры (пепломеры) состоят из структурных единиц, построенных из одной либо из нескольких гомологичных или гетерологичных полипептидных цепей (белковых субъединиц). классификация вирусов Изометрические капсиды представляют собой не сферы, а правильные многогранники (икосаэдры). Их линейные размеры идентичны по осям симметрии. Согласно Каспару и Клугу (1962), капсомеры в капсидах расположены в соответствии с икосаэдрической симметрией. Такие капсиды состоят из идентичных субъединиц, образующих икосаэдр. Они имеют 12 вершин (углов), 30 граней и 20 поверхностей в виде равнобедренных треугольников. В соответствии с этим правилом капсид полиовируса и вируса ящура образован 60 белковыми структурными единицами, каждая из которых состоит из четырех полипептидных цепей. Икосаэдр оптимально решает проблему укладки повторяющихся субъединиц в строгую компактную структуру при минимальном объеме. Только некоторые конфигурации структурных субъединиц могут сформировать поверхности, образовать вершины и грани вирусного икосаэдра. Например, структурные субъединицы аденовируса на поверхностях и гранях формируют шестигранные капсомеры (гексоны), а на вершинах - пятигранные капсомеры (пептоны). У одних вирусов оба вида капсомеров образуются одними и теми же полипептидами, у других - разными полипептидами. Так как структурные субъединицы разных вирусов различаются между собой, то одни вирусы кажутся более гексагональными, другие - более сферическими. Все известные ДНК-содержащие вирусы позвоночных, за исключением вирусов оспы, а также многие РНК-содержащие вирусы (7 семейств) имеют кубический тип симметрии капсида. Реовирусы, в отличие от других вирусов позвоночных, имеют двойной кап-сид (наружный и внутренний), причем каждый состоит из морфологических единиц. Вирусы, обладающие спиральным типом симметрии, имеют вид цилиндрической нитевидной структуры, их геномная РНК имеет вид спирали и находится внутри капсида. Все вирусы животных спиральной симметрии окружены липопротеиновой оболочкой. Спиральные нуклеокапсиды характеризуются длиной, диаметром, шагом спирали и числом капсомеров, приходящихся на один оборот спирали. Так, у вируса Сендай (парамиксовирус) нуклеокапсид представляет собой спираль длиной около 1 мкм, диаметром 20 нм и шагом спирали 5 нм. Капсид состоит примерно из 2400 структурных единиц, каждая из которых является белком с молекулярной массой 60 кД. На каждый виток спирали приходится 11-13 субъединиц. У вирусов со спиральным типом симметрии нуклеокапсида укладка белковых молекул в спираль обеспечивает максимальное взаимодействие между нуклеиновой кислотой и белковыми субъединицами. У икосаэдрических вирусов нуклеиновая кислота находится внутри вирионов в скрученном состоянии и взаимодействует с одним или несколькими полипептидами, расположенными внутри капсида.

Антирецепторы (рецепторы) Вирусные - поверхностные вирионные белки, напр., гемагглютинин, связывающиеся по комплементарному типу с соответствующим рецептором восприимчивой клетки.

21) Иммунологические методы в вирусологических исследованиях.

Серологические реакции различаются по способности выявлять отдельные классы антител. Реакция агглютинации, например, хорошо выявляет lgM-антитела, но менее чувствительна для определения lgG-антител. Реакции связывания комплемента и гемолиза, которые требуют участия комплемента, не выявляют антитела, не присоединяющие комплемент, например lgA-антитела и lgE-антитела. В реакции нейтрализации вирусов участвуют лишь антитела, направленные против антигенных детерминант поверхности вириона, связанных с патогенностью. Чувствительность И. м. и. превосходит все другие методы исследования антигенов и антител, в частности радиоиммунный и иммуноферментный анализы позволяют улавливать присутствие белка в количествах, измеряемых в нанограммах и даже в пикограммах. С помощью И. м. и. определяют группу и проверяют безопасность крови (гепатит В и ВИЧ-инфекция). При трансплантации тканей и органов И. м. и. позволяют определять совместимость тканей и тестировать методы подавления несовместимости. В судебной медицине используют реакцию Кастеллани для определения видовой специфичности белка и реакцию агглютинации для определения группы крови.

Иммунологические методы широко применяют в лабораторной диагностике инфекционных болезней. Этиологию заболевания устанавливают также на основании прироста антител к возбудителю в сыворотке крови реконвалесцента по сравнению с пробой, взятой в первые дни болезни. На основе И. м. и. изучают иммунитет населения по отношению к массовым инфекциям, например к гриппу, а также оценивают эффективность профилактических прививок.

В зависимости от их механизма и учета результатов И. м. и. можно подразделить на реакции, основанные на феномене агглютинации; реакции, основанные на феномене преципитации; реакции с участием комплемента; реакция нейтрализации; реакции с использованием химических и физических методов.

Реакции, основанные на феномене агглютинации. Агглютинация представляет собой склеивание клеток или отдельных частичек - носителей антигена с помощью иммунной сыворотки к этому антигену.

Реакция агглютинации бактерий с использованием соответствующей антибактериальной сыворотки относится к наиболее простым серологическим реакциям. Взвесь бактерий добавляют к различным разведениям испытуемой сыворотки крови и через определенное время контакта при t°37° регистрируют, при каком наивысшем разведении сыворотки крови происходит агглютинация. Реакцию агглютинации бактерий используют для диагностики многих инфекционных болезней: бруцеллеза, туляремии, брюшного тифа и паратифов, бациллярной дизентерии, сыпного тифа.

Реакция пассивной, или непрямой, гемагглютинации (РПГА, РНГА). В ней используют эритроциты или нейтральные синтетические материалы (например, частицы латекса), на поверхности которых сорбированы антигены (бактериальные, вирусные, тканевые) или антитела. Их агглютинация происходит при добавлении соответствующих сывороток или антигенов.

Реакцию пассивной гемагглютинации используют для диагностики заболеваний, вызванных бактериями (брюшной тиф и паратифы, дизентерия, бруцеллез, чума, холера и др.), простейшими (малярия) и вирусами (грипп, аденовирусные инфекции, вирусный гепатит В, корь, клещевой энцефалит, крымская геморрагическая лихорадка и др.), а также для определения некоторых гормонов, выявления повышенной чувствительности больного к лекарственным препаратам и гормонам, например пенициллину и инсулину.

Реакция торможения гемагглютинации (РТГА) основана на феномене предотвращения (торможении) иммунной сыворотки гемагглютинации эритроцитов вирусами, используется для выявления и титрования противовирусных антител. Она служит основным методом серодиагностики гриппа, кори, краснухи, эпидемического паротита, клещевого энцефалита и других вирусных инфекций, возбудители которых обладают гемагглютинирующими свойствами. например, для серодиагностики клещевого энцефалита в лунки панели разливают двукратные разведения сыворотки больного на щелочном боратном буферном растворе. Затем добавляют определенное количество, обычно 8 АЕ (агглютинирующих единиц), антигена клещевого энцефалита и после 18 ч экспозиции при t°4° вносят взвесь гусиных эритроцитов, приготовленную на кислом фосфатно-буферном растворе. Если в сыворотке крови больного есть антитела к вирусу клещевого энцефалита, то антиген нейтрализуется и агглютинация эритроцитов не происходит.

Реакции, основанные на феномене преципитации. Преципитация происходит в результате взаимодействия антител с растворимыми антигенами. Простейшим примером реакции преципитации является образование в пробирке непрозрачной полосы преципитации на границе наслоения антигена на антитело. Широко применяют различные разновидности реакции преципитации в полужидких гелях агара или агарозы (метод двойной иммунодиффузии по Оухтерлоню, метод радиальной иммунодиффузии, иммуноэлетрофорез), которые носят одновременно качественный и количественный характер. В результате свободной диффузии в геле антигенов и антител в зоне оптимального их соотношения образуются специфические комплексы - полосы преципитации, которые выявляют визуально или при окрашивании. Особенностью метода является то, что каждая пара антиген - антитело формирует индивидуальную полосу преципитации, и реакция не зависит от наличия в исследуемой системе других антигенов и антител.

Реакции с участием комплемента, в качестве которого используют свежую сыворотку крови морской свинки, основаны на способности субкомпонента комплемента Clq и затем других компонентов комплемента присоединяться к иммунным комплексам.

Реакция связывания комплемента (РСК) позволяет титровать антигены или антитела по степени фиксации комплемента комплексом антиген - антитело. Эта реакция состоит из двух фаз: взаимодействия антигена с испытуемой сывороткой крови (исследуемая система) и взаимодействия гемолитической сыворотки с эритроцитами барана (индикаторная система). При положительной реакции в исследуемой системе происходит связывание комплемента, и тогда при добавлении сенсибилизированных антителами эритроцитов гемолиза не наблюдается. Реакцию применяют для серодиагностики сифилиса (реакция Вассермана), вирусных и бактериальных инфекций.

Реакция нейтрализации основана на способности антител нейтрализовать некоторые специфические функции макромолекулярных или растворимых антигенов, например активность ферментов, токсины бактерий, болезнетворность вирусов. Реакцию нейтрализации токсинов можно оценивать по биологическому эффекту, так, например, титруют антистолбнячные и антиботулинические сыворотки. Смесь токсина с антисывороткой, введенная животным, не вызывает их гибели. Различные варианты реакции нейтрализации применяют в вирусологии. При смешивании вирусов с соответствующей антисывороткой и введении этой смеси животным или в клеточные культуры патогенность вирусов нейтрализуется и при этом животные не заболевают, а клетки культур не подвергаются деструкции.

Реакции с использованием химических и физических меток. Иммунофлюоресценция заключается в использовании меченных флюорохромом антител, точнее, иммуноглобулиновой фракции антител lgG. Меченное флюорохромом антитело образует с антигеном комплекс антиген - антитело, который становится доступным наблюдению под микроскопом в УФ-лучах, возбуждающих свечение флюорохрома. Реакцию прямой иммунофлюоресценции используют для изучения клеточных антигенов, выявления вируса в зараженных клетках и обнаружения бактерий и риккетсий в мазках.

Более широко применяют метод непрямой иммунофлюоресценции. основанный на выявлении комплекса антиген - антитело с помощью люминесцирующей иммунной сыворотки против lgG-антител и используемой для обнаружения не только антигенов, но и титрования антител.

Иммуноферментные, или энзим-иммунологические, методы основаны на использовании антител, конъюгированных с ферментами, главным образом пероксидазой хрена или щелочной фосфатазой. Подобно иммунофлюоресценции иммуноферментный метод применяют для обнаружения антигенов в клетках или титрования антител на антигенсодержащих клетках.

Радиоиммунологический метод основан на применении радиоизотопной метки антигенов или антител. Является наиболее чувствительным методом определения антигенов и антител, используется для определения гормонов, лекарственных веществ и антибиотиков, для диагностики бактериальных, вирусных, риккетсиозных, протозойных заболеваний, исследования белков крови, тканевых антигенов.

Иммуноблоттинг применяют для выявления антител к отдельным антигенам или «узнавания» антигенов по известным сывороткам. Метод состоит из 3 этапов: разделения биологических макромолекул (например, вируса) на отдельные белки с помощью электрофореза в полиакриламидном геле; переноса разделенных белков из геля на твердую подложку (блот) путем наложения пластины полиакриламидного геля на активированную бумагу или нитроцеллюлозу (электроблоттанг); выявления на подложке искомых белков с помощью прямой или непрямой иммуноферментной реакции. Как диагностический метод иммуноблоттинг используют при ВИЧ-инфекции. Диагностическую ценность имеет обнаружение антител к одному из белков внешней оболочки вируса.

22) Типы симметрии вирусов (кубический, спиральный, смешанный). Взаимодействие белков и нуклеиновых кислот при упаковке геномов вирусов.

В зависимости от взаимодействия капсида с нуклеиновой кислотой частицы вирусов могут быть подразделены на несколько типов симметрии:

1). Кубический тип симметрии .

Кубические капсиды представляют собой икосайдеры обладающий примерно 20-ю треугольными поверхностями и 12 вершинами. Они формируют напоминающую сферическое образование структуру, но на самом деле это многогранник. В ряде случаев к вершинам таких икосаэдрических многогранников прикрепляются особые липопротеиновые образования именуемые шипами. Роль этих шипов предположительно сводится к взаимодействию вирионов или вирусных частиц с соответствующими участками чувствительных к ним клеток хозяев. При кубической симметрии вирусная нуклеиновая кислота уложена плотно (свернута в клубок), а белковые молекулы окружают ее, образуя многогранник (икосаэдр). Икосаэдр – многогранник с двадцатью треугольными гранями, имеющий кубическую симметрию и приблизительно сферическую форму. К икосаэдрическим вирусам относятся вирус простого герпеса, реовирусы и др.

2). Спиральный тип симметрии . Спиральные капсиды устроены несколько проще. Т.е. капсомеры составляющие капсид покрывают спиральную НК и формируют тоже достаточно стабильную белковую оболочку этих вирусов. И при использовании высокоразрешающих электронных микроскопов и соответствующих методов приготовления препарата можно видеть спирализованные структуры на вирусах. При спиральной симметрии капсида вирусная нуклеиновая кислота образует спиральную (или винтообразную) фигуру, полую внутри, и субъединицы белка (капсомеры) укладываются вокруг нее тоже по спирали (трубчатый капсид). Примером вируса со спиральной симметрией капсида является вирус табачной мозаики, который имеет палочковидную форму, а его длина составляет 300 нм с диаметром 15 нм. В состав вирусной частицы входит одна молекула РНК размером около 6000 нуклеотидов. Капсид состоит из 2000 идентичных субъединиц белка, уложенных по спирали.

3). Смешанный или сложный тип симметрии . Как правило, такой тип симметрии выявляется главным образом среди бактериальных вирусов. И классическими примерами служат те фаги, кишечной палочки или умеренные фаги. Это сложные образования, имеющие головку с внутренним нуклеиновым содержимым, различного рода придатки, хвостовой отросток, разной степени сложности устройства. И каждый компонент таких частиц наделён определённой функцией, реализующейся в процессе взаимодействия вируса с клеткой. Иными словами сложный тип симметрии представляет собой сочетание кубической симметрии, головка – это многогранник икосайдер и палочковидные образования – это хвостовые отростки. Хотя среди вирусов бактерий существуют тоже довольно просто организованные вирионы которые являются примитивными нуклеокапсидами, сферической или кубической формы. Наиболее сложно устроенными являются вирусы бактерий, по сравнению с вирусами растений и вирусами животных.


24)Взаимодействие фага с клеткой. Вирулентные и умеренные фаги.

Адсорбция.

Взаимодействие начинается с прикрепления вирусных частиц к клеточной поверхности. Процесс становится возможным при наличии соответствующих рецепторов на поверхности клетки и анти-рецепторов на поверхности вирусной частицы.

Вирусы используют рецепторы клетки, предназначенные для транспорта необходимых веществ: питательных частиц, гормонов, факторов роста и т.п.

Рецепторы: белки, углеводный компонент белков и липидов, липиды. Специфические рецепторы определяют дальнейшую судьбу вирусной частицы (транспорт, доставка в участки цитоплазмы или ядра). Вирус может прикрепляться и к неспецифическим рецепторам и даже проникать в клетку. Однако такой процесс не вызывает развития инфекции.

Вначале происходит образование единичной связи антирецептрора и рецептора. Такая связь непрочная и может разрываться. Для образования необратимой адсорбции необходимо мультивалентное прикрепление. Стабильное связывание происходит благодаря свободному перемещению молекул рецепторов в мембране. При взаимодействии вируса с клеткой наблюдается увеличение текучести липидов, и формирование рецепторных полей в области взаимодействия вируса и клетки. Рецепторы ряда вирусов могут быть представлены лишь в ограниченном наборе клеток-хозяев. Этим и определяется чувствительность организма к данному вирусу. Таким образом, вирусная ДНК и РНК обладает способностью инфицировать более широкий круг клеток-хозяев.

Антирецепторы могут находиться в составе уникальных вирусных органелл: структуры отростка у Т-бактериофагов, фибры у аденовирусов, шипы на поверхности вирусных мембран, корона у коронавирусов.

Проникновение.

2 механизма – рецепторный эндоцитоз и слияние мембран.

Рецепторный эндоцитоз:

Обычный механизм поступления в клетку питательных и регуляторных веществ. Происходит в специализированных участках - где имеются специальные ямки, покрытые клатрином, на дне ямки располагаются специфические рецепторы. Ямки обеспечивают быструю инвагинацию и образование покрытых клатрином вакуолей (с момента адсорбции проходит не более 10 мин, за одну минуту может образоваться до 2000 вакуолей). Вакуоли сливаются с более крупными цитоплазматическими вакуолями, образуя рецепторосомы (уже не содержат клатрин), которые в свою очередь сливаются с лизосомами.

Слияние вирусной и клеточной мембран:

У оболочечных вирусов слияние обусловлено точечными взаимодействиями вирусного белка с липидами клеточной мембраны, в результате чего вирусная липопротеидная оболочка интегрирует с клеточной мембраной. У безоболочечных вирусов один из поверхностных белков также взаимодействует с липидами клеточных мембран и внутренний компонент проходит через мембрану (у парамиксовирусов – F-белок, у ортомиксовирусов – HA2 гемагглютинирующая субъединица). На конформацию поверхностных белков влияет рН.

Раздевание.

При этом процессе исчезает инфекционная активность, часто появляется чувствительность к нуклеазам, возникает устойчивость к антителам. Конечный продукт раздевания – нуклеиновые кислоты, связанные с внутренним вирусным белком. Стадия раздевания является так же лимитирующей возможность инфекции (вирусы способны раздеваться не в каждой клетке). Раздевание происходит в специализированных участках клетки: лизосомы, аппарат Гольджи, околоядерном пространстве.

Раздевание проходит в результате ряда реакций. Например, у пикорнавирусов раздевание идёт с образованием промежуточных субвирусных частиц с размерами от 156 до 12S. У аденовирусов в цитоплазме и ядерных порах и имеет как минимум 3 стадии:

Образование субвирусных частиц с большей плотностью, чем вирионы;

Образование сердцевин, в которых отсутствует 3 вирусных белка;

Образование ДНК-белкового комплекса, в котором ДНК ковалетно соединена с терминальным белком.

Характеристика вирулентных и умеренных фагов.

При заражении бактерии фагом имеет место так называемая литическая инфекция т.е инфекция завершающаяся лизисом клетки хозяина, но это свойственно только так называемым вирулентным фагам, взаимодействие которых с клеткой приводит к гибели клетки и формированию фагового потомства.

При этом различают следующие этапы по взаимодействиям фага с клеткой: смешивание фага с культурой клеток (множественность инфецирования 1 фаг на 10 клеток), причём концентрация должна быть достаточно высокой, с тем чтобы имелась возможность контактирования фагов с клетками. Чтобы не было повторного заражения – после инфицирования в течение 5 минут максимум, когда фаги адсорбируются – разводится эта смесь клеток с фагом. Выделяется латентный период в течение, которого количество фага не увеличивается, затем очень короткий период выхода, когда резко повышается количество фаговых частиц, когда клетка лизируется и высвобождается фаговое потомство и потом кол-во фагов остаётся на одном уровне, потому что повторного заражения не происходит. На основании этой кривой можно выделить вот эти фазы: вегетативный период «роста» (латентный период), период выхода и рассчитать урожайность фага на 1-у инфицированную клетку. На протяжении латентного периода не удается обнаружить в бактериях ничего похожего на фаговые частицы и не удаётся выделить из таких клеток находящихся в латентном периоде инфекционное начало. Только зрелые фаговые частицы способны вызвать заражение бактерий. Таким образом, вирулентные фаги всегда вызывают гибель бактерий и продуцируют инфекцию, выявляющуюся в продуцировании новых вирусных частиц способных инфицировать следующие и другие чувствительные к ним клетки.

В отличие от вирулентных, заражение умеренными фагам не приводит к лизису бактериальных клеток, а реализуется становление особого состояния сосуществования фага с бактериальной клеткой. Это сосуществование выражается в том, что некое начало фага присутствует в бактериальной клетке без всяких неблагоприятных условий для нее и сохраняется из поколения в поколение. На определенных этапах такого сосуществования фаг активируется в клетке и переходит в состояние литического цикла развития, вызывая лизис клетки и высвобождения фагового потомства. Такие фаги получили название лизогенезирующих или умеренных фагов, а состояние умеренного существования с фагом лизогенией, а бактерии, которые содержат в себе такой скрытый фаг - лизогенных бактерий. Термин лизогенные бактерии происходил из того, что когда-то были обнаружены культуры, у которых спонтанно появлялся фаг, и этот бактериафаг стал рассматриваться как загрязнение культуры, то есть в культуру попадает бактериальный вирус, и такие культуры получили название лизогенных, то есть они генерируют лизис.

Вирусы в отличие от бактерий размножаются лишь в живых клетках. В связи с этим культивирование вирусов может осуществляться на уровне организма подопытного животного (куриный эмбрион как развивающийся организм относят к подопытным животным) или живой клетки, выращиваемой вне организма, т.е. на уровне культуры клеток.

Использование лабораторных животных. Один из методов выделения и культивирования вирусов - заражение лабораторных животных. Их используют для выделения вирусов, не вызывающих развития цитопатических изменений в культурах клеток и не размножающихся в куриных эмбрионах. Применение лабораторных животных позволяет также по клиническому симптомокомплексу идентифицировать характер вирусной инфекции. В качестве лабораторных животных, в зависимости от целей работ и вида исследуемых вирусов, чаще всего применяют белых мышей, хомяков, морских свинок, кроликов. Из более крупных животных используют обезьян различных видов и некоторых других животных. Из птиц используют кур, гусей, уток. В последние годы чаще применяют новорожденных животных (более чувствительных к вирусам), «стерильных животных» (извлекают из матки и содержат в стерильных условиях с использованием стерильного воздуха и стерилизованного корма) и животных чистых линий с известной наследственностью (инбредные или линейные животные).

В эксперимент берут только здоровых животных, лучше из одного питомника и одной партии. Температуру тела измеряют в одно и то же время, так как имеются суточные колебания ее. Исследуемый материал вводят с учетом тропизма вирусов к определенным тканям. Так, для выделения нейтротропных вирусов материал вводят в мозг, для выделения пневмотропных - через нос (под легким эфирным наркозом).

У лабораторных животных после заражения вируссодержащим материалом важно своевременно и правильно взять материал для дальнейшего исследования, причем асептически. Результаты выделения вируса считают положительными, если у животного после соответствующего инкубационного периода развиваются симптомы инфекции.

Использование куриных эмбрионов. В тканях эмбриона, его оболочках, желточном мешке способны размножаться многие патогенные вирусы человека и животных. При этом имеет значение избирательность вирусов к той или иной ткани: вирусы группы оспы хорошо репродуцируются и накапливаются в клетках хорион-аллантоисной оболочки, вирус паротита - в амнионе, вирусы гриппа - в амнионе и аллантоисе, вирус бешенства - в желточном мешке.

Культивирование вирусов в развивающихся эмбрионах имеет ряд преимуществ перед другими методами: плотная скорлупа довольно надежно защищает внутреннее содержимое от микробов; при заражении куриных эмбрионов получают больший, чем при других методах культивирования, выход вируссодержащего материала; метод заражения куриных эмбрионов прост и доступен любым вирусологическим лабораториям; эмбрионы обладают достаточной жизнеспособностью и устойчивостью к возбудителям внешних факторов. Однако куриные эмбрионы не всегда свободны от латентных вирусных и бактериальных инфекций. Трудно наблюдать за динамикой патологических изменений, происходящих в эмбрионе после заражения его вирусом. При вскрытии зараженных эмбрионов часто не обнаруживают видимых изменений и выявляют вирус с помощью реакции гемагглю- тинации и другими методами. В зараженных эмбрионах невозможно проследить за нарастанием титра антител. Метод пригоден не для всех вирусов.

Для вирусологических исследований используют эмбрионы 7-12-дневного возраста, которые получают из птицеводческих хозяйств. Можно выращивать эмбрионы в обычном термостате, на дно которого ставят лотки с водой для увлажнения воздуха. Температура в термостате должна быть 37 °С, а влажность воздуха - 60-65%. Отбирают крупные, чистые (но немытые), оплодотворенные яйца от белых кур, хранившиеся не более 10 суток при температуре 5-10°С. Оплодотворенные яйца распознают по наличию зародышевого диска, который при просвечивании с помощью овоскопа имеет вид темного пятнышка.

При работе с вирусами могут быть использованы различные методы заражения эмбрионов, но наибольшее практическое применение получили нанесение вируса на хорион-аллантоисную оболочку, введение в аллантоисную, амниотическую полость и желточный мешок

(рис. 10.5). Выбор метода зависит от биологических свойств изучаемого вируса.

Рис. 10.5.

Перед заражением определяют жизнеспособность эмбриона на овоскопе. Живые эмбрионы подвижны, хорошо видна пульсация сосудов оболочек. При овоскопировании отмечают простым карандашом на скорлупе границы воздушного мешка или место расположения эмбриона, которое определяют по его тени на скорлупе.

Куриные эмбрионы заражают в боксе в строго асептических условиях, используя инструменты, стерилизованные кипячением.

При заражении на хорион-аллантоисную оболочку наиболее пригодны 12-дневные эмбрионы. Для заражения в аллантоисную полость используют эмбрионы 10-11-дневного возраста, в амниотическую полость - эмбрионы 7-11-дневного возраста, в желточный мешок - эмбрионы 7-дневного возраста.

Яйца с зараженными эмбрионами устанавливают на подставках тупым концом вверх. Температурный режим и срок инкубации зависят от биологических свойств инокулированного вируса. Ежедневно жизнеспособность эмбрионов контролируют под овоскопом. Эмбрионы, погибшие в первые сутки после заражения вследствие травмы, не исследуют.

Перед сбором материала эмбрионы охлаждают при 4 °С в течение 18-20 ч для сужения сосудов и предотвращения кровотечения при вскрытии. Эмбрионы вскрывают в боксе с соблюдением правил асептики.

Аллантоисную жидкость насасывают пипеткой, контролируют стерильность путем посева в сахарный или мясо-пептонный бульон, проверяют на наличие вируса в реакции гемагглютинапии и хранят при 4 °С в замороженном состоянии.

Для получения амниотической жидкости вначале отсасывают аллантоисную жидкость, затем пинцетом захватывают амниотическую оболочку, слегка приподнимают ее и пастеровской пипеткой отсасывают амниотическую жидкость.

При изучении изменений на хорион-аллантоисной оболочке ее разрезают ножницами и через отверстие выливают все содержимое в чашку Петри. Хорион-аллантоисная оболочка остается внутри скорлупы и ее извлекают пинцетом в чашку Петри с физиологическим раствором. Здесь ее промывают, расправляют и изучают на темном фоне характер очаговых поражений.

Для получения амниотической оболочки амниотический мешок, в который заключен эмбрион, разрезают и освобождают от эмбриона, просматривают на наличие поражений.

Для получения желточной оболочки разрезают хорион-аллантоис, отсасывают аллантоисную и амниотическую жидкости, извлекают пинцетом плод, отделяют его за пупочный канатик, захватывают желточный мешок и помещают в чашку Петри. Контролируют на стерильность, просматривают на наличие поражений. Желток в случае необходимости его извлечения можно отсосать шприцем без выведения наружу желточного мешка.

Наличие вируса в аллантоисной и амниотической жидкостях зараженного эмбриона определяют в реакции гемагглютинации. Жидкости эмбрионов с положительным результатом гемагглютинации после проверки на стерильность соединяют и титруют в развернутой реакции гемагглютинации.

При наличии небольшого количества вируса или невозможности выявить его в исследуемом материале проводят последовательные пассажи на куриных эмбрионах. Если после трех последующих пассажей на эмбрионах в исследуемом материале вирус не обнаруживают, результат считают отрицательным.

Использование культур клеток. Культивирование клеток вне организма требует выполнения ряда условий. Одним из них является строгое соблюдение стерильности при работе, так как используемые питательные среды служат отличным питательным субстратом также для бактерий и грибов. Клетки тканей обладают весьма высокой чувствительностью к солям тяжелых металлов. Поэтому необходимо придавать исключительное значение качеству различных ингредиентов, входящих в состав солевых растворов и питательных сред, а также способам обработки посуды и резиновых пробок, применяемых при культивировании клеток.

Одним из обязательных условий успешной работы с клетками является высокое качество дистиллированной воды (проверяется два раза в неделю). Для работы с клетками используют бидистил- лированную или деионизированную воду. Лучшими дистилляторами являются приборы из стекла или легированной стали: из такой аппаратуры не вымываются ионы тяжелых металлов, являющихся токсичными для клеток. Деонизированную воду получают на специальных установках, где очистка воды от солей осуществляется при ее последовательном прохождении через колонки с анионитом и катионитом.

При культивировании клеток особенно большие требования предъявляют к подготовке и стерилизации посуды и пробок. Во многих случаях именно неправильные их мойка и стерилизация служат причиной не прикрепления клеток к стеклу или быстрой дегенерации клеточного монослоя.

Для роста и размножения клеток вне организма необходим сложный комплекс физико-химических факторов: определенная температура, концентрация водородных ионов, неорганические соединения, углеводы, аминокислоты, белки, витамины, кислород и углекислота, поэтому для культивирования вирусов в культурах клеток используют сложные по составу питательные среды. По характеру компонентов, входящих в их состав, эти среды делят на две группы.

  • 1. Среды, представляющие собой смеси солевых растворов (Хенк- са, Эрла и др.) и естественных компонентов (сыворотка крови животных и человека, гидролизат альбумина). Количество каждого из этих компонентов в разных прописях сред различно.
  • 2. Синтетические и полусинтетические среды, состоящие из солевых растворов (Эрла, Хенкса идр.) с добавлением аминокислот, витаминов, коэнзимов и нуклеотидов (среды Игла, 199 идр.). В синтетических средах клетки могут существовать в жизнеспособном состоянии непродолжительное время (до 7 дней). Для более длительного поддержания их в жизнеспособном состоянии, а также для создания лучших условий роста и размножения клеток к синтетическим средам добавляют сыворотку крови животных (коров, телят и др.).

Для выделения вирусов могут быть использованы разные методы культивирования клеток вне организма. Однако в настоящее время наибольшее практическое применение получили однослойные культуры первично-трипсинизированных и перевиваемых линий клеток. Однослойные культуры клеток выращивают в стеклянных плоскостенных сосудах-матрацах вместимостью 1 л, 250 и 100 мл или в обычных бактериологических пробирках, обработанных соответствующим способом.

При использовании первично-трипсинизированных культур клеток сущность метода заключается в разрушении межклеточных связей в тканях протеолитическими ферментами и разобщении клеток для выращивания монослоя на поверхности стекла. Источником получения клеток могут служить ткани и органы эмбрионов человека и животных, забитых животных и птиц, а также извлеченные у человека при операции. Используют нормальные и злокачественные перерожденные ткани, эпителиальные, фибробластического типа и смешанные. Способность к размножению клеток, извлеченных из организма, тесно связана со степенью дифференциации ткани. Чем меньше дифференцирована ткань, тем более интенсивной способностью пролиферации обладают ее клетки in vitro. Поэтому клетки эмбриональных и опухолевых тканей значительно легче культивировать вне организма, чем нормальные клетки взрослых животных.

Ежедневно культуры просматривают под малым увеличением микроскопа для определения характера их роста. Если клетки не пролиферируют, выглядят округлыми, зернистыми, темными и отслаиваются от стекла, значит, посуда плохо обработана или токсичны ингредиенты питательной среды.

Наряду с первично-трипсинизированными тканями для культивирования вирусов широко используют культуры перевиваемых клеток, т.е. культуры клеток, способных к размножению вне организма неопределенно длительное время. Наиболее часто применяют культуры клеток, полученные из нормальных и раковых тканей человека. Широкую известность приобрела линия клеток HeLa, полученная из опухоли шейки матки, Нер-2 - из карциономы гортани, КВ - из ткани рака полости рта. Готовят такие культуры клеток и из нормальных тканей животных - почки обезьяны, кролика и эмбриона свиньи (табл. 10.1).

Для пересева перевиваемых клеток питательную среду отсасывают пипеткой и выливают. Сформировавшийся тонкий слой клеток разрушают раствором трипсина, и освобожденные таким образом клетки переносят в новый сосуд со свежим питательным раствором, где вновь образуется монослой клеток.

Индикатором наличия вируса в зараженных культурах клеток могут служить:

  • а) развитие специфической дегенерации клеток;
  • б) обнаружение внутриклеточных включений;
  • в) обнаружение специфического антигена методом иммунофлюоресценции;
  • г) положительная реакция гемадсорбции;
  • д) положительная реакция гемагглютинации;
  • е) образование бляшек.

Таблица 10.1

Перечень наиболее употребляемых культур перевиваемых клеток

Для выявления специфической дегенерации в зараженных культурах клетки ежедневно просматривают под малым увеличением микроскопа. Многие вирусы при размножении в клетках вызывают их дегенерацию, т.е. оказывают цитопатогенное действие (ЦПД) (рис. 10.6).

Рис. 10.6.

Время развития и характер цитопатических изменений в инфицированных культурах клеток определяются свойствами и дозой ино- кулированного вируса, а также свойствами и условиями культивирования клеток. Одни вирусы вызывают ЦПД в пределах первой недели после заражения (вирусы оспы, полиомиелита, Коксаки В и др.), другие - спустя 1-2 нед. после заражения (аденовирусы, парагриппоз- ные вирусы, ECHO и др.).

Вирусы вызывают цитопатические изменения трех основных типов: образование многоядерных гигантских клеток и симпластов, являющихся результатом слияния цитоплазмы многих клеток; круглоклеточную дегенерацию, возникающую вследствие утраты межклеточных связей и округления клеток; развитие очагов клеточной пролиферации, состоящих из нескольких слоев клеток.

При размножении некоторых вирусов в культурах клеток образуются внутриклеточные включения в цитоплазме или ядре пораженных клеток. Культуры клеток для выявления включений выращивают на стеклянных пластинках в пробирках, заражают вирусом и через определенные сроки инкубации готовят препараты, окрашивая их обычными красителями.

Для выявления специфического антигена в зараженных культурах клеток препараты готовят так же, как для выявления включений, используя МФА.

В основе метода бляшек лежит образование в монослое зараженных вирусом клеток под агаровым покрытием обесцвеченных участков, состоящих из дегенерированных (погибших) клеток. Эти участки, получившие называние бляшек, представляют собой колонии вируса, образующиеся, как правило, из одной вирусной частицы.

При отсутствии цитопатических изменений, внутриклеточных включений, бляшкообразования, отрицательных реакций гемадсорб- ции и гемагглютинации в культурах клеток, зараженных исследуемым материалом, проводят два последующих пассажа. При отсутствии указанных изменений в конечном пассаже результат выделения вируса считают отрицательным.

Для обнаружения вирусов в инфекционном материале могут быть использованы следующие методы.

Микроскопические:

  • а) вирусоскопия;
  • б) обнаружение внутриклеточных включений.

Иммунологические:

  • а) иммунная электронная микроскопия;
  • б) иммунофлюоресценция;
  • в) гемагглютинация;
  • г) гемадсорбция.

Идентификация вирусов осуществляется с помощью иммунологических методов, включающих следующие реакции:

  • а) торможения гемагглютинации;
  • б) задержки гемадсорбции;
  • в) связывания комплемента;
  • г) нейтрализации;
  • д) преципитации в геле агара.

Микроскопические методы. С помощью светового микроскопа могут быть обнаружены только крупные вирусы, размеры которых превышают 150 нм. Распознавание вирусов, имеющих меньшие размеры, возможно лишь в электронном микроскопе. Для выявления крупных вирусов может применяться световая, фазово-контрастная и люминесцентная микроскопия.

При вирусных инфекциях в зараженных клетках развиваются своеобразные включения. Одни инфекции сопровождаются образованием включений в цитоплазме пораженных клеток (бешенство, оспенная вакцина), другие - в цитоплазме и ядре (корь, натуральная и ветряная оспа, аденовирусные заболевания). Включения имеют различную природу, структуру, форму и размеры от 0,25 до 25 мкм. Согласно современным данным, при одних инфекциях включения являются местом размножения вируса и представляют собой его скопления, окруженные веществами клетки, при других - продукт дегенерации клетки.

Включения могут быть выявлены в окрашенных отпечатках органов и тканей, соскобах клеток, гистологических срезах из пораженной ткани и препаратах культур клеток, инфицированных вирусом. Окраску чаще производят по методу Романовского - Гимзы. Для окраски этим методом препараты фиксируют в смеси Дюбоска - Брази- ля - Буэна, состоящей из пикриновой кислоты, формалина, спирта, уксусной кислоты. Внутриклеточные включения при большинстве вирусных инфекций являются оксифильными и красятся по методу Романовского - Гимзы в розовый или сиреневый цвет.

Иммунологические методы диагностики вирусных инфекций. В последние годы эти методы стали ведущими в лабораторной диагностике вирусных инфекций. Это во многом объясняется экономическими причинами, поскольку классические методы вирусологического анализа довольно дороги. Кроме того длительность исследований с помощью вирусологических методов (недели), даже если они оказываются вполне эффективными, делают их ретроспективными.

Иммунологические методы используют как для обнаружения вирусных антигенов в различных биосубстратах и объектах внешней среды, так и для серодиагностики - выявления в сыворотках крови больных людей и лабораторных животных антител к вирусным антигенам. Помимо этого иммунологические методы исследования незаменимы при идентификации вирионов.

Взаимодействуя с организмом, вирусы вызывают образование антител, которые, адсорбируясь на вирионах, препятствуют проникновению вирионов в клетки и развитию цитопатического действия (ЦПД); нейтрализуют смертельное действие вирусов при репродукции их в куриных эмбрионах и организме животных; инактивируют вири- онные гемагглютинины и нейраминидазы, предотвращая реакцию ге- магглютинации (РГА) и реакцию гемадсорбции (РГадс) на пораженных вирусом клетках. Эти вируснейтрализуюшие антитела вызывают также агглютинацию и преципитацию вирусных частиц, а образующиеся при этом иммунные комплексы связывают комплемент. Поэтому для идентификации вирионов используются классическая реакция нейтрализации (PH) на культурах клеток, куриных эмбрионах и животных и ее модификации: реакция торможения гемагглютинации (РТГА); реакция торможения гемадсорбции (РТГадс). Те же реакции используются в серодиагностике вирусных инфекций для обнаружения в сыворотке больных вируснейтрализующих антител по известному вирусному антигену (диагностикуму).

Метод иммуноэлектронной микроскопии (ИЭМ). Электронная микроскопия в настоящее время играет важную роль в изучении вирусов. Именно данные электронной микроскопии служат основой современной классификации вирусов.

Новый этап в развитии электронно-микроскопического изучения вирусов - применение техники иммуноэлектронной микроскопии. С помощью этого метода стали возможными не только прямое обнаружение вирусов, но и их идентификация, а также быстрое сероти- пирование вирусных штаммов и титрование антител к ним. Большое значение ИЭМ приобрела для определения локализации вирусных антигенов внутри клеток макроорганизма.

Несомненным преимуществом ИЭМ является ее высокая чувствительность по сравнению с обычными электронно-микроскопическими методами.

При контакте антигена вируса или вирусного компонента с гомологичной антисывороткой формируется комплекс антитело - антиген. Данный феномен является основой методики, употребляемой для обнаружения и идентификации вирусных антигенов или антител к ним. Именно эти комплексы антигенов с антителами после негативного контрастирования можно наблюдать в электронном микроскопе. В клинической диагностике антигенный материал не требует тщательной очистки. Так, в случае выявления вируса гриппа можно исследовать неочищенную аллантоисную жидкость. В настоящее время считается, что практически любой вид клинического материала пригоден для ИЭМ. В диагностических целях можно применять обычную нефракционированную сыворотку, а также сыворотки реконвалес- центов. Необходимо отметить, что на конечные результаты большое влияние оказывает соотношение количеств антигена и антител. При избытке антигена наблюдают изобилие частиц; агломераты в данном случае будут немногочисленны. При избытке антител вирусные частицы окружены их толстым слоем, выявить мелкие структурные детали вириона практически невозможно; агрегаты также немногочисленны. При оптимальном соотношении количеств антигена и антител агрегаты укрупняются при хорошем изображении деталей вирионов. Из вышеизложенных соображений желательно использовать иммунную сыворотку в нескольких разведениях.

На опорную сетку наносят пленку-подложку, приготовленную из палладия. При использовании низких концентраций палладия и для улучшения адсорбционных свойств подложки ее укрепляют с помощью угля. Для этого на готовую сухую пленку-подложку на электронно-микроскопической сетке напыляют уголь в вакууме. Толщина пленки-подложки и укрепляющего слоя углерода оказывает существенное влияние на контраст и изображение мелких деталей объекта. Конкретную толщину пленок-подложек и слоя угля каждый исследователь определяет индивидуально, исходя из того, что углерод более электронно прозрачен, нежели палладий.

Вирусы и антитела к ним имеют малую электронную плотность. Поэтому биологические объекты невозможно выявлять с помощью электронного микроскопа без предварительной обработки. Для визуализации вирусов используется техника негативного контрастирования (или негативной окраски). Для негативного контрастирования вирусов и комплексов вирус - антитело применяют различные соли тяжелых металлов. Контрастирующие вещества (атомы тяжелых металлов) проникают в гидрофильные участки объектов и замещают в них воду. В результате электронная плотность объекта возрастает, становится возможным его наблюдение в электронном микроскопе.

Прямой метод ИЭМ нашел наибольшее применение в практике. Вирусную суспензию смешивают с неразведенной антисывороткой. После энергичного перемешивая смесь инкубируют в течение 1 ч при

37 °С, затем в течение ночи при 4 °С. На следующий день смесь центрифугируют для осаждения иммунных комплексов. Осадок ресуспен- дируют в капле дистиллированной воды и подвергают негативному контрастированию.

При оценке результатов ИЭМ продукты взаимодействия между антигеном и антителом в электронном микроскопе могут иметь различный вид (отдельная вирусная частица, покрытая антителами полностью или частично; агломераты вирусных частиц). Агломераты могут занимать различную площадь, иметь различный внешний вид, содержать различное количество частиц. Поэтому наряду с опытными необходимо исследовать контрольные препараты (с буферным раствором или гетерологичной антисывороткой).

Критерий оценки результатов, полученных с помощью ИЭМ, - наличие или отсутствие в препаратах скоплений вирусных частиц, агрегированных иммунной сывороткой. Наличие агломератов антигена и антител специфической антисыворотки - признак положительной реакции. Тем не менее следует учитывать возможность неспецифической агрегации частиц антигена под влиянием высокоскоростного центрифугирования. По этой причине многие авторы рекомендуют учитывать результаты по условной шкале от 0 до 4+. Она основана на оценке степени покрытия агрегированных частиц антителами сыворотки.

Методы гемагглютинации и гемадсорбции. Многие вирусы обладают способностью агглютинировать эритроциты строго определенных видов млекопитающих и птиц. Так, вирусы гриппа и эпидемического паротита агглютинируют эритроциты кур, морских свинок, человека; вирус клещевого энцефалита - эритроциты барана; вирусы японского энцефалита - эритроциты однодневных цыплят и гусей; аденовирусы - эритроциты крыс, мышей, обезьян. В качестве исследуемого материала в реакции гемагглютинации (РГА) используют аллантоисную, амниотическую жидкости, суспензию хорион-аллан- тоисных оболочек куриных эмбрионов, взвеси и экстракты из культур клеток или органов животных, зараженных вирусами. Реакцию гемагглютинации можно ставить капельным методом на стекле и в развернутом ряду в пробирках или лунках пластин из полистирола. Первый метод является ориентировочным.

Являясь группоспецифической, РГА не дает возможности определить видовую принадлежность вирусов. Их идентифицируют с помощью реакции торможения гемагглютинации (РТГА). Для ее постановки используют заведомо известные иммунные противовирусные сыворотки. К каждому их разведению добавляют равное количество вируссодержащей жидкости. Контролем является взвесь вируса.

Смесь выдерживают в термостате, затем добавляют взвесь эритроцитов. Спустя несколько минут определяют титр вируснейтрализующей сыворотки, т.е. максимальное ее разведение, вызвавшее задержку агглютинации эритроцитов.

В серологической диагностике вирусных болезней РТГА рекомендуется ставить с парными сыворотками, одну из которых получают вначале заболевания, а другую - спустя 1-2 недели и более. Четырехкратное нарастание титра антител во второй сыворотке подтверждает предполагаемый диагноз.

Реакцию гемадсорбции (РГадс) применяют для индикации в зараженных культурах клеток вируса, обладающего гемагглютинирующей активностью. Сущность реакции заключается в том, что на поверхности клеток, зараженных вирусами, адсорбируются эритроциты, чувствительные к гемагглютинирующему действию вирусов. Например, на клетках, зараженных вирусом натуральной оспы, адсорбируются эритроциты кур; вирусом кори - эритроциты обезьян; аденовирусами - обезьян и крыс и др.

Реакция нейтрализации (PH). Репродуцируясь в культурах клеток, вирусы вызывают разного рода ЦПД, выражающееся в округлении, сморщивании, уменьшении или, наоборот, увеличении размеров клеток, слиянии их и образовании симпластов, деструкции цитоплазмы и ядра. Наконец, в монослое клеток, зараженных вирусами, в результате разрушения ими отдельных участков клеточного пласта могут появляться «стерильные пятна», или бляшки, представляющие собой клон вирусной частицы, что дает возможность не только изолировать вирус, но и определить его титр.

Идентифицировать вирус по характеру бляшек очень трудно, и поэтому прибегают к постановке PH выделенного вируса заведомо известными вируснейтрализующими сыворотками. С этой целью полученный от больного вирус накапливают в культуре клеток и различные его разведения смешивают с неразведенной противовирусной сывороткой.

Смесью вирусов и сывороток можно заражать куриные эмбрионы или чувствительных животных. В таких случаях нейтрализующую активность антител чаще всего определяют по нейтрализации вирусных гемаг- глютининов в жидкостях эмбриона и устранению смертельного действия вируса на эмбрионы и животных. Одновременно вычисляют индекс нейтрализации, выражающий максимальное количество смертельных доз вируса, которое нейтрализуется данной сывороткой, по сравнению с результатами контрольного опыта, принимаемыми за единицу.

Подобным образом с помощью PH идентифицируются вирусы, выделенные из материала больных, при заражении им куриных эмбрионов и животных. Для этого к вируснейтрализующим сывороткам прибавляют вируссодержащие жидкости эмбрионов и взвеси пораженных органов животных. После определенного времени инкубации смесями инфицируют культуры клеток, куриные эмбрионы и животных.

В серодиагностике вирусных инфекций определяют динамику нарастания титра вируснейтрализующих антител по известному вирусу. При этом ставят PH с парными сыворотками, взятыми от больных в начале и в конце болезни. Диагностическим явится 4-кратное возрастание титра иммуноглобулинов во второй из них.

PH основана на способности специфических антител достаточно прочно соединяться с вирусной частицей. В результате взаимодействия между вирусом и антителом происходит нейтрализация инфекционной активности вируса вследствие блокады антигенных детерминант, ответственных за соединение вирусной частицы с чувствительными клетками. В результате вирус утрачивает способность размножаться в чувствительной к нему биологической системе in vitro или in vivo.

Результаты PH становятся очевидными после того, как смесь вируса и гомологичных ему антител после определенной по времени экспозиции будет внесена в чувствительную биологическую систему (тканевая культура клеток, куриный эмбрион, организм восприимчивого животного), где вирус может размножаться и вызывать поддающиеся учету изменения, которые будут подавлены частично или полностью в присутствии антител.

В PH участвуют три компонента:

  • 1) вирус;
  • 2) сыворотка, содержащая антитела;
  • 3) биологический объект (лабораторные животные, развивающиеся куриные эмбрионы, тканевые культуры), выбор которого зависит от вида вируса, с которым предполагается проводить исследования.

PH используют либо для идентификации выделенного возбудителя, либо для обнаружения и титрования антител в сыворотках. В первом случае пользуются сыворотками специально иммунизированных лабораторных животных или переболевших людей. Во втором случае используют сыворотки, взятые в начальной стадии болезни и в период реконвалесценции.

Вируснейтрализующие антитела в сыворотках переболевших людей в отличие от антигемагглютининов или комплементсвязывающих антител сохраняются многие годы, а при некоторых вирусных инфекциях (например, при кори) даже пожизненно. Это позволяет в ряде случаев использовать пул сывороток многих реконвалесцентов в качестве референс-препарата, который после разлива в ампулы и лиофилизации пригоден для диагностической работы в течение длительного времени.

При идентификации выделенных возбудителей пользуются заранее приготовленными гипериммунными сыворотками различных животных: кроликов, белых крыс и мышей, морских свинок, обезьян, баранов, лошадей и т.д. Активность гипериммунных сывороток для PH зависит от способа иммунизации животных.

Перед постановкой каждого нейтрализационного опыта вирус предварительно титруют, определяя конечное разведение, вызывающее повреждение культуры ткани либо инфицирование лабораторных животных (или куриных эмбрионов). Титр вируса выражают в 50%-ной дозе (ТКИД50 - 50%-ная инфекционная доза для тканевой культуры).

Молекулярно-генетические методы диагностики в вирусологической практике. Методы молекулярной биологии получили свое развитие еще в 50-е гг. XX столетия. Они стали возможными в связи с тем, что в геноме каждого вируса имеются уникальные видоспецифичные нуклеотидные последовательности, обнаружив которые можно идентифицировать любой инфекционный агент. Наибольшее значение данные методы имеют при выявлении микроорганизмов, которые длительно или трудно культивируются обычными методами. В 1970-е годы для выявления инфекционного возбудителя или мутации использовали ДНК-зондовую детекцию, основанную на гибридизации специфических олигонуклеотидных зондов, меченных радиоактивным изотопом (или флюорохромом) с образцом выделенной ДНК. Ги- бридизационный анализ использует способность нуклеиновых кислот в определенных условиях образовывать специфические комплексы с нуклеиновыми же кислотами, имеющими комплементарные к ним последовательности. Метод детекции инфекционных возбудителей ДНК-гибридизацией оказался крайне трудоемким, длительным и дорогостоящим. Кроме того его чувствительность оказывается недостаточной при идентификации микроорганизмов в таких клинических материалах, как фекалии и моча.

На смену ДНК-гибридизации пришел метод, имитирующий естественную репликацию ДНК и позволяющий обнаружить и многократно копировать с помощью термофильной ДНК-полимеразы определенный фрагмент ДНК. Полимеразная цепная реакция (ПЦР) - это изящный метод, имитирующий естественную репликацию ДНК и позволяющий обнаружить и многократно копировать с помощью термофильной ДНК-полимеразы определенный фрагмент ДНК.

Благодаря своим высоким диагностическим качествам ПЦР является общепризнанным дополнением к традиционным методам, использующимся в вирусологии: размножению вируса в культуре клеток, иммунологическому выявлению вирусных антигенов, электронной микроскопии. Существенным преимуществом данного метода является возможность выявлять вирусы при латентных инфекциях (цитомегало- вирус, вирус герпеса) и вирусы, которые трудно или пока невозможно культивировать (вирус иммунодефицита человека, вирус Эпстайна - Барр, вирус папилломы человека, вирус гепатита Видр.). С методом ПЦР связываются перспективы изучения таких заболеваний, как болезнь Крейтцфельдта - Якоба, Альцгеймера, рассеянный склероз.

Этиологическая диагностика вирусных заболеваний проводится вирусологическим, вирусоскопическим, серологическим и молекулярно-генетическим методами. Три последних метода могут быть использованы как экспресс-диагностические.

Вирусологический метод диагностики.

Конечной целью метода является идентификация вирусов до вида или серологического варианта. Вирусологический метод включает несколько этапов:

1) отбор материала для исследования;

2) обработку вируссодержащего материала;

3) заражение материалом чувствительных живых систем;

4) индикацию вирусов в живых системах;

5) титрование выделенных вирусов;

6) идентификацию вирусов в иммунных реакциях.

1. Отбор материала для исследования .

Проводится в ранние сроки заболевания при соблюдении правил, предотвращающих контаминацию материала посторонней микрофлорой и инфицирование медицинского персонала. Для предупреждения инактивации вирусов при транспортировке материала, он помещается в вирусную транспортировочную среду (ВТС), состоящую из сбалансированного солевого раствора, антибиотиков и сывороточного альбумина. Транспортируется материал в специальном контейнере с термоизоляцией и закрытыми пластиковыми пакетами, содержащими лед. При необходимости материал хранят при -20˚С. Каждый образец материала для исследования должен иметь маркировку и этикетку с указанием фамилии больного, типа материала, даты его забора, развернутый клинический диагноз и другие сведения.

В зависимости от характера заболевания, материалом для исследования могут быть:

1) смывы с носовой части глотки и мазок из глотки;

2) спинномозговая жидкость;

3) кал и ректальные мазки;

6) жидкость из серозных полостей;

7) мазок с конъюнктивы;

8) содержимое везикул;

8) секционный материал.

Для получения смыва из ротоглотки используют 15-20 мл ВТС. Больной тщательно в течение 1 минуты полощет горло ВТС и собирает смыв в стерильный флакон.

Мазок с задней стенки глотки берут стерильным ватным тампоном, надавливая на корень языка шпателем. Тампон помещают в 2-3 мл ВТС, ополаскивают и отжимают.

Спинномозговую жидкость получают при спинномозговой пункции. 1-2 мл спинномозговой жидкости помещают в стерильную посуду и доставляют в лабораторию.

Пробы кала отбирают в течение 2-3 дней в стерильные флаконы. Из полученного материала готовят 10 % суспензию с использованием раствора Хенкса. Суспензию центрифугируют при 3000 об/мин, собирают надосадочную жидкость, вносят в нее антибиотики и помещают в стерильную посуду.



Кровь, полученную при венепункции в объеме 5-10 мл, дефибринируют путем добавления гепарина. Цельную кровь не замораживают, антибиотики не добавляют. Для получения сыворотки пробы крови выдерживают в термостате при 37˚С в течение 60 минут.

Жидкость из серозных полостей получают при их пункции в количестве 1-2 мл. Жидкость используется сразу или сохраняется в замороженном состоянии.

Мазок с конъюнктивы берут стерильным тампоном и помещают в ВТС, после чего проводят центрифугирование взятого материала и его замораживание.

Содержимое везикул отсасывают шприцем с тонкой иглой и помещают в ВТС. Материал посылается в лабораторию в виде высушенных мазков на предметных стеклах или в запаянных стерильных капиллярах или ампулах.

Секционный материал отбирают в возможно ранние сроки, соблюдая правила асептики. Для отбора каждой пробы используют отдельные наборы стерильных инструментов. Количество отбираемых тканей составляет 1-3 г, которые помещают в стерильные флаконы. Вначале берут пробы внеполостных органов (мозг, лимфатические узлы и др.). Ткани грудной полости берут до вскрытия брюшной полости. Полученные образцы тканей растирают в ступке с добавлением стерильного песка и стерильного раствора натрия хлорид, после чего материал центрифугируют. Надосадочную жидкость собирают во флаконы, добавляют антибиотики. Материал для вирусологического исследования используется сразу или хранится при -20˚С.

2. Обработка вируссодержащего материала.

Проводится с целью освобождения материала от сопутствующей бактериальной микрофлоры. Для этого используются физические и химические методы.

Физические методы:

1) фильтрование через различные бактериальные фильтры;

2) центрифугирование.

Химические методы:

1) обработка материала эфиром в случаях выделения вирусов, не имеющих суперкапсида;



2) добавление к материалу смеси гептана и фреона;

3) внесение антибиотиков (пенициллин – 200-300 ЕД/мл; стрептомицин – 200-500 мкг/мл; нистатин – 100-1000 ЕД/мл).

3. Заражение материалом чувствительных живых систем.

1) лабораторные животные;

2) куриные эмбрионы;

3) культуры органов;

4) культуры тканей.

Лабораторные животные . Используются белые мыши, морские свинки, хомяки, кролики и др. Белые мыши наиболее чувствительны к большому числу видов вирусов. Способ заражения животных определяется тропизмом вируса к тканям. Заражение в мозг применяется при выделении нейротропных вирусов (вирусы бешенства, полиовирусы и др.). Интраназальное заражение проводят при выделении возбудителей респираторных инфекций. Широко используются внутримышечный, внутривенный, внутрибрюшинный, подкожный и другие методы заражения. Заболевших животных усыпляют эфиром, вскрывают и производят забор материала из органов и тканей.

Куриные эмбрионы . Широко доступны и просты в работе. Применяют куриные эмбрионы в возрасте от 5 до 14 дней. Перед заражением куриные эмбрионы овоскопируют: определяют их жизнеспособность, отмечают на скорлупе границу воздушного мешка и месторасположение эмбриона («темный глаз» эмбриона). Работа с куриными эмбрионами проводится в стерильном боксе стерильными инструментами (пинцеты, шприцы, ножницы, копье и др.). После выполнения фрагмента работы инструменты погружают в 70 % этиловый спирт и перед следующей манипуляцией прожигают. Перед заражением скорлупу куриного эмбриона протирают горящим спиртовым тампоном и спиртовым раствором йода. Объем исследуемого материала, вводимого в эмбрион, составляет 0,1-0,2 мл. Для выделения вирусов из одного материала используют не менее 4 куриных эмбрионов.

Похожие публикации